Skip to main content

Table 1 Application fields of microbial flocculants

From: Recent advances and perspectives in efforts to reduce the production and application cost of microbial flocculants

Applications

Strains or sources

Dosage

Descriptions

Ref.

Biomass harvest

Bacillus agaradhaerens

8 mg/L

Microalgae harvest, FR of 80.63% to Chlorella minutissima

Liu et al. (2015b)

Enterobacter aerogenes

13.5 mg/L

Microalgae harvest, FR of 91.68 to 97.21% to Microcystis aeruginosa

Xu et al. (2018b)

Pseudomonas aeruginosa

1.75 mg/L

Microalgae harvest, FR of 100% to Microcystis aeruginosa

Sun et al. (2015a, b)

Cobetia marina

20 mg/L

Microalgae harvest, FR of 92.7% to Chlorella vulgaris

Lei et al. (2015)

Shinella albus

30 mg/L

Microalgae harvest, FR of 85.65% to Chlorella vulgaris

Li et al. (2016b)

Streptomyces sp.

5 g/L

Microalgae harvest, FR of 99.18% to Nannochloropsis

Sivasankar et al. (2020)

Bacillus marisflavi

100 mg/L

Microalgae harvest, FR of 90% to Chlorella vulgaris

Bukhari et al. (2020)

Cellulosimicrobium cellulans

250 mL/L

Microalgae harvest, FR of 99.0% to Chlamydomonas reinhardtii

Liu et al. (2015b)

Bacillus licheniformis

2.5 mL/L

Microalgae harvest, FR of 99% to Desmodesmus brasiliensis

Ndikubwimana et al. (2016)

Bacillus amyloliquefaciens

243 mg/L

Microalgae harvest, FR of 87.98% to Microcystis aeruginosa

Sun et al. (2015a, b)

Citrobacter sp.

12.7 mg/L

Microalgae harvest, FR of 95% to Microcystis aeruginosa

Xu et al. (2017)

Pseudomonas boreopolis

80 mg/L

Microalgae harvest, FR of 95.7% to Scenedesmus abundans

Guo et al. (2018a, b)

Solibacillus silvestris

1.1 g/L

Microalgae harvest, FR of 85.7% to Nannochloropsis oceanica

Wan et al. (2013)

Cloacibacterium normanense

5.8 mg/g

Yeast harvest, FR of 74.07% to Yarrowia lipolytica

Yellapu et al. (2019)

Paecilomyces sp.

700 mg/L

Yeast harvest, FR of 95% to Trichosporon fermentans

Qiao et al. (2019)

Metal ion removal

Turicibacter sanguinis

500 mg/L

Remove 86.1% arsenite from solution

Cao et al. (2015)

Stenotrophomonas maltophilia

40 mg/L

Remove 81.4% Cd2+ from solution

Chen et al. (2016)

Bacillus megaterium

0.005%

Remove 99.2% arsenite from solution

Guo and Chen (2017a)

Pseudomonas koreensis

1 g/L

Remove 51.2% Cd2+, 52.5% Cr6+ and 80.5% Pb2+ from solution

Ayangbenro et al. (2019)

Bacillus megaterium

1.25 g/L

Remove 82.64% Pb2+, 51.82% Zn2+ and 33% Ni2+ from solution

Pu et al. (2020)

Achromobacter xylosoxidans

1 g/L

Absorb over 95% Pb2+ from solution

Subudhi et al. (2016)

Enterococcus faecalis, Proteus mirabilis, Lysini sp.

28 mg/L

Adsorb 95% Cu2+, 72% Zn2+, 58% Hg2+, 92% Cd2+ from solution

Vimala et al. (2020)

Rhodococcus erythropolis

0.035%

Remove 96.9% Cu2+ from solution

Guo (2015)

Terrabacter sp.

500 mg/L

Remove 77.7% Fe3+, 74.8% Al3+, 61.9% Mn2+, 57.6% Zn2+ from dairy wastewater

Agunbiade et al. (2019)

From activated sludge

6 mg/L

Remove 98.5% of Pb2+ from solution

Yan et al. (2020)

 

Pseudomonas aeruginosa

100 ppm

Absorb 79.7% Pb2+, 79.9% Cd2+, 72.9% As5+ and 80.6% Zn2+ from solution

Gomaa (2012)

Paenibacillus elgii

1 g/L

Remove 53% Cu2+, 49% Co2+, 60% Pb2+, 72% Al3+ from solution

Li et al. (2013)

Pseudomonas aeruginosastrain

20 mg/L

Remove 79.29% Ni2+ from solution

Pathak et al. (2017)

Bacillus sphaericus and Rhizobium radiobacter

28 mg/L

Remove 92.95% Al3+ of river water

Li et al. (2016a)

Paenibacillus polymyxa

0.006%

Remove 99.85% Pb2+ from solution

Feng et al. (2013)

Sludge dewatering

Rhodococcus erythropolis

10.5 g/kg

DS and SRF of sludge appeared as 24.1% and 3.0 × 1012 m/kg

Guo and Chen (2017b)

From pre-treated sludge

1.6 g/L

DS and SRF of the sludge reached 22.5% and 3.4 × 1012 m/kg

Guo and Ma (2015)

Paenibacillus polymyxa

1.5 g/L

DS and SRF of activated sludge reached 20.8% and 3.9 × 1012 m/kg

Guo et al. (2015d)

Klebsiella sp.

6 g/kg

DS and SRF of sludge reached 17.5% and 3.36 × 1012 m/kg

Yang et al. (2012)

Azotobacter chroococcum

80 mg/L

Dewatering of coal waste slurry, FR of 83% to coal waste slurry

Yang et al. (2017)

Wastewater treatment

Bacillus agaradhaerens

6 mg/L

Remove 93.1% turbidity from straw ash-washing wastewater

Liu et al. (2020)

Diaphorobacter nitroreducens

831 mg/L

Remove 96% turbidity, 79% COD, 59% lignin, 63% sugar from pulping wastewater

Zhong et al. (2020)

Bacillus cereus

10 mg/L

Reduce 62% COD, 55% BOD, 76% TDS, 74% TSS from distillery effluent

Sajayan et al. (2017)

Bacillus subtilis

60 mg/L

Remove 27.3% SS of palm oil mill effluent

Chaisorn et al. (2016)

From pre-treated sludge

20 mg/L

Remove 45.2% COD, 41.8% ammonium, 74.6% turbidity from swine wastewater

Guo and Ma (2015)

Pseudomonas veronii

2.83 mg/L

Remove 92.51% turbidity from ash flushing wastewater

Liu et al. (2016a, b)

Bacillus agaradhaerens

9 mg/L

Remove 92.35% turbidity from mineral processing wastewater

Liu et al. (2019)

Paenibacillus polymyxa

30 mg/L

Remove 49.5% COD and 74.6% turbidity from potato starch wastewater

Guo et al. (2015a)

Terrabacter sp.

500 mg/L

Remove 54.1% COD, 63.3% BOD, 66.6% SS, 75.6% nitrate, 89.7% turbidity of dairy wastewater

Agunbiade et al. (2019)

Enterobacter sp.

1000 mg/L

Remove 85% chroma and 52% SS of fracturing flowback water

Ma et al. (2020)

Bacillus fusiformis

110 mg/L

Remove 22.7% total nitrogen, 28.5% COD, 20.4% colority from tannery wastewater

Zhao et al. (2016)

Arthrobacter humicola

800 mg/L

Remove 65.7% COD, 63.5% BOD, 55.7% SS, 71.4% nitrate, 81.3% turbidity of sewage wastewater

Agunbiade et al. (2017)

Alteromonas sp.

200 mg/L

Remove 98.5% congo red, 97.9% direct black, 72.3% methylene blue from dye wastewater

Chen et al. (2017a)

Aspergillus niger

3.78 mg/L

Remove 91.15% COD and 60.22% turbidity from potato starch wastewater

Pu et al. (2018)

Klebsiella variicola

333 mg/L

Achieve 84.7% decolorization efficiency to methylene blue solution

Xia et al. (2018)

Rhodococcus sp.

24 mg/L

Remove 87.9% COD, 86.9% ammonium and 94.8% turbidity from swine wastewater

Guo et al. (2013)

Paenibacillus elgii

30 mL/L

Remove 68% COD, 83% turbidity, 88% color from real wastewater

Li et al. (2013)

Rhizopus sp.

0.1 mL/L

Remove 54.09% COD and 92.11% turbidity from potato starch wastewater

Pu et al. (2014)

Aspergillus niger

35 mg/L

Remove 63% turbidity of river water

Aljuboori et al. (2014)

Klebsiella sp.

5 mg/L

Remove 53.27% sulfamethoxazole in domestic wastewater

Xing et al. (2013)

Klebsiella pneumoniae

44 mg/L

Remove 72% TSS from raw wastewater

Nie et al. (2011)

Sphingomonas yabuuchiae

50 mg/L

Remove 87% estrone, 92% estradiol, 88% ethinylestradiol, 96% estriol from estrogen solution

Zhong et al. (2014)

Oceanobacillus polygoni

4 g/L

Remove 46.49% SS and 91.08% turbidity from tannery wastewater

Li et al. (2017)

Bacillus salmalaya

60 mg/L

Remove 81.3% Zn2+, 78.6% As, 77.9% Pb2+, 76.1% Cu2+, 68.7% Cd2+ from synthetic wastewater

Tawila et al. (2019)

Bacillus sp.

2%

Remove 82.8% color, 92.5% COD, 73.6% TSS, 81.9% Cl− from dyeing wastewater

Bisht and Lal (2019)

Haloplanus vescus

150 mg/L

Removed 81.86 COD and 95.07% chroma from dye wastewater

Zhong et al. (2016)

Cellulomonas taurus

 

Removed 71.05% COD, 18.22 ammonia nitrogen from pig farm wastewater

Zhang et al. (2021)

Bacillus sp.

20 mg/L

Remove 47% COD and 89% TSS from municipal wastewater

Kanmani and Yuvapriya (2018)

Nanoparticle synthesis

Bacillus sp.

 

Bioflocculant diffused cellulose in AgNO3 solution, generated nanoparticles AgNPs

Muthulakshmi et al. (2017)

Streptomyces sp.

 

Add bioflocculant to AgNO3 solution, produced silver nanoparticles

Manivasagan et al. (2015)

Bradyrhizobium japonicum

 

Add bioflocculant to AgNO3 solution, produced nanoparticles AgCl-NPs

Rasulov et al. (2016a)

Bacillus sp.

 

Bioflocculant diffused cellulose in CuSO4 solution, obtained nanoparticles (CuNPs)

Muthulakshmi et al. (2019)

Alcalegenis faecalis

2.5 g/L

Add bioflocculant in CuSO4 solution, synthesized nanoparticles CuNPs

Dlamini et al. (2020)

Azotobacter chroococcum

 

Bioflocculant exposed to AgNO3 solution, produced nanoparticles AgCl-NPs

Rasulov et al. (2016b)

Bacillus subtilis

5%

Add AgNO3 to bioflocculant solution, generated nanoparticles AgNPs

Sathiyanarayanan et al. (2013)

Bacillus mojavensis

10%

Add AgNO3 to bioflocculant solution, synthesize nanoparticles AgNPs

Zaki et al. (2014)

Other applications

Bacillus subtilis

0.1–1 g/L

Exhibited antibacterial, antioxidant, and anti-inflammatory potential

Giri et al. (2019)

Stenotrophomonas maltophilia

0.001–1 g/L

Used as hemostasis agent

Zhao et al. (2017)

Paenibacillus jamilae

100 mg/L

Used as hemostasis in clinical settings

Zhong et al. (2018)

Enterococcus faecalis

11.57 mg/L

Recover graphene oxide, FR over 90% to graphene oxide in water

Xu et al. (2018a)

  1. FR flocculating rate, SS suspended solids, DS dry solids, SRF specific resistance to filtration, COD chemical oxygen demand, BOD biological oxygen demand, TSS total suspended solids