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Abstract 

Anthropogenic carbon dioxide  (CO2) levels are rising to alarming concentrations in earth’s atmosphere, causing 
adverse effects and global climate changes. In the last century, innovative research on  CO2 reduction using chemical, 
photochemical, electrochemical and enzymatic approaches has been addressed. In particular, natural  CO2 conver‑
sion serves as a model for many processes and extensive studies on microbes and enzymes regarding redox reactions 
involving  CO2 have already been conducted. In this review we focus on the enzymatic conversion of  CO2 to carbon 
monoxide (CO) as the chemical conversion downstream of CO production render CO particularly attractive as a key 
intermediate. We briefly discuss the different currently known natural autotrophic  CO2 fixation pathways, focusing 
on the reversible reaction of  CO2, two electrons and protons to CO and water, catalyzed by carbon monoxide dehy‑
drogenases (CODHs). We then move on to classify the different type of CODHs, involved catalyzed chemical reactions 
and coupled metabolisms. Finally, we discuss applications of CODH enzymes in photochemical and electrochemical 
cells to harness  CO2 from the environment transforming it into commodity chemicals.

Keywords CO2 fixing microorganisms, Carbon monoxide dehydrogenase (CODH), CO2 reduction, Electrocatalysis, 
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Introduction
Since the start of the industrial revolution, carbon diox-
ide  (CO2) levels in the atmosphere have increased dra-
matically (from 278  ppm pre-industrial to currently 
417  ppm) (Rudd 2022).  CO2 absorbs and radiates heat 
and is the most important greenhouse gas. The oceans 
are the greatest ally against human-induced climate 
change as they have taken up about 26% of the  total 
anthropogenic  CO2 emissions and captured most of 
the excess heat (Fox-Kemper 2021; Friedlingstein et  al. 

2022). The oceanic  CO2 and heat capture, however, 
have promoted ocean acidification and deoxygenation 
(Schmidtko et al. 2017; Brauko et al. 2020). This is hav-
ing detrimental effects on earth’s ecosystem functioning 
(Henson et al. 2017; Bates and Johnson 2020; Jin and Gao 
2021; Viitasalo and Bonsdorff 2022). Particularly affecting 
oceanic biodiversity, productivity, and biogeochemical 
cycling (Brauko et al. 2020) and consequently impacting 
the world’s economy. To significantly reduce atmospheric 
 CO2 concentration and counteract climate change and its 
consequences,  CO2 emissions must be actively reduced. 
It is well-known that a significant mitigation of anthropo-
genic  CO2 emissions alone is not sufficient (Fawzy et al. 
2020). However, a broad range of alternative and innova-
tive techniques involving  CO2 capture, conversion, and 
storage could offer a viable solution. Indeed, in recent 
decades, various research approaches have been carried 
out to convert  CO2 into sustainable commodities, such 
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as syngas, methanol, acetate, polymers and biofuels using 
biotransformation and catalytic properties (Tirado-Ace-
vedo et al. 2010; Liew et al. 2022; Akash et al. 2023).

Microbes are phylogenetically and metabolically highly 
diverse (Kennedy et al. 2007; Fuhrmann 2021) and have 
been sequestering  CO2 naturally for millions of years 
(Berg 2011; Kajla et  al. 2022). The use of their biocata-
lysts (enzymes) offers numerous advantages. Compared 
to conventional electrochemical conversions, biocatalysts 
can target chemical reactions highly specifically, be very 
efficient and produce “clean” products, i.e., no toxic side 
compounds (Schlager et al. 2017b; Fukuyama et al. 2020). 
Microbes have evolved at least seven autotrophic carbon 
fixation pathways (Hügler and Sievert 2011; Bierbaumer 
et  al. 2023) and it can be expected that a larger set of 
autotrophic mechanisms are hidden among the uncul-
tured microbial majority, suggestive by the fact that only 
recently three novel pathways have been proposed (San-
tos Correa et al. 2023). The different  CO2 fixing enzymes 
help drawing down anthropogenically generated  CO2. 
Current research is focusing on how to improve the 
microbial  CO2 fixation ability by, e.g., creating new syn-
thetic pathways (Schwander et  al. 2016) and converting 
 CO2 into valuable feedstocks, such as acetate (Liew et al. 
2022).

Microbial autotrophic  CO2 fixation pathways
CO2 assimilation is described as a process of convert-
ing  CO2 into cellular carbon, which requires adenosine 
triphosphate (ATP) and reducing equivalents. Aero-
bic microbial organisms require more ATP equivalents, 
because they use high potential and lower energy electron 
donors, such as nicotinamide adenine dinucleotide phos-
phate (NADPH) E0’ ≈ −  320  mV (Berg 2011). In com-
parison, electron donors with lower potential and higher 
energy are responsible for providing reducing equivalents 
in anaerobic microbes. The so far described autotrophic 
 CO2 fixing pathways (Fig. 1) have been divided into two 
groups according to the tolerance of their key enzymes 
towards oxygen  (O2). The aerobic pathways include the 
Calvin Benson Bassham cycle (CBB), the 3-hydroxypro-
pionate bicycle (3HP) and the 3-hydroxypropionate/4-
hydroxybutyrate cycle (3HP/4HB), while the reductive 
tricarboxylic acid cycle (rTCA), the Wood–Ljungdahl 
pathway (WL), the reductive glycine pathway (rGly) and 
the dicarboxylate/4-hydroxybutyrate cycle (DC/HB) 
belong to the anaerobic pathways, since strictly anaerobic 
enzymes are operating (Berg 2011).

Calvin Benson Bassham cycle
The CBB cycle is the most important mechanism of auto-
trophic  CO2 fixation for common phototrophic micro-
organisms (Bar-Even et  al. 2012) and its key enzyme 

ribulose-1,5-bisphosphate-carboxylase/-oxygenase 
(RubisCO) is the most abundant protein in the biosphere, 
fixing around  1011 tons of atmospheric  CO2 per year 
(Hayer-Hartl and Hartl 2020). The entire cycle consists 
of three stages, carboxylation, reduction and regenera-
tion of ribulose-1,5-bisphosphate (RuBP) (Bassham and 
Calvin 1962). The key enzyme RubisCO catalyzes the 
carboxylation of  CO2 and RuBP to generate 3-phospho-
glycerate and releasing free energy (ΔrGm′ −  37.8  kJ/
mol). 3-phosphoglycerate is subsequently reduced by 
glycerinaldehyd-3-phosphate (GAP) dehydrogenase and 
3-phosphoglycerate kinase to glyceraldehyde-3-phos-
phate consuming ATP and NADPH (ΔrGm′ =  + 18.7 kJ/
mol). Regeneration of 5-bisphosphate takes place through 
conversion between C3, C4, C5, C6, and C7 sugar, which 
are finally phosphorylated by phosphoribulokinase to 
regenerate RuBP (ΔrGm′ =  − 24.2 kJ/mol). One cycle can 
fix three  CO2 molecules and produce one GAP molecule 
at the cost of nine ATP molecules and six molecules of 
NADPH (Fig. 1). The regeneration of the energy carrier 
and of reducing equivalents in living microbes is realized 
by the photosystems. Although the CBB cycle is known 
to be the most widely used  CO2 fixation mechanism, the 
efficiency of carbon assimilation is not very high when 
comparing it to other naturally occurring pathways. The 
resulting C3 compound is not suitable for the synthesis of 
acetyl-CoA, since the conversion of GAP inevitably dis-
solves  CO2. However, acetyl-CoA is essential to produce 
multicarbon compounds, such as fatty acids (Blatti et al. 
2013). In addition, large amounts of ATP and NADPH 
are consumed during this cycle (Berg 2011).

3‑Hydroxypropionate bicycle
The 3HP bicycle was discovered in photosynthetic green 
non-sulfur bacteria, i.e., Chloroflexus (Mattozzi et  al. 
2013). In the first cycle, one acetyl-CoA molecule and 
three bicarbonate  (HCO3

−) molecules in total are con-
verted to glyoxylate (ΔrGm′ =  − 109.4 kJ/mol). In the sec-
ond cycle, acetyl-CoA and pyruvate are generated from 
glyoxylate trough several steps (ΔrGm′ = − 55.4 kJ/mol). 
The 3HP bicycle fixes three  CO2 molecules and produces 
one pyruvate molecule while consuming seven ATP mol-
ecules and five molecules of reducing equivalents (Fig. 1), 
which makes it more energy demanding than the rTCA 
and 2HP/4HB cycle (Berg 2011). Although, this cycle is 
very energy demanding, it is already used in the industry 
to produce 3HP, which serves as an attractive precursor 
for acrylate, acrylamide and even as a monomer of biode-
gradable plastic (Aduhene et al. 2021).

3‑Hydroxypropionate/4‑hydroxybutyrate cycle
The 3HP/4HB cycle has been identified in archaea (Berg 
et  al. 2007). Here, succinyl-CoA is generated from two 
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molecules of  HCO3
− using an acetyl-CoA/propionyl-CoA 

carboxylase (ΔrGm′ = −  61.9  kJ/mol). The previously 
generated succinyl-CoA is reduced to 4-hydroxybu-
tyrate, which is then activated to 4-hydroxybutyryl-
CoA (ΔrGm′ = −  17.0  kJ/mol), and the key enzyme 
4-hydroxybutyryl-CoA dehydratase subsequently syn-
thesizes crotonyl-CoA (ΔrGm′ = − 7.7 kJ/mol). At a final 
step, crotonyl-CoA is oxidized and cleaved to acetyl CoA 
(ΔrGm′ = −  16.5  kJ/mol). A full 3HP/4HB cycle uses 
up two molecules of  HCO3

− to generate one molecule 
of acetyl-CoA, consuming six ATPs and four reducing 
NADPH equivalents (Fig. 1) (Berg et al. 2007). Recently, 
Liu and Jiang improved the activity of the propionyl-CoA 
carboxylase to enable the efficient synthesis of succinate 
from acetyl-CoA via the 3HP/4HB cycle (Liu and Jiang 
2021), making this autotrophic  CO2 fixation pathway 
more attractive for the industry.

Reductive tricarboxylic acid cycle
The rTCA cycle is found in anaerobic bacteria and pho-
tosynthetic green sulfur bacteria (Buchanan and Arnon 
1990). This cycle forms acetyl-CoA from two  CO2 mol-
ecules by the consumption of two molecules of ATP 
(Fig.  1) and reverses the reactions of the oxidative cit-
ric acid cycle (TCA) (Berg 2011). For the reversal of the 
TCA, three rTCA-specific enzymes are required, which 
include the ATP-citrate lyase, the fumarate reductase 
as well as the strictly anaerobic ferredoxin-dependent 
2-oxoglutarate synthase. Thermodynamically challeng-
ing reactions (ΔrGm′ > 10 kJ/mol) of the rTCA cycle are 
catalyzed by ATP-citrate lyase, 2-ketoglutarate synthase 
and isocitrate dehydrogenase (Berg 2011). In addition, 
only recently it was demonstrated that high pressure of 
 CO2 can drive the TCA cycle backwards towards auto-
trophy (Steffens et  al. 2021, 2022). This version of the 

Fig. 1 Currently known seven natural autotrophic  CO2 fixation pathways. The respective carbon fixing enzymes (red) and ATP demand are 
depicted. Aerobic pathways (mint) include the CBB cycle, 3HP/4 HB cycle and 3HPA bicycle. The WL pathway, rGly pathway, rTCA cycle and DC/HB 
cycle are anaerobic pathways (orange). (modified after Shi et al. 2020)
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rTCA is identified as the reverse oxidative TCA (roTCA) 
and mainly differs from the classical rTCA using citrate 
synthase instead of ATP-citrate lyase, making citrate 
cleavage thermodynamically challenging (ΔrGm′ > 35 kJ/
mol). However, this enables the cell to spend less ATP per 
acetyl-CoA synthesis from  CO2 (Mall et  al. 2018; Nun-
oura et al. 2018).

Dicarboxylate/4‑hydroxybutyrate cycle
The DC/HB cycle is also a strictly anaerobic  CO2 fixation 
pathway, which converts two molecules of  HCO3

− and 
acetyl-CoA to succinyl-CoA by a carboxylase–pyruvate-
synthase and phosphoenolpyruvate carboxylase. The 
regeneration of acetyl-CoA is accomplished similarly to 
the 3HP/4HB cycle. However, the pyruvate synthase and 
ferredoxin, are inactivated by  O2. This fixes one molecule 
of  HCO3

− and one molecule of  CO2 to generate one mol-
ecule of acetyl-CoA at the expense of five ATP molecules 
(Fig. 1) (Huber et al. 2008; Erb 2011).

Reductive glycine pathway
In 2020, it was demonstrated that the sulfate-reducing 
bacterium (SRB) Desulfovibrio desulfuricans G11 uses 
a variation of the linear reductive glycine pathway for 
carbon assimilation and autotrophic growth (Sanchez-
Andrea et al. 2020), confirming the rGly pathway as the 
seventh natural  CO2 fixation pathway. Although the 
main glycine cleavage, is not sensitive to  O2, autotrophic 
growth on  CO2 requires 5,10-methylene tetrahydro-
folate (5,10 mTHF). Moreover, the production of 5,10 
mTHF costs one molecule of ATP, which is achieved 
using formate as starting molecule (Fig. 1). The formate 
is generated by the reduction of one  CO2 using the oxy-
gen-sensitive formate dehydrogenase (FDH). This first 
step is shared with the WL pathway (Y. Song et al. 2020), 
therefore, making aerobic autotrophic growth on  CO2 
using the rGyl pathway not possible. Only recently, Song 
et al. (2020) were able to confirm the co-utilization of the 
rGly pathway and the WL pathway under anaerobic auto-
trophic conditions using 13C labeled metabolite tracing 
and genetic modules. However, among the known  CO2 
fixation routes, rGlyP is also one of the most ATP-effi-
cient pathways, only rivalled by the rTCA cycle and WL 
pathway (Sanchez-Andrea et  al. 2020; Claassens 2021). 
Therefore, this route could be of industrial interest, but 
further research will be needed to develop, evaluate and 
implement potential future applications that base on this 
recently found  CO2 fixation pathway.

Wood–Ljungdahl pathway
In comparison with the main six mentioned  CO2 fixation 
pathways above, the WL pathway is characterized to be 
highly energy efficient as two  CO2 molecules are fixed to 

produce acetylCoA by consuming only one ATP (Fig. 1) 
(Ljungdahl 1994; Hügler and Sievert 2011). This linear 
exergonic pathway is considered to be the most ancient 
autotrophic  CO2 fixation pathway as it is found in both 
bacteria and archaea (Berg 2011). The WL pathway fixes 
 CO2 via a carbonyl (CO) and a methyl (CH3) group using 
the carbon monoxide dehydrogenase/acetyl-CoA syn-
thase (CODH/ACS) enzyme complex, respectively, to 
generate acetylCoA (Drake 1994; Fuchs 1994; Ragsdale 
2008; Ragsdale and Pierce 2008). The methyl-branch 
reduces one  CO2 molecule to formic acid by highly oxy-
gen sensitive FDH (ΔrGm′ =  + 18.0  kJ/mol) and is sub-
sequently attached to tetrahydrofolate to be further 
reduced. A second  CO2 molecule is reduced to CO by a 
nickel atom in the active center of a highly oxygen sensi-
tive CODH as part of the carbonyl-branch. Both reactions 
are thermodynamically challenging (ΔrGm′ =  + 18.0  kJ/
mol and ΔrGm′ =  + 32.6 kJ/mol). Subsequently, the one-
carbon unit from the methylbranch is transferred to the 
nickel bound CO to form actely-CoA (Mock et al. 2015; 
Jeoung et al. 2019; Lemaire et al. 2020). Unlike the other 
carbon fixation pathways known so far, CO as an inor-
ganic C1 species is of central importance in the WL path-
way. Although toxic to most organisms, CO is necessary 
for many microorganisms, which have exploited this gas 
as an energy and carbon source, especially those operat-
ing an anaerobic lifestyle (Ragsdale 2004; King and Weber 
2007; Jeoung et al. 2014; Robb and Techtmann 2018).

CO is essential for the microbial WL pathway and 
coupled microbial metabolisms. Moreover, CO is indis-
pensable for a variety of synthetic processes, such as 
Fischer–Tropsch, Monsanto and Cativa, making it one 
of the most important C1 feedstocks of the last century 
(Fujimori and Inoue 2022). Hence, microbes and their 
natural biocatalysts can be important for industrial pro-
cesses as they naturally catalyze the required reactions. 
There are several solutions to seek these microbial bio-
catalysts from the environment, such as enrichments or 
cultivations. However, as the vast microbial majority can-
not be cultivated to date (Lloyd et al. 2018), an enormous 
enzymatic potential remains untapped. One way to cir-
cumvent the limitation of culture-dependent approaches 
to identify novel enzymes is functional metagenomics, 
such as function-based screens (Simon and Daniel 2011, 
Böhnke and Perner 2015, 2017, Adam and Perner 2018). 
In the future, such activity-based screens may enable the 
identification of novel CODHs from the environment 
with highly valuable properties for industrial applica-
tion by circumventing the bottleneck of cultivation. An 
enzyme assay to detect CO oxidation activity  of sin-
gle CODH enzymes using methyl viologen as an electron 
acceptor already exists (Ensign and Ludden 1991; Serav-
alli et al. 1995). If such an assay would be upscaled for a 
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functional metagenomic screening, novel CODHs of cur-
rently uncultured microbes  may be discovered, which 
may render useful biotechnological applications.

Reversible reaction between  CO2 and CO 
of microbial CO metabolism
Microorganisms that are capable of using CO as an 
energy source for their growth are mostly referred to 
as carboxydothrophs (Oelgeschlager and Rother 2008). 
This includes aerobic and anaerobic microorganisms, 
which share as a common characteristic the presence of 
CODH enzymes (Kraut et al. 1989). Nevertheless, CODH 
enzymes can also be found in other microbes, including 
carboxydovores, aerobic heterotrophs and acetoclas-
tic organisms (P. S. Adam et al. 2018; Islam et al. 2019). 
Nevertheless, all CO-oxidizing microorganisms couple 
the reversible oxidation of CO to the reduction of elec-
tron acceptors, which can be either  O2, protons  (H+), 
nitrate  (NO3

−) or sulfate  (SO4
2−) (King and Weber 2007; 

Diender et  al. 2015; Robb and Techtmann 2018). The 
reduction of those electron acceptors causes the forma-
tion of an ion motive force, which leads to the synthesis 
of ATP and thus energy production to drive various other 
metabolic pathways (Meyer and Schlegel 1983). In some 
cases, CO conversion of SRB though seems to play a role 
in CO detoxification as it does not result in ATP syn-
thesis and growth in the absence of  SO4

2− (Lupton et al. 
1984; Sipma et al. 2006).

Classification and structure of CODHs
CODHs are classified into two distinct phylogenetic and 
structurally different groups of aerobic and anaerobic 
CODHs, primarily based on their sensitivity towards  O2 
(Lindahl 2002; King and Weber 2007; Ragsdale and Pierce 
2008; Jeoung et  al. 2019). While evolution of anaero-
bic CODH and CODH/ACS can be defined more easily, 
evolution of aerobic CODH remains unclear (Weber and 
King 2010; Diender et al. 2015).

Aerobic Mo,Cu–CODHs
Aerobic CODHs basically differ from anaerobic CODHs 
in that they are  O2 tolerant and contain a molybdenum 
(Mo) metal cofactor, where a copper (Cu) metal binds 
to a cysteine making it a unique characteristic of aerobic 
CODHs (Hille et al. 2015; Jeoung et al. 2019). The com-
monly used designation of aerobic CODHs as Mo,Cu–
CODHs was, therefore, obvious (Dobbek et  al. 1999; 
Jeoung et al. 2019). These enzymes belong to the family 
of molybdenum hydroxylases. Their structure and func-
tion have already been intensely studied in the past years 
(Ragsdale and Kumar 1996; Dobbek et  al. 1999; Rags-
dale 2004; Jeoung et al. 2014; Hille et al. 2015). Members 
of this Mo,Cu–CODH enzyme family have two active 

sites, two  [Fe2S2]-clusters and a flavin adenine dinucleo-
tide (FAD) functioning as an electron acceptor (Fig.  2) 
(Jeoung et al. 2014). The Mo,Cu–CODH consists of three 
subunits (CoxS, M, L), that are encoded in a single gene 
cluster (Resch et  al. 2005). The large subunit contains a 
molybdenum cysteine dinucleotide that places the cata-
lytically essential molybdenum atom at the active site 
of the enzyme and is responsible for CO hydroxylation 
(Meyer et al. 2000; Jeoung et al. 2014). The medium subu-
nit orientates the FAD cofactor, while the small subunit 
carries two  [Fe2S2]-clusters. Altogether, a dimer consist-
ing of heterotrimers is formed in a butterfly shape (Fig. 2) 
(Jeoung et al. 2014). To date, two different forms of aer-
obic CODHs have been described. The first form (EC 
1.2.5.3) uses quinones as electron acceptors (Wilcoxen 
et al. 2011), while form II (EC 1.2.2.4) is described as tak-
ing advantage of cytochrome b as an electron acceptor 
(Meyer et al. 1986). However, the aerobic form II of this 
CODH is still under discussion and, therefore, remains a 
putative CODH (Xavier et al. 2018).

Anaerobic Ni,Fe–CODHs (EC 1.2.7.4)
In comparison with aerobic Mo,Cu–CODH enzymes, 
anaerobic CODHs possess mostly an active Ni,Fe-center, 
which makes them highly sensitive towards  O2 (Mer-
rouch et al. 2015; Jeoung et al. 2019; Biester et al. 2022). 
They are referred to as Ni,Fe–CODHs. Most anaero-
bic CODHs contain nickel and iron which are part of a 
cofactor for binding CO at the active site. Studies on the 
activation at the Ni,Fe-cluster state that enzyme’s active 
center within the C-cluster feature a hydroxyl group 
bound to an asymmetrically coordinated Fe ion close to 
the Ni. During the binding of CO to the Ni–metal center, 
a change in the geometry occurs, which is caused by the 
nucleophilic attack of the hydroxide on the carbonyl car-
bon. This results in the formation of an Ni–C(O)O–Fe 
intermediate, which subsequently decomposes due to the 
release of  CO2. This implies that the C-cluster harbors an 
Ni-bound hybrid that is released as a proton by the loss 
of electrons (Volbeda and Fontecilla-Camps 2005; Jeoung 
and Dobbek 2007; Boer et al. 2014). These Ni,Fe–CODHs 
feature a variety of different subunit compositions, differ-
ing in size and their physiological functions and are thus, 
divided into four classes (Fig. 3) (Lindahl 2002).

Class I and II CODHs are only found in archaea, espe-
cially in methanogens (Jeoung et al. 2019). They consist 
of five different subunits, forming an oligomeric complex 
of which only the alpha-subunit owns the CODH enzy-
matic activity, while the beta-subunit harbors the active 
site nickel–iron–sulfur cluster of the acetyl-CoA synthase 
(Fig.  3) (Grahame and DeMoll 1995) Class III CODH 
enzymes are found in strictly anaerobic bacteria and 
archaea, predominantly in acetogenic bacteria (Jeoung 
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et al. 2014, 2019). This class of CODHs are described as 
bifunctional CODH/ACS, which is a five-domain con-
taining enzyme complex. It has the additional function 
of cleaving acetyl-CoA into a methyl group, coenzyme 
A, and CO, which is not the case for monofunctional 
CODHs. This reaction is reversible, with CODH/ACS 
forming acetyl-CoA (Ragsdale and Kumar 1996, Doukov 
et  al. 2002, Ragsdale 2004, Adam et  al. 2018). Grahame 
et  al. (2005) figured out that the ACS reaction seems 
to be freely reversible and, therefore, is not forcing any 
direction of the reaction. Although bacterial CODH 
and ACS are connected via a hydrophobic tunnel, both 
enzymes can also be found independently from each 
other, which reflects their bifunctionality. Moreover, this 
gas channel protects the cell against the toxicity of CO, 
as carbon source cannot escape into the environment 
but is sequestered by microbes for metabolic reactions 
(Seravalli and Ragsdale 2000; Svetlitchnyi et  al. 2001; 
Lindahl 2002). Nevertheless, bifunctional CODH/ACS 
and corrinoid iron–sulfur protein (CFeSP) are encoded 
in operons forming a functional unit. Class IV anaerobic 
CODHs are so called monofunctional CODHs, as these 
enzymes catalyze the reversible conversion of CO to 
 CO2 only, using CO mainly as an electron source, like in 

Rhodospirillum rubrum and Carboxydothermus hydrog-
enoformans (Drennan et al. 2001; Wu et al. 2005; Alfano 
and Cavazza 2018). Although they lack the ACS, most 
of the structures, such as the active site and the arrange-
ment of the  [Fe4S4] cluster, as well as the activation of 
 CO2, are homologous to bifunctional CODHs class III 
(Fig. 3) (Lindahl 2002).

Distribution of CODHs
CODHs are very ancient enzymes as they are present 
in phylogenetically and physiologically diverse bacte-
ria and archaea (Martin and Russell 2007; Jeoung et al. 
2014). Interestingly, Techtmann et al. (2012) calculated 
that about 6% of all known microbial genomes consist 
of at least one Ni,Fe–CODH encoding gene, suggestive 
for anaerobic CO-utilization being widespread through 
the microbial world. The increasing number of newly 
discovered bacterial and archaeal genomes encoding 
genes for the catalytic subunit of CODHs indicates 
that microbes from geographically and chemically dis-
tinct environments (Hoshino and Inagaki 2017; Inoue 
et al. 2018, 2022; Peng et al. 2021) may use CO oxida-
tion as their main carbon source or as a backup energy 
source (King and Weber 2007; Techtmann et al. 2012). 

Fig. 2 Subunit and cluster composition of aerobic Mo,Cu‑containing CODHs. Dimer of heterotrimers, where each heterotrimer is formed by a large 
subunit containing Mo,Cu active site (CoxL, white dot), a medium FAD containing flavoprotein subunit (CoxM) and a small iron–sulfur subunit 
(CoxS). FAD, flavo‑adenin‑dinucleotide; A and B, iron–sulfur–cluster  [Fe2S2]. The crystal structure of the Mo/Cu‑dependent CODH from Oligotropha 
carboxidovorans in its oxidized form is shown in the background (PDB ID:1N5W) (Dobbek et al. 2002). The graphical design of the crystal structure 
was performed with UCSF Chimera (Pettersen et al. 2004)
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Consequently, it is highly likely that among the uncul-
tured microbial majority (81% of microbial cells on 
earth) numerous, currently inaccessible CODH (-like) 
enzymes are hidden (Lloyd et al. 2018). Targeting, iden-
tifying and characterizing this tremendous potential of 
CODH (-like) biocatalysts must be one of the key strat-
egies used in future research approaches (Böhnke and 
Perner 2022).

CODH‑coupled metabolisms
Kluyver and Schnellen’s lab was the first to observe 
microbial CO oxidation (Kluyver and Schnellen 1947). 
Since their observation, CO metabolisms moved into 
a scientific focus. This is due to the fact that CO is an 
important intermediate compound not only in the aero-
bic, but also in the anaerobic carbon cycle. CO is also 
capable of fueling various metabolic processes, such as 
acetogenesis, methanogenesis, hydrogenogenesis, and 
aerobic carboxydotrophy (Fig.  4) (Pugh and Umbreit 
1966; Ragsdale and Pierce 2008; Diender et  al. 2015; 
Jones et al. 2016; Robb and Techtmann 2018).

Aerobic CO metabolism
Energy conservation from CO of carboxydotrophs is 
used to synthesize biomass from  CO2 via autotrophic 
carbon fixation, which involves the CBB cycle and 
ATP generation through the aerobic respiratory chain 
(Xavier et  al. 2018). One well-studied representative 
organism that is able to couple CO metabolisms to 
the CBB cycle is the alphaproteobacterial carboxydo-
troph Oligothropha carboxidovorans (Mörsdorf et  al. 
1992; Siebert et al. 2022). This aerobic growth on CO 
as sole energy and carbon source has also been found 
in Actinobacteria, Bacilli and Gammaproteobacte-
ria (Zavarzin and Nozhevnikova 1977; Krüger and 
Meyer 1984; Anand and Satyanarayana 2012). A sec-
ond microbial group named carboxydovors, which 
includes the Mycobacteria (King 2003b, a) are also 
able to oxidize CO aerobically. However, it is assumed 
that carboxydovors support aerobic respiration with-
out being linked to carbon fixation from CO (Cordero 
et  al. 2019). However, regardless of whether carboxy-
dotrophs or carboxydovores are involved, the aerobic 
respiration driven by CO oxidation always proceeds 

Fig. 3 Subunit and cluster composition among the four classes of Ni,Fe‑containing CODHs. Homologues proteins are illustrated by the same 
shade of brown color. Different iron–sulfur clusters are visualized by capital letters, while subunits are presented by Latin characters. Active sites 
containing a nickel center are shown by a white dot. Protein complexes formed by corresponding subunits are indicated by dashed lines (modified 
after Jeoung et al. 2019)
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according to Eq.  (1) and is catalyzed by either of the 
two different aerobic CODH enzymes, namely, a mem-
brane-bound CODH and a cytoplasmic CODH:

The membrane-bound CODH generates energy 
through the oxidation of CO with water to  CO2. Elec-
trons and protons that are provided by this reaction 
are transferred to the CO-intensive respiratory chain. 
Subsequently, these are accepted by a cytochrome b 
complex or a quinone, which can then either lead to  O2 
reduction  (Jacobitz and Meyer 1989) or  NO3

− reduc-
tion (Frunzke and Meyer 1990; King 2006). The motive 
force resulting from this process is then used to gener-
ate ATP. The second CODH, located in the cytoplasm, 
is involved in hydrogen  (H2) evolution (Mörsdorf et al. 
1992).  CO2 that is generated by CO oxidation is then 
assimilated within the CBB cycle via the RubisCO to 
support  CO2 fixation (Meyer and Schlegel 1983; King 
and Weber 2007; Xavier et al. 2018).

(1)
2CO + O2 → 2CO2 �G′

0 = −514 kJ /mol CO.

Anaerobic CO‑coupled metabolisms
Acetogenesis and the Wood–Ljungdahl pathway
Acetogens are obligate anaerobic bacteria that are able to 
fix  CO2 into acetate via the linear, two branched reduc-
tive acetyl-CoA pathway, well-known WL pathway (Lynd 
et al. 1982, Ljungdahl 1994, H. L. Drake et al. 2002). They 
use the WL pathway not only for the fixation of  CO2 
according to Eq. 2, but also for redox balancing. Over the 
last century, this autotrophic carbon fixation pathway 
has been excessively investigated in acetogens. However, 
studies conducted with non-acetogens have shown that 
some representatives are also capable of assimilating  CO2 
via this route (Diekert and Thauer 1978; Ragsdale and 
Pierce 2008; Robb and Techtmann 2018):

As already mentioned, the WL pathway consists of 
an eastern (methyl-) and a western (carbonyl-) branch 
in which two molecules of  CO2 are reduced (Ragsdale 
2008). The eastern branch provides a methyl group, 

(2)
4CO + 2H2O ⇋ CH3COO

−
+ H

+
+ 2CO2

�G
′

0 = − 43.6kJ /molCO.

Fig. 4 CO oxidation‑coupled energy conservation metabolisms by aerobic Mo,Cu–CODHs (mint) and anaerobic Ni,Fe–CODHs (brown)
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which is generated by the energetic reduction of one 
molecule of  CO2. The heteroatoms to which the methyl 
group is attached are protonated, in order for it to  be 
electrophilically activated and transferred towards CFeSP 
(Ragsdale 2008). CFeSP bound to an acetyl-CoA-synthe-
sis complex allows the methyl group to be supplied for 
subsequent condensation (Ragsdale 2008; Ragsdale and 
Pierce 2008). Reduction of the second  CO2 to CO within 
the western branch is performed by the CODH. The 
CODH/ACS synthase complex then finally catalyzes the 
condensation of the methyl residue, the carbonyl residue, 
and coenzyme A to acetyl-CoA, which is further con-
verted to acetate (Drake 1994; Ragsdale and Pierce 2008). 
It has been demonstrated, that CO is also metabolized 
by acetogens via the WL pathway coupling acetogenesis 
to the formation of an ion motive force, which results in 
ATP synthesis (Diekert and Thauer 1978; Müller 2003). 
Moreover, several steps of  CO2 fixation in the WL path-
way require input of electrons, wherefore different types 
of cofactors are needed. These steps differ for each 
microorganism and enzyme, which makes a predication 
of a general acetogenic CO metabolism almost impossi-
ble (Sim et al. 2007; Hess et al. 2013).

Two of the most studied acetogenic bacteria are 
Moorella thermoacetica (homoacetogen) and Aceto-
bacterium woodii, both showing different approaches 
of acetogenesis (Müller et  al. 2008; Hess et  al. 2013; 
Bertsch and Müller 2015). A. woodii oxidizes CO by its 
CODH, whereby ferredoxin is reduced. An RnF complex 
(energy-converting NADH:Fdox oxidoreductase) links 
the following (re-) oxidation of ferredoxin to the reduc-
tion of  NAD+. This process results in a transmembrane 
 Na+ translocation, which forces ATP generation (Biegel 
and Müller 2010; Biegel et al. 2011). NADH and reduced 
ferredoxin can then additionally be used to generate 
molecular  H2 by an electron-bifurcating hydrogenase. 
Moreover, a  H2-dependent  CO2 reductase is postulated 
to use the reduced ferredoxin as an alternative electron 
donor for the  CO2 reduction to acetate (Schwarz et  al. 
2020). However, acetogens using RnF complexes have 
to couple the CO-oxidation to the WL pathway as they 
cannot couple oxidation of ferredoxin to the reduction 
of proton directly (Diender et  al. 2015). In contrast, M. 
thermoacetica differs from A. woodii in that these aceto-
gens do not contain RnF complexes but instead harbor 
energy-converting-translocating hydrogenases (EcHs).

CO‑coupled hydrogenogenic metabolism
Although the ancient reductive acetyl-CoA pathway has 
been employed by acetogens to form acetate, an addi-
tional mechanism for ATP generation is needed for 
chemolithoautotrophic growth as the central pathway 
does not supply ATP via substrate-level phosphorylation 

(Diender et  al. 2015). Schoelmerich and Müller (2019) 
recently demonstrated that EcH functions as a respira-
tory enzyme, which establishes a chemiosmotic gradient. 
Their experiments reveal that CO oxidation can indeed 
be coupled to  H2 production and the formation of trans-
membrane electrochemical ion gradients. In more detail, 
hydrogenogenic oxidation of CO is commonly known 
as water–gas-shift reaction (see Eq. 3) and results in the 
generation of  H2 and  CO2. Enzymes involved in this reac-
tion include Ni,Fe–CODH, electron transfer proteins, 
and EcHs. The electrons gained from the CODH cata-
lyzed CO oxidation are transferred via a ferredoxin-like 
carrier, which is subsequently oxidized coupled to proton 
reduction using an EcH complex (Fukuyama et al. 2020). 
This reaction does not only lead to the formation of a pro-
ton motor force, but also to the release of  H2 (Hedderich 
and Forzi 2005). In the past, numerous hydrogenogenic 
CO metabolizing microbes have been investigated, with 
a focus on M. thermoacetica, R. rubrum, C. hydrogenofor-
mans and Thermoanaerobacter kivui (Kerby et  al. 1992; 
Huang et al. 2000; Svetlitchnyi et al. 2001; Diender et al. 
2015; Schoelmerich and Müller 2019).

In R. rubrum, there are two operons encoding the asso-
ciated enzyme complex known as Coo. The cooF–SCTJ 
operon encodes the CODH and related proteins, and the 
cooMKLXU operon encodes a CO-induced hydrogenase 
(Fox et al. 1996a, 1996b). Heme-protein (CooA) is found 
to function as a CO sensor and, therefore, controlling 
the transcription of the enzymatic machinery needed 
for chemoautotrophic growth (Roberts et al. 2001). Elec-
trons provided by CO oxidation are shuttled through an 
iron–sulfur protein (CooF), which is directly associated 
with the CODH, to the EcH. Not only does the CODH 
of R. rubrum catalyze the reaction of CO to  CO2 very 
efficiently but additionally, CO-induced hydrogenase 
of R. rubrum is highly CO tolerant and, therefore, well-
adapted to growth on CO (Bonam et al. 1984; Fox et al. 
1996b; Singer et al. 2006). C. hydrogenoformans is so far 
the best-known microorganism having multiple CODHs 
encoding genes on its genome (Wu et al. 2005). Although 
the metabolism was initially described as strictly fermen-
tative, later studies by Henstra and Stams demonstrated 
additional growth by respiration on CO (Henstra and 
Stams 2004). Increasing  H2,  CO2 and acetate concentra-
tions driven from CO oxidation could also indicate that 
the WL pathway acts as backup for the hydrogenogenic 
metabolism of C. hydrogenoformans (Henstra and Stams 
2011).

(3)
CO + H2O ⇋ CO2 + H2

�G′

0 = −20kJ /molCO
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CO‑coupled methanogenic metabolism
Besides acetogens, methanogens are able to grow with 
CO as their sole energy source. The majority of metha-
nogens, e.g., Methanococcus maripaludis reduces  CO2 
to methane  (CH4) and uses  H2 as electron donor. In this 
case  CO2 can either be used directly or be generated by 
CO oxidation via a membrane-bound monofunctional 
CODH in the first step (Ferry 1999; Oelgeschlager and 
Rother 2008).  CO2 can then be converted into formyl-
methanofuran to enter the pathway for  CH4 production. 
In addition,  CO2 can be used for carbon assimilation 
directly by bifunctional CODH/ACS complexes or com-
ing from methylene–tetrahydromethanopterin (Nagoya 
et  al. 2021). These reactions are fueled by electrons, 
which are generated via  H2 oxidation. This  H2 oxidation 
can be carried out by various hydrogenases, including 
membrane-bound EcH,  F420-non-reducing hydrogenases, 
cytoplasmatic  F420-reducing hydrogenases as well as 
cytochrome-b-containing heterodisulfide reductases 
(Schöne and Rother 2018; Nagoya et  al. 2021). Finally, 
ATP is generated by either a  H+ or  Na+ translocating 
ATPase, where  Na+ is provided by the membrane-bound 
methyl-H4MPT:coenzyme M methyltransferase. How-
ever, CO utilization with methanogenesis according 
to Eq.  4 is relatively inefficient, which is reflected by a 
ΔG’0 of –52.6 kJ/mol CO, resulting in slow growth rates 
(O’Brien et  al. 1984). This might be caused by the toxic 
nature of CO as well as that CO-metabolism moves eas-
ier towards  CH4 alternative products (Schöne and Rother 
2018):

Other methanogens such as Methanosarcina species 
couple the WL pathway to acetolactic methanogenesis 
(Thauer 1988; Ferry 1999; Oelgeschlager and Rother 
2008). This process is also described as fermentation, 
since acetate is cleaved and methyl groups are reduced 
to methane with electrons derived from the oxidation 
of the carbonyl group to  CO2. The cleavage of the acti-
vated acetate is performed by phosphotransacetylase and 
acetate kinase, while a bifunctional CODH/ACS com-
plex (Lyu et  al. 2018; Nagoya et  al. 2021) subsequently 
converts acetyl-CoA into CO, methyl-group and coen-
zyme A. Later, CODH/ACS then oxidizes this CO to 
 CO2. Electrons provided by the reaction are accepted 
and transported by ferredoxin to reduce the methyl-
group to  CH4 according to the reactions of hydrog-
enogenic methanogenesis (Fischer and Thauer 1990; 
Schöne and Rother 2018). Most acetoclastic methano-
gens use EcH and  F420-non-reducing hydrogenase to 
reoxidize ferredoxin. This mechanism is similar to the 

(4)
4CO + 2H2O → CH4 + 3CO2 �G′

0

= − 52.6 kJ/mol CO.

 H2 oxidation of hydrogenogenic methanogens. In con-
trast, some acetoclastic methanogens have evolved RnF 
to drive the ion motive force as they lack both EcH and 
 F420-non-reducing hydrogenase (Ferry 2010). However, 
this process usually results in degradation of biomass, 
as they rely on acetate degradation (Schöne and Rother 
2018; Nagoya et al. 2021).

Sulfate reduction coupled to CO oxidation
Most SRB have shown low tolerance towards CO and it 
has even been reported to be toxic to them. Therefore, 
CODHs have been mostly considered to function in CO 
detoxification mechanisms (Parshina et  al. 2005a; Mat-
sumoto et al. 2011; Alves et al. 2020). When growing on 
pyruvate, cleavage of this substrate results in the produc-
tion of 2 acetyl-CoA, 2  H2O and 2 CO (Voordouw 2002; 
Sipma et al. 2006; Diender et al. 2015). Toxic CO is then 
funneled and converted into 2   CO2 and  H2 via a mono-
functional CODH and membrane bound CO-dependent 
hydrogenase. Subsequently a periplasmatic hydrogenase 
generates  H+ and electrons, which are transported via 
a cytochrome c network to a transmembrane electron 
transport complex (e.g., Hmc). The formation of ace-
tate additionally provides ATP, which is later used for 
 SO4

2− reduction by  SO4
2− reducing enzymes (e.g., ATP 

sulfurylase) using the generated protons and electrons 
(Voordouw 2002; Diender et al. 2015). Several studies on 
CO metabolism of SRB have shown growth on organic 
electron donors, such as lactate and pyruvate, resulting in 
acetate production, to be most likely:

However, exceptions such as Desulfovibrio vulgaris 
strain Madison exit. This SRB was the first demonstrated 
coupling direct CO oxidation to  SO4

2− reduction, gener-
ating  CO2,  H2, and  H2S as end products when cultured in 
the presence of  SO4

2−according to Eq.  5. The generated 
 H2 is subsequently used for  SO4

2− reduction (Lupton 
et al. 1984; Rabus et al. 2006). This leads to the hypothesis 
that CO can indeed be a direct electron donor for ther-
mophilic (Hocking et al. 2015) and mesophilic carboxy-
dothrophic SRB (Parshina et  al. 2010). It is assumend 
though that thermophilic microbes tolerate the presence 
of CO better (Parshina et al. 2005a). Moreover, Desulfo-
tomaculum carboxydivorans strain CO-1-SRB was dem-
onstrated to grow under 100% CO atmosphere using CO 
as an external electron donor for  SO4

2− reduction. No 
SRB has previously been reported tolerating such high 
concentrations of CO (Parshina et al. 2005b). This opens 

(5)
4CO + SO

2−

4
+ 4H2O

−

⇋ 4HCO
−

3
+ HS− + 3H+ �G′

0

= −37.1 kJ/mol CO.
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space for further discussions of SRB being a potential 
source to drive biological  SO4

2− reduction using CO as 
electron donor, especially when co-cultured (Sinharoy 
et al. 2020).

Electrochemical applications of CODH enzymes
Principles and electrochemical mechanisms
In stark contrast to biological CO oxidation and  CO2 
reduction occurring readily at or near room tempera-
ture, the chemical activation of the linear molecule  CO2 
is challenging, since it usually involves a thermodynami-
cally unfavorable one-electron reduction step (Appel 
et al. 2013; Schlager et al. 2017a):

CODH enzymes circumvent this energetically 
adverse step by allowing for a direct two-electron 
proton-coupled electron transfer towards CO (Fesse-
ler et al. 2015; Ribbe 2015; Sultana et al. 2016). Due to 
this inherent property of catalyzing the interconversion 
between  CO2 and CO reversibly with little overpoten-
tial, CODH enzymes have been used in several differ-
ent applications, e.g., as biosensors for CO detection 
or as catalysts for biosynthesis applications (Fig.  5). 
These utilizations can be achieved using either live 
microbes as cultures or the purified enzyme only (Shin 
et al. 2003, Song et al. 2011). To this end, CODH from 
both anaerobic and aerobic sources have been used, 
albeit typically towards distinct applications. While 
the anaerobic Ni,Fe–CODH enzymes perform revers-
ibly and can thus be exploited for biosynthesis via  CO2 
reduction, their aerobic Mo,Cu-based counterparts are 
strictly limited to CO oxidation and are, therefore, lim-
ited to gas sensing applications (Reginald et  al. 2019; 
Contaldo et al. 2021; White et al. 2022).

If only the  CO2 reduction half-reaction  (CO2RR) or its 
inverse, the CO oxidation, is performed in the absence 
of a complementary half-reaction, then electrons must 
be provided from an electrode or drawn to it: this means 
that the enzyme is used in an electrocatalytic system. The 
main challenges for the utilization of CODH enzymes 
in electrocatalysis are their immobilization on the elec-
trode surface and their stability related to either leach-
ing or a low tolerance towards  O2 (Alfano and Cavazza 
2018; Reginald et  al. 2022). The electronic communica-
tion pathway generally considered as the most favora-
ble between enzyme and electrode is the direct electron 
transfer (DET) via immediate contact of the biomolecule 
to the solid surface. This configuration enables fast elec-
tron transfer and ensures that the electrical potential 
experienced at the active site is equal to that applied by 
the external potentiostat (Reginald et al. 2022). This con-
figuration is challenging to achieve since the electron 

(6)CO2 + e− → CO•−

2 E0 = −1.9V at pH7.

tunneling efficiency is strongly dependent on the distance 
between the electrode and the enzyme’s redox cofactors 
and the enzyme’s geometric orientation on the electrode 
is difficult to control (Page et al. 1999; Freire et al. 2003). 
To this end, strategies such as the employment of link-
ers can help minimize this distance and, therefore, sup-
port DET (Woolerton et  al. 2011; Contaldo et  al. 2022; 
Reginald et al. 2022). In a simpler approach, enzymes are 
immobilized on carbon-based electrodes by co-adsorp-
tion with polymyxin (Hoeben et  al. 2008). The result-
ing non-specific interactions of CODHs and electrode 
through physical adsorption have shown to be sufficient 
to enable DET (Wang et al. 2013a, 2013b). Alternatively, 
enzymes can be immobilized at a longer, and less accu-
rately defined, distance from the electrode surface. In this 
case, then, electron transfer can be supported by redox 
mediators with favorable negative redox potential values. 
This approach is known as a mediated electron transfer 
(MET). To mediate the bioelectrochemical reduction of 
 CO2, small molecules such as viologens or diquats can 
be used as reducing agents for the enzyme (Shin et  al. 
2003; Amao and Ikeyama 2015; Ikeyama and Amao 2016; 
White et al. 2022). Fundamentally, they artificially replace 
mediator compounds, such as ferredoxins or NADH, 
which serve this purpose in  vivo (Bender and Ragsdale 
2011; Amao and Ikeyama 2015). In this case of a medi-
ated electron transfer, immobilization of CODHs can 
be achieved by their entrapment close to the electrode 
within a polymer redox hydrogel (Becker et  al. 2022). 
Other commonly used enzyme immobilization strategies 
to be combined with mediated electron transfer include 
the cross-linking of proteins by employing bifunctional 
agents, such as glutaraldehyde or the immobilization of 
enzymes within a sol–gel (David et al. 2011; Datta et al. 
2013). Both approaches have not yet been reported for 
CODHs.

Practical electrochemical implementation
Fundamental investigation of CODH electrochemistry 
and electrocatalytic reaction mechanisms must rely on 
DET occurring at the surface of perfectly planar elec-
trodes. In this so-called protein film electrochemistry 
(PFE) configuration, enzymes are bound directly to the 
working electrode and can be studied in the best-con-
trolled conditions possible: the dependence of turnover 
(quantified as electrical current density) when varying 
the applied potential, the substrate-to-product ratio, the 
concentration of possible inhibitors, the pH, or further 
experimental parameters, provides crucial indirect evi-
dence pertaining to the individual chemical reaction 
steps while requiring only minute amounts of enzyme to 
perform the analysis (Léger et al. 2003; Parkin et al. 2007; 
Wang et al. 2013a, 2014, 2013b).
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Let us now consider some prominent cases of electro-
enzymatic  CO2 to CO conversion with CODHs. The first 
report was by Shin et  al. in 2003, who utilized CODH 
from M. thermoacetica and demonstrated turnover fre-
quencies (TOF) of 700   h–1 at less than 100  mV applied 
overpotential (Shin et  al. 2003). Recently, efforts have 
been made to integrate CODH on gas-diffusion elec-
trodes towards the  CO2RR to avoid possible mass trans-
port limitations. Contaldo et  al. used monofunctional 
CODH from R. rubrum on gas-diffusion electrodes, 
catalyzing the reversible  CO2/CO interconversion with 
turnover frequencies up to 150   s–1 for CO oxidation at 
250  mV overpotential and 420   s–1 for  CO2 reduction at 
180 mV overpotential while reaching a device stability of 

several hours (Contaldo et al. 2021). Becker et al. used a 
cobaltocene-based redox polymer to immobilize CODH 
II from C. hydrogenoformans on gas diffusion electrodes 
(Fig. 5) and simultaneously serve as the redox mediator, 
reporting  CO2RR current densities up to – 5.5 mA  cm–2 
at an applied potential of –  0.79  V vs. SHE (standard 
hydrogen electrode). This corresponds to a TOF of 2.7  s–1 
at about 150  mV overpotential. The electrodes showed 
improved stability with a performance half-life of more 
than 20 h (Becker et al. 2022).

Further electrocatalytic applications of CODHs aim 
at generating a product different from CO, and, thus, 
couple the CODH-catalyzed step with a subsequent 
or complementary reaction. For example, CODHs 

Fig. 5 Electrochemical applications of CODH enzymes in industry
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have been electronically coupled with hydrogenases 
(enzymes converting  H2 ⇌  2H+  +  2e−) by immobi-
lization on electrically conductive graphite platelets 
(Lazarus et  al. 2009). This allows one to perform two 
complementary electrochemical half-reactions while 
omitting the use of an external circuit, since by catalyz-
ing the oxidation of CO, electrons are directly supplied 
to the hydrogenase and used towards the reduction of 
protons and, therefore, hydrogen evolution. This pro-
vides a biological alternative to the industrially impor-
tant water–gas shift reaction, which usually requires 
higher temperatures and harsher overall conditions 
(Lazarus et  al. 2009). CODH can also be utilized 
when still in  vivo, using CODH-containing microbes 
towards the electrochemical  CO2 reduction. In this 
case, it is essential to use a mediator for electron trans-
fer, because the cell walls prevent DET. The selectiv-
ity towards CO as reaction product is decreased due to 
the presence of other enzymes, including FDH (Song 
et al. 2011).

Photoelectrochemical integration
In a further step of integration, CODH enzymes have 
also been employed as catalysts in the photoreduc-
tion of  CO2 to CO that is, the direct use of sunlight 
energy to generate electrons and reduce  CO2. This was 
achieved by coupling the enzyme to a light-harvesting 
component, such as semiconductor nanostructures 
with suitable bandgaps or dyes, providing “hot” elec-
trons for catalytic turnover after excitation. The elec-
trons needed to regenerate the dye or semiconductor 
after photoinjection of charge carriers can originate 
either from a sacrificial electron donor or from per-
forming water oxidation separately in a second half-
reaction (Woolerton et  al. 2012). Woolerton et  al. 
immobilized CODH I from C. hydrogenoformans on 
 TiO2 nanoparticles together with a ruthenium bipyridyl 
photosensitizer and reported a TOF of 0.14   s–1 using 
visible light irradiation (Woolerton et  al. 2010). Cou-
pling CODH to CdS nanorods instead improved the 
average TOF (per CODH) to 1.23  s–1 (Chaudhary et al. 
2012). Co-immobilization of a CODH I together with 
Ag nanoclusters on  TiO2 nanoparticles (Fig. 5) consti-
tutes the most efficient CODH-based photoreduction 
installment up to date, with a reported TOF of 20   s–1 
at room temperature under visible light irradiation 
(Zhang et  al. 2018). Recently, also CODH II from C. 
hydrogenoformans was used as a  CO2RR catalyst on a 
light-absorbing CdSe/CdS heterostructure with TOF of 
9  s–1 and quantum yields up to 19% (White et al. 2022). 
The enzymes’ TOF in all photoreduction applications is 
always significantly lower than their inherent activities, 

which is attributed to a combination of distinct factors: 
absorption of photons and delivery of charge carri-
ers, recombination of carriers, electron transfer issues, 
CODH leaching, or enzyme deactivation by  O2 (Wool-
erton et al. 2010, 2012; White et al. 2022).

Biosensors
The use of CODH in a CO biosensor is usually also 
based on the establishment of electronical communica-
tion between the enzymes catalyzing CO oxidation and 
a working electrode and the subsequent analysis of the 
amperometric response when exposed to the CO  ana-
lyte. The first functional CODH-based CO sensor was 
reported by Turner et al. (Turner et al. 1984), where the 
purified enzyme from Pseudomonas thermocarboxydo-
vorans was coupled to an Au electrode via cytochrome 
C, allowing for the quantification of CO in both aqueous 
and gaseous media. Recently, sensing of CO in solution 
was achieved by utilization of a DET-capable oxygen-tol-
erant Mo,Cu–CODH from Hydrogenophaga pseudoflava, 
immobilized on an Au electrode without the need for 
any mediator (Reginald et al. 2019). The same group then 
simplified the system to a recombinant CODH subunit 
from the same biological source to build a Clark-type CO 
bio-microsensor (Fig.  5) capable of detecting CO con-
centrations from 15  nM to 0.9  µM. The device retains 
approximately 80% activity and selectivity after 1 week of 
continuous operation (Reginald et al. 2021).

Conclusions
The earth’s atmosphere contains several hundred giga-
tons of  CO2 and high  CO2 levels in exhaust chimneys of 
industrial processing are emitting on a daily basis into 
the atmosphere. During the past few decades, intensive 
research on the central carbon-metabolizing enzymes 
of the autotrophic  CO2 fixation pathways has been con-
ducted to capture carbon efficiently and cleanly through 
enzymatic biocatalysts. Comparing all known natu-
ral  CO2 fixation pathways, the WL pathway is the most 
energy efficient by consuming only one ATP. In this 
respect, its enzymes are of great interest. In particular 
CODHs, since they act in a variety of metabolic pathways 
and can be used for synthesis of sustainable substances, 
such as acetate or isopropanol. In addition, CODHs are 
already used in various applications for  CO2 reduction. 
Further insight on the functional properties of CODHs 
can be gained through electrochemical methods. Protein 
film electrochemistry allows for the in-depth study of the 
enzyme’s response to external stressors such as changes 
in pH, applied potential, substrate or inhibitor concentra-
tions and is, therefore, an ideal tool to optimize electro-
chemical systems, with the goal to enable the transition 
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from fundamental research to technical application. In 
this review, we described a variety of different applica-
tions of CODHs towards  CO2 reduction to CO, both in 
purely electrochemical and in photoelectrochemical sys-
tems. In recent years, efforts in improving electron trans-
fer, CODH stability and electrode engineering intensified. 
 CO2 electrolyzers using CODHs from different biological 
sources as electrocatalysts were reported with current 
densities in the range of –mA  cm–2 and operational sta-
bilities of several hours. This is a promising sign, since 
apart from energy efficiency, which is inherently given 
by the CODH’s low overpotential in catalyzing  CO2 
reduction, both the enzyme’s stability and the achiev-
able current density are key factors for rendering future 
industrial implementation possible. The electrochemical 
techniques introduced within this review demonstrate 
how promising CODH enzymes can be for industrial 
applications. These studies mainly apply CODHs from 
already cultured microbial strains for  CO2 reduction on 
electrodes. Still, this limits our biotechnological possibili-
ties, since the majority of microbes cannot be accessed 
using culture-dependent methods so far. Therefore, their 
enzymatic potential remains hidden. Alternatively, the 
implementation of metagenomics in combination with 
function-based screening also leads to the identifica-
tion of truly novel and possibly more active  CO2 fixing 
enzymes that could be of industrial importance in the 
future.
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