Langmuir
|
\(Q_{e} = \frac{{Q_{{{\text{max}}}} bC_{e} }}{{1 + bC_{e} }}\)
|
Q
max and b
|
Freudlinch
|
\(Q_{e} = K_{F} C^{1/n}\)
|
KF and n
|
Temkin
|
\(Q_{e} = \frac{RT}{{B_{T} }}\ln (A_{T} C_{e} )\)
| |
Dubinin–Radushkevich
|
\(Q_{e} = Q_{s} Exp\left( { - \frac{{\left( {RT\ln \left( {1 + \frac{1}{{C_{e} }}} \right)} \right)}}{{2E^{2} }}^{2} } \right)\)
|
Q
s and E
|
Redlich–Peterson
|
\(Q_{e} = \frac{{Q_{o} C_{e} }}{{(1 + K_{R} C_{e}^{g} )}}\)
|
Q
o
, K
R
and g
|
Sip
|
\(Q_{e} = \frac{{Q_{s} (K_{s} C_{e} )^{{\beta_{s} }} }}{{(1 + (K_{s} C_{e} )^{{\beta_{s} }} )}}\)
|
Q
s, K
s
and β
s
|
Hill
|
\(Q_{e} = \frac{{Q_{H} C_{e}^{{n_{H} }} }}{{(K_{H} + C_{e}^{{n_{H} }} )}}\)
|
Q
H
, K
H
and n
H
|
Toth
|
\(Q_{e} = \frac{{Q_{T} C_{e} }}{{(K_{T} + C_{e} )^{1/t} }}\)
|
Q
T, K
T
and t
|