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Abstract

Synthetic biology is a newly emerged research discipline that focuses on the engineering of novel cellular
behaviors and functionalities through the creation of artificial gene circuits. One important class of synthetic circuits
currently under active development concerns the programming of bacterial cellular communication and collective
population-scale behaviors. Because of the ubiquity of cell-cell interactions within bacterial communities, having an
ability of engineering these circuits is vital to programming robust cellular behaviors. Here, we highlight recent
advances in communication-based synthetic gene circuits by first discussing natural communication systems and
then surveying various functional engineered circuits, including those for population density control, temporal
synchronization, spatial organization, and ecosystem formation. We conclude by summarizing recent advances,
outlining existing challenges, and discussing potential applications and future opportunities.
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Background
Synthetic biology is a newly emerged research discipline
that focuses on the engineering of novel cellular behaviors
and functionalities. Since the launch of the field in 2000
[1,2], a wide range of synthetic gene devices have been
created, including switches [3-9], oscillators [10-13],
memory elements [7,14,15], and communication modules
[13,16-18], as well as other electronics-inspired genetic
devices, such as digital logic gates [19-22], pulse gene-
rators [23], and filters [24,25]. With designed cellular
behaviors and functionalities, engineered circuits have
been exploited to understand biological questions and
to address various real-world problems [26]. The field has
shown tremendous potential for biomedical, environmen-
tal, and energy-related applications [27]. For example, to-
wards biomedical applications, engineered genetic circuits
contribute to the understanding of disease mechanisms,
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provide novel diagnostic tools, enable economic produc-
tion of therapeutics, and enable the design of novel treat-
ment strategies for various diseases including cancer,
metabolic disorders, and infectious diseases [28,29].
In the last few years, the advances of synthetic circuits

have been further expedited, empowered by recent break-
throughs in genetic engineering techniques such as novel
DNA assembly [30-33] and genome editing tools [34-37],
advances in methodologies including those for rational
circuit design and optimization [38-40], and quick enrich-
ment of parts and elements [41,42]. As a result, synthetic
biologists are now in a position to engineer desired cellu-
lar phenotypes in a larger, faster, and cheaper fashion.
One important class of synthetic circuits that are under

active development concerns the programming of bac-
terial cell-cell communication and the group behaviors of
communities [43-48]. Successful examples include gene
constructs responsible for cellular density control [18],
spatiotemporal patterning [13,16,49,50], and ecosystem
formation [51,52]. The engineering of community-based
circuits is essential and invaluable towards the implemen-
tation of complex but robust cellular functionality because
of the following reasons: First, although microbes are
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single cell organisms, they are present dominantly in the
form of communities in nature and in live bodies, such
as biofilms [53,54] and the human microbiome [55,56].
Second, microbial physiology and functionality are strongly
correlated with their forms - for instance, bacterial anti-
biotic resistance is distinct when cells are in planktonic
forms and biofilm forms [57,58]. Third, recent advances
in the biotechnological industry have clearly shown that
microbial consortia may provide many compelling advan-
tages in producing products of interest and controlling
fermentation processes [59,60].
We are thus motivated in this article to overview the

advances of synthetic gene circuits towards the program-
ming of bacterial cellular communication and community
behaviors. We will first discuss basic communication
modules that confer cell-cell coordination in communities.
We will then overview various functional gene circuits
that enable the implementation of desired dynamic group
behaviors, including those for population density control,
temporal synchronization, spatial organization, and eco-
system formation. We will conclude by summarizing re-
cent advances and discussing existing challenges, potential
applications, and future opportunities.
Although not discussed here, it is important to note

that there has been considerable progress in developing
synthetic cellular communication in eukaryotes such as
mammalian cells and yeast, which has been surveyed in
the literature [51,61,62].

Review
Basic communication modules
Despite their species diversity, bacteria often utilize similar
signaling systems for the implementation of their group
behaviors [63,64]. For instance, quorum sensing (QS) is
prevalent in bacteria for coordinating their group behav-
iors such as bioluminescence [65], biofilm formation [66],
pathogenesis [67] and antibiotic synthesis [68-70].

Bacterial communication via nonvolatile signaling molecules
In Gram-negative bacteria, acyl-homoserine lactones
(AHLs) are commonly used as QS molecules for intra-
species communication. These molecules are composed
of a homoserine lactone ring with an acyl chain of C4 to
C18 in length [71,72]. AHL molecules are synthesized by
the LuxI family synthases and detected by the correspond-
ing LuxR-type receptors [73]. One canonical example of
this class of communication is the QS system discovered
in the bioluminescent marine bacterium Vibrio fischeri
[74]. As shown in Figure 1A, LuxI, the autoinducer syn-
thase, produces the AHL molecule 3OC6HSL that can
diffuse freely across the cell membrane and accumulate
with the increase of cell density. Once the AHLs reach
a threshold concentration, they form a complex with
the LuxR receptor and activate the transcription of the
downstream genes (luxI and luxR in this case). A positive
feedback regulatory architecture arises here from the
self-activation of LuxI synthesis to facilitate the synchro-
nization of the cellular population. Similar to V. fischeri,
many other Gram-negative bacteria also possess QS sys-
tems, including the LasI/LasR and RhlI/RhlR systems
in Pseudomonas aeruginosa [75], the CarI/CarR system in
Erwinia carotovora [76], and the EsaI/EsaR system in
Pantoea stewartii [77]. From an engineering perspective,
these QS systems can be decomposed into two separate
modules with one for signal production and the other for
signal detection and response - when engineered in differ-
ent cells, the two functional modules will confer commu-
nications between the two cells as shown in Figure 1C.
In Gram-positive bacteria, modified oligopeptides often

serve as the signaling molecules for cellular communi-
cation with the cooperation of two-component systems.
One classic example of this type of system is the Agr
system in Staphylococcus aureus (Figure 1B) [78]. Here,
the auto-inducing peptide (AIP) precursor, encoded by the
gene agrD, is modified on its thiolactone ring and
exported by AgrB protein. Upon the binding of AIP with
the transmembrane protein AgrC, the transcriptional fac-
tor AgrA inside the cell is phosphorylated and then acti-
vated, which leads to the induction of the transcription of
the downstream genes (agrB/D/C/A here). In addition to
the Agr system, there are many communication systems
based on auto-inducing peptides, such as the fsr system in
Enterococcus faecalis [79], the Com system of Streptococ-
cus pneumonia [80], and the nisRK system in Lactococcus
[70]. To program collective behaviors in Gram-positive
bacteria, a modular partition of those AI systems can thus
been exploited (Figure 1D).
Other than the QS and AIP systems that are primarily

present in intra-species communication, there are inter-
species communication systems that coordinate cellular
behaviors over multiple bacterial species. One such ex-
ample is the communication systems mediated by the uni-
versal signaling molecule autoinducer-2 (AI-2), a furanosyl
borate diester synthesized by LuxS from S-adenosyl-
methionine and present in roughly half of all sequenced
bacterial genome [81,82]. Towards programmable behav-
iors in multiple bacterial species, AI-2 is hence an ideal
candidate for exploitation.

Bacterial communication via volatile and gas molecules
The adoption of nonvolatile molecules, such as AHLs and
AIs, as the broadcast signal enables cellular coordination
across various species. However, communications via
those molecules require the presence of the both sender
and receiver species in the same liquid environments or in
gel-like setting within a short distance to allow for dif-
fusion of signaling molecules. Volatile molecules, in con-
trast, can diffuse through air and circumvent the need of
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Figure 1 Cellular communication in bacteria. (A) The LuxI/LuxR quorum sensing (QS) system in the Gram-negative bacterium Vibrio fischeri.
The system consists of the genes luxI and luxR and the cognate promoter PluxI and PluxR. Its signaling molecule is the acyl-homoserine lactone
(AHL) 3OC6HSL. (B) The Agr QS system in the Gram-positive bacterium Staphylococcus aureus. It consists of the genes, agrD, agrB, agrC, and agrA
and the cognate promoter P2. The auto-inducing peptide (AIP) is the signaling molecule of the system. (C) An engineered communication module
adapted from the wild-type LuxI/LuxR system in (A). By expressing luxI, the sender cell (left) produces the signal AHL that diffuses to the extracellular
milieu and further into the receiver cell (right) to alter the expression of the downstream genes X. (D) A synthetic communication module built from
the Agr system in (B). The sender cell (left) produces and secretes the signaling molecule AIP that is sensed by the receiver cell (right), resulting in the
expression shift of the gene X in the receiver cell.
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physical mediating settings for signaling, allowing for
more versatile, rapid, and large-scale communications of
communities.
Weber et al. recently established a communication

system that utilizes acetaldehyde as signaling molecules
[51]. In their study, a bacterial strain (sender) was engi-
neered to constitutively express alcohol dehydrogenase
(ADH), an enzyme that converts ethanol in the medium
to acetaldehyde. Due to its low boiling point (21°C),
acetaldehyde volatized and was broadcast to neighboring
cells (receiver) via air to trigger the expression of genes
controlled by the cognate acetaldehyde-inducible pro-
moters. Therefore, the sender cells produced a concentric
gradient of acetaldehyde that induced the dose-dependent
gene expression of the receiver cells with the expression
level defined by the distance between the sender and
receiver cells.
In another example, Hasty and colleagues constructed

ndh-2, a gene encoding NADH dehydrogenase II (mem-
brane-bound respiratory enzyme), into an Escherichia coli
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Figure 2 Cellular density control enabled by engineered
cellular communications. (A) A communication-based gene circuit
that confers the auto-regulation of cellular population density. In this
system, a positive correlation between cell density and AHL concentration
is essential and was created by having the cells constitutively produce
LuxI that catalyzes AHL synthesis. At a low density, cells survive and grow
normally because the expression of the toxin gene ccdB is not activated
by a low AHL level. In contrast, when cell density achieves a critical level,
ccdB expression is triggered by accumulated AHL, causing cellular death.
The density-dependent cell death ensures an automatic control of total
population density. (B) A synthetic gene circuit conferring an Allee
effect in an isogenic population. Rather than the toxin CcdB in (A),
the antitoxin CcdA was correlated with cellular density via AHL
concentration. At a low cell density, the cells cannot survive because
of their production of the toxin CcdB. At a high density, the production
of the antitoxin CcdA is triggered to neutralize the toxic effects from
CcdB, resulting in normal cell growth.

Kong et al. Bioresources and Bioprocessing 2014, 1:24 Page 4 of 11
http://www.bioresourcesbioprocessing.com/content/1/1/24
strain to confer the production of hydrogen peroxide
(H2O2) [83]. H2O2 is a thermodynamically unstable chem-
ical compound and is able to enter neighboring cells
quickly to alter their redox state and inactivate ArcAB,
resulting in the shift of the activity of the corresponding
downstream genes. Through the exploitation of H2O2, a
novel route of airborne signaling molecule was created for
fast and large-scale colony coordination.

Other communication mechanisms
In addition to the common signaling mechanisms discussed
above, bacteria also exploit a wide range of alternative
approaches for communications, such as quinolone signal
[84], diffusible signal factor [85], cyclic dipeptide [86],
diketopiperazines [86,87], and others [88,89]. One such
representative mode of signaling is the use of indole, an
aromatic heterocyclic organic compound that is produced
by over 85 species of Gram-positive and Gram-negative
bacteria and used as an extracellular signal for global
coordination of various bacterial species [90]. Although
little of those mechanisms have been explored for
synthetic biology applications, the broad spectrum of
signaling systems provides a rich reservoir for engineering
multicellular functionality.

Dynamic group behaviors of bacterial communities via
engineered communications
Cellular communications enable the coordination of sin-
gle cells by sending and sensing the states of individuals.
Inspired by this natural capability of bacteria, synthetic
biologists have developed a set of engineered bacterial
populations with their group behaviors programmed from
designed artificial cell-cell communications.

Population density control
The first communication-based synthetic circuit was
built by You et al. in 2004 with the goal of creating a
dynamic, autonomous regulation of the cell density of
an E. coli population [18]. As illustrated in Figure 2A,
the Lux system from V. fischeri was introduced to con-
struct cell-cell communication and was coupled to cell
survival and killing via the CcdA/B toxin system. Here,
the LuxI protein catalyzes the synthesis of a small, dif-
fusible AHL signaling molecule, 3OC6HSL, which accu-
mulates in the extracellular milieu and the intracellular
environment as the cell density increases. When cells
reach a sufficient density, the AHL binds to LuxR and
forms the LuxR/AHL complex that activates the expres-
sion of the killer protein LacZα-CcdB, leading to cell
death. On the other hand, cell death can cause a reduc-
tion of total population density and hence the level of
AHL production, which in turn allows the population to
recover after killing. The continuous production and deg-
radation of AHL make the cell density approach a steady
state. Indeed, a stable cell density was maintained for
more than 30 h with the variation within less than 5% in
the study. This density control circuit laid a foundation
for using cellular communications to program bacterial
communities, allowing the extension of the control of
population dynamics to the engineering of more sophisti-
cated synthetic ecosystems.
In a recent work, Smith et al. utilized the density control

circuit constructed above to create an artificial Allee effect
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Figure 3 Synchronization of genetic oscillations by
communication-based circuits. (A) A QS-based gene circuit
that synchronizes the oscillation of gene expression in an isogenic
bacterial population. The oscillation is enabled by positive feedback,
arising from the self-activation of AHL synthesis, and negative
feedback, mediated by the AHL-degrading gene aiiA. The coupling
of the two feedback loops results in robust oscillations of gene
expression of an entire bacterial population (thousands of cells).
(B) An advanced gene circuit modified from (A) that enables
large-scale synchronization of oscillatory gene expression. In addition
to the coupled positive and negative feedback in (A), an additional
positive feedback loop is introduced by coupling the production of
thermally unstable H2O2 by NADH dehydrogenase (ndh) with AHL
biosynthesis, leading to global oscillation synchronization of millions
of cells.
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in E. coli populations [91]. The Allee effect is a biological
phenomenon characterized by a correlation between
population density and the mean individual fitness of a
population [92]. To create such an effect, a synthetic gene
circuit was constructed to contain the LuxI/LuxR system
and the CcdA/B toxin-antitoxin system (Figure 2B). In
this setting, the expression of LuxR/LuxI and CcdB (killer)
is under the control of Plac/ara promoter, while CcdA
(rescue) was regulated by the cell density-dependent Plux
promoter. When IPTG induction is on, the cellular popu-
lation growth rate is negative if the initial cell density is
less than the critical value (Ccrit) at which CcdA expres-
sion is not activated. However, if the initial cell density is
above Ccrit, AHL activates the production of LuxR and
further drives the production of CcdA which rescues the
population by inhibiting the toxicity of CcdB. An Allee
effect population was thus established to have a negative
fitness below a threshold of cell density but a positive
fitness when the density is beyond the threshold. This
study provided new implications of engineered cellular
communication for controlling invasive species and the
spread of infectious diseases.

Temporal synchronization
Complex cellular behaviors, such as biofilm formation and
host invasion, often require the temporal coordination and
collective action of cellular populations [93,94]. Towards
this need, engineered communications offer a powerful
solution.
In a recent study, Hasty and colleagues reported the de-

velopment of an artificial gene circuit that synchronizes
the oscillation of gene expression in individual cells [13].
Figure 3A shows their circuit design based on the QS
elements of V. fischeri (luxI, luxR) and Bacillus thurigensis
(aiiA). The AHL 3OC6HSL, synthesized by LuxI,
binds to transcriptional factor LuxR to form a complex
(LuxR-AHL) that activates the expression of luxI, which
leads to a positive feedback loop in regulation. At the
same time, the LuxR-AHL complex also activates the
expression of aiiA, a gene encoding the AHL degradation
enzyme, which leads to a negative feedback loop in
regulation. The dual positive and negative feedback
loops drive the sustained oscillation of gene expression
of individual cells, and in the meantime, the signaling
molecule AHL confers the synchronization of individual
oscillations. Using a custom-tailored microfluidic device,
the authors were, for the first time, able to establish
and tune synchronized oscillations of an entire cellular
population (thousands of cells). Compared with the
single cell oscillators developed by the same group [11]
and other researchers [1,10], the engineered cellular
communication indeed conferred the synchrony of cellu-
lar gene expression dynamics at a robust and yet tunable
fashion.
Building on their success of the synchronized oscillator,
the same group further advanced to create a more sophis-
ticated genetic network that is capable of synchronizing
oscillatory gene expression of populations across multiple
spatial scales [83]. As illustrated in Figure 3B, the resear-
chers placed a copy of the ndh-2 gene, which encodes
NADH dehydrogenase II, under the control of an add-
itional copy of Plux promoter (compared with Figure 3A).
The NDH-2 produces a low level of H2O2 that vapors and
passes through the walls of the oxygen-permeable
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polydimethylsiloxane (PDMS) chips. Driven by the oscilla-
tion of gene expression mediated by the AHL-based syn-
chronized oscillation circuit, H2O2 was periodically
produced and exchanged between the cells within individ-
ual chambers. When entering cells, H2O2 changes the
redox state of the cells and inactivates their lux promoter
binding protein ArcAB, causing the global activation of
the lux promoter of the cells in different chambers. As a
result, thousands of oscillating colony ‘biopixels’ (appro-
ximately 2.5 million cells) were synchronized over
centimeter-length scales through the use of synergistic
intercellular coupling involving both quorum sensing
within a colony and gas-phase redox signaling between
colonies. As a proof-of-concept application, this system
was further employed to sense arsenic in environments
via differential modulations of the period of the oscillatory
cells that resemble a liquid crystal display (LCD)-like
macroscopic clock.

Spatial organization
One of the most fascinating aspects of biological systems
is their ability to generate complex but highly reproducible
organisms through differential spatial patterning of mor-
phogens across isogenic cells [95]. Towards the ultimate
goal of biological engineering for creating desired tissues,
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Figure 4 Spatial organization of cellular populations via engineered c
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organs, or even entire organisms, one critical step is to
develop an engineering strategy that enables robust spa-
tiotemporal pattern formation of living cells. Engineered
cellular communications hold a great promise towards
this goal, in addition to their roles in conferring temporal
coordination of cellular behaviors.
In fact, synthetic biologists have already made several

interesting attempts through the exploitation of artificial
communication-based gene circuits. For instance, Sohka
et al. constructed a circuit implementing Wolpert's French
flag model [96], enabling the determination of cell fates in
a concentration-dependent manner [25]; Payne et al. cre-
ated a circuit that allows self-organized pattern formation
without morphogen gradients in bacteria [97]; Basu et al.
engineered a band detector that allows for differential
response of gene expression according to the local
concentration of AHL, creating a bull's eye-like spatio-
temporal pattern [16].
One elegant example for this line of applications is the

programming of bacterial stripe patterns by Liu and co-
workers [49]. As shown in Figure 4A, the gene circuit
consists of two functional parts: density-sensing module
and motility-control module. The density-sensing module
centers on the LuxI/LuxR QS system that enables the syn-
thesis and excretion of the AHL and the activation of the
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downstream gene cI when cell density is sufficiently high.
The motility-control module is based on the bacterial
motility system that is regulated by the transcription of
cheZ. Upon the replacement of the wild-type cheZ
with an inducible version (cheZ is under the control of the
cI-repressed Plambda promoter), cellular motility becomes
regulated by the expression of cI. With the coupling of the
two modules, engineered E. coli populations were able
to form robust but tunable periodic stripes of high and
low cell densities sequentially and autonomously. These
results established cellular motility as a simple route to
create recurrent spatial structures without the need for
an extrinsic pacemaker. As a novel mechanism, it offered
an alternative solution for the formation of biological
spatial patterns that is distinct from the well-acknowledged
Turing mechanism [98].
In addition to autonomous pattern formation, the

QS-based communication mechanism can also be applied
to detect complex spatial signals. Tabor et al. recently
developed a multi-module gene circuit system for edge
detection, a signal processing algorithm common in artifi-
cial intelligence and image recognition [99]. As illustrated
in Figure 4B, the biological edge detection algorithm is
composed of three modules: a dark sensor (NOT light),
cell-cell communication cassette, and an X AND (NOT Y)
genetic logic. The darker sensor was engineered based on
the light-sensitive protein Cph8, a chimeric sensor kinase.
With the covalent association of chromophore phycocya-
nobilin produced from heme via ho1 and pcyA [100,101],
Cph8 is able to activate the ompC promoter (PompC) by
transferring a phosphoryl group to the response regulator
OmpR. However, in the presence of red light, the kinase
activity of Cph8 is inhibited, which precludes the tran-
scription from PompC and causes a NOT light trans-
criptional logic gate. The cell-cell communication was
implemented through the Lux QS system and was used to
convert light information into spatial distribution of AHL.
With the incorporation of the converter cI and the hybrid
promoter Plux-lambda, the state of PompC is converted via an
X AND (NOT Y) logical operation into the state of the
promoter Plux-lambda, which is displayed via the production
of LacZ that produces black pigment. Upon the loading of
the programs, a lawn of isogenic E. coli populations was
able to sense an image of light, communicate to identify
the light-dark edges, and visually present the result of the
computation.

Ecosystem formation
Artificial cellular communications can enable not only
the coordination of isogenic cell populations but also
heterogeneous ecosystems that are composed of multiple
species. You and co-works recently developed two gene
circuits into a predator-prey ecosystem that consists of
two E. coli populations [52].
Figure 5A shows the design of the ecosystem that
involves two QS modules, LuxI/LuxR from V. fischeri and
LasI/LasR from P. aeruginosa, for two-way communi-
cations. The predator cell (top) produces and secretes the
AHL 3OC12HSL that induces the expression of the toxin
gene ccdB in the prey cell (bottom), leading to the death
of the prey. In the meantime, the prey produces another
AHL molecule, 3OC6HSL, which rescues the predator by
inducing the production of antitoxin CcdA that neutral-
izes the toxin from CcdB. With appropriate modulations
of the system parameters, the researchers were able to
create a bacterial version of predation with different
population dynamics generated, including extinction,
coexistence, and oscillation. Similar to this work, another
bidirectional intercellular communication network was
also engineered by Brenner et al. [50], in which the LasI/
LasR and RhlI/RhlR QS systems from P. aeruginosa were
adopted to create a two-species microbial consensus
consortium. In that ecosystem, the gene expression of
any of the two species mutually depends on the presence
of the other.
Beyond predation and consensus, designer cellular

communications can be used to create a wide spectrum
of inter-species interactions. As revealed by metagenomics
and 16S pyrosequencing, microbial interactions in nature
such as biofilms and the microbiome are extremely com-
plicated and diverse - for instance, there can be parasitism,
predation, commensalism, mutualism, competition, and
amensalism within a single pair of species [102]. As one of
the earliest efforts towards the programming of com-
plicated cellular consortia, Weber and Fussenegger devel-
oped a set of pairwise interactions between E. coli and
Chinese hamster ovary (CHO) cells [51].
As illustrated in Figure 5B, the designs of the ecosystems

center on an airborne transmission of the transcription sys-
tem that allows one species (E. coli) to convert ethanol into
volatile acetaldehyde and broadcast this airborne signal
(boiling point: 21°C) to another species (CHO-K1 cell line)
for the activation of functionally specific, rationally engi-
neered genes. The commensal ecosystem (top) was created
by constructing an E. coli strain capable of converting
ethanol into acetaldehyde for air broadcast and placing a
neomycin resistance gene (neo) under the control of an
acetaldehyde-induced promoter (Pair) in a CHO-K1 cell
line. In addition, secreted alkaline phosphatase (SEAP)
was used as a reporter of the CHO-K1 cells. When cul-
tivated proximate to synthetic CHO-K1, the engineered
E. coli cells confer survival of the mammalian cells while
keeping their own growth unaffected by the mammalian
cells cultured in a separate dish. The amensal ecosystem
(middle) was synthesized by cultivating an acetaldehyde-
broadcasting E. coli strain in close proximity to a CHO-K1
cell line that was engineered to have acetaldehyde-
controlled expression of RipDD, a gene that encodes an
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apoptosis-inducing human receptor interacting protein.
As a result, the CHO-K1 cells survive only in the absence
of the E. coli cells because, otherwise, they induce the
death of the CHO-K1 cells by producing acetaldehyde.
To create a mutualistic interaction between E. coli and
CHO-K1 cells (bottom), the commensal ecosystem devel-
oped earlier (top) was modified to incorporate a mamma-
lian beta-lactamase gene sBLA under the control of the
acetaldehyde-inducible promoter (Pair). Here, sBLA can be
secreted to the extracellular milieu to hydrolyze the
bacterial antibiotic ampicillin in the culture medium
to promote the survival of co-cultured E. coli, resulting
in bidirectional benefits between the two cell species.
Following a similar idea, three additional types of eco-
system interactions were created, including parasitism,
third party-inducible parasitism, and predator-prey inter-
action (not shown in Figure 5). This example demon-
strated the ability of programming microbial consortia via
rational design of cellular interactions by rewiring cellular
communication systems, providing novel insights in
understanding and programming microbial community
patterns that orchestrate the complex coexistence of living
systems.
In addition to programming planktonic bacterial popu-

lations, synthetic communication circuits have also been
exploited in controlling complex communities such as
biofilms. Hong et al. recently developed quorum-sensing
circuits to program the formation and dispersal of
artificial E. coli biofilms [103]. As shown in Figure 5C, the
circuits have two functional parts with one belonging to
the initial colonizer cell (top) and the other belonging to
the disperser cell (bottom). The initial colonizer part
consists of the constitutively expressed repressor gene
lasR and its cognate promoter PlasI that drives the expres-
sion of the biofilm dispersion gene bdcAB50Q; the
disperser part is composed of the AHL-producing gene
lasI that is constitutively expressed and another biofilm
dispersion gene, hha13D6, controlled by external inducer
IPTG. Such a design allows the disperser cell to trigger
the expression of the gene bdcAB50Q in the initial
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colonizer cell by producing AHL (3OC12HSL), leading to
the dispersion and replacement of the biofilm formed by
the initial colonizer cells. Meanwhile, the circuit in the
disperser enables the biofilm formed by the dispersers to
be removed with the external signal inducer IPTG. These
types of functional circuits can be powerful in creating
designer biofilms and enabling precise manipulation of
community composition in the fields of biorefinery,
medicine, and bioproduction.

Conclusions
With the advances of synthetic biology technologies and a
consensus on the need for community-based functionality
engineering, synthetic microbial consortia have undergone
a rapid development in the past few years. This review has
surveyed recent advances of engineered biological systems
that utilize cell-cell communication to program bacterial
group behaviors, covering both the basic communication
modules and functional gene circuits that confer desired
community-based dynamic behaviors.
Although there has been significant progress, the en-

gineering of microbial communities is still in its infancy
and is subject to a set of challenges. In fact, almost all
synthetic circuits to date have involved many rounds of
trial and error before achieving the desired functionality.
Difficulties in the efficient construction of engineered
circuits often stem from a lack of biological knowledge.
Specifically, to facilitate gene circuit engineering, it is
needed to have a deep understanding of stochasticity
in gene expression [104-106], the inherent interplay
between a synthetic circuit and the host organism [1],
and issues related to multicellular physiology and metab-
olism [107]. Another big challenge arises from the tech-
nical side of synthetic biology, which includes the lack of
powerful rational design platforms, limited availability of
parts and modules, efficient systematic optimization strat-
egies and toolkits, and high-throughput assays for circuit
validation. Addressing the above challenges will foster our
engineering capability and help to achieve the ultimate
goal of efficient and reliable development of synthetic
circuits with defined functionality.
Despite the challenges, the future of engineered micro-

bial communities is bright. In fact, synthetic consortia
have already started to show tremendous potential in
both understanding biological questions and addressing
real-world concerns. For example, extended from the
programming of cellular dynamics, synthetic bacterial
systems have been applied to understand ecological and
evolutionary questions that are difficult to address with
natural communities [108]. Towards real-world appli-
cations, bacterial consortia synthesized with designer
communication modules have been used for information
processing [109,110], bio-computation [111], and thera-
peutics [112-114], as well as material and chemical
productions [115-117]. There are a variety of research
fields where synthetic bacterial consortia have started to
play an important role: In metabolic engineering, cellular
communication can be used to implement self-regulated
control between cellular growth and product manufac-
turing in bioreactors for autonomous bioproduction. In
biomedical applications, custom-tailored probiotic bac-
teria can be introduced into the human body to alter the
composition and hence the function of the gut microbiota
for disease treatment. In areas relating to the environ-
ment, biofilms and microbial consortia in soil and other
natural settings can be perturbed and even reprogrammed
with engineered microbes for desired purposes. We thus
expect that microbial communities programmed via
engineered cellular communication will become a versa-
tile strategy in addressing both scientific and practical
challenges in the near future.
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