Skip to main content

Table 1 Different production strategies for P(LA-co-3HB)

From: Recent advances in the microbial synthesis of lactate-based copolymer

Authors

Strategies

Engineered microorganisms

Key characteristics

Main substrates

Lactate-based copolymer production statuses

Taguchi et al. (2008)

Enzyme engineering

E. coli JM109

Checking effect of PhaC from Pseudomonas sp. 61–3 with mutagenesis of two sites (S325T and Q481K); adding 10 mM calcium pantothenate to increase LA monomer fraction

20 g/L glucose

Engineered E. coli expressing PhaC1Ps(ST/QK) and PctMe can synthesize 19 wt% P(6 mol% LA-co-3HB); Mn: (×105) = 1.9, Mw: (×105) = 4.8, Mw/Mn = 2.4

Yamada et al. (2010)

E. coli BW25113

Deleting pflA; checking effect of PhaC1Ps(ST/QK) with mutagenesis of F392; adding 10 mM calcium pantothenate

20 g/L glucose

E. coli JW0885 expressing PhaC1Ps(ST/FS/QK) and PctMe can synthesize 62 wt% P(45 mol% LA-co-3HB) with an increased PHA content and the highest LA monomer fraction; Mn: (×104) = 2, Mw: (×104) = 8, Mw/Mn = 4.0

Yang et al. (2010)

E. coli XL1-Blue

Checking effect of the mutants of four sites in PhaC1Ps6-19 (E130, S325, S477, and Q481) and two mutants of PctCp (Pct532Cp and Pct540Cp)

20 g/L glucose

Engineered E. coli expressing different enzymes can synthesize different copolymers

Yang et al. (2011)

E. coli XL1-Blue

Checking effect of four kinds of engineering-type II PhaC1s with mutagenesis of four sites (E130, S325, S477, and Q481)

20 g/L glucose

Engineered E. coli expressing different PhaC1s and Pct540Cp can synthesize different copolymers

Ochi et al. (2013)

E. coli LS5218

Introducing phaJ4; checking effect of PhaC from C. necator with mutagenesis of A510

5 g/L (R)-LA; 3 g/L sodium dodecanoate

Engineered E. coli expressing PhaCRe(AS) and PctMe can mainly synthesize P(5 mol% LA-co-3HB) with a relatively high PHA production and a stable LA monomer fraction; Mn: (×105) = 1.4, Mw: (×105) = 3.2, Mw/Mn = 2.3

Kim et al. (2016)

E. coli XL1-Blue

Checking effect of Pct from C. beijerinckii, C. perfringens, and K. pneumoniae

20 g/L glucose

Engineered E. coli expressing PhaC1437Ps6-19 and Pct of C. perfringens can synthesize 10.6 wt% P(13.6 mol% LA-co-3HB)

David et al. (2017)

E. coli XL1-Blue

Checking effect of Bct from four strains from different genus

20 g/L glucose

Engineered E. coli expressing PhaC1437Ps6-19 and different Bcts can synthesize different copolymers

Yang et al. (2018)

E. coli XL1-Blue

Checking effect of FldA and HadA; introducing the aromatic copolymer production module

20 g/L glucose

Engineered E. coli expressing PhaC1437Ps6-19 can synthesize the copolymers containing d-phenyllactate and d-4-hydroxyphenyllactate

Jung et al. (2010)

Metabolic pathway construction

E. coli XL1-Blue

Deleting ackA, ppc, and adhE; replacing ldhA and acs natural promoters with trc; strains lacking ppc need additional 4 g/L sodium succinate

20 g/L glucose

E. coli JLX10 expressing PhaC1310Ps6-19 and Pct540Cp can synthesize 19 wt% P(60 mol% LA-co-3HB); expressing PhaC1400Ps6-19 and Pct532Cp can synthesize 46 wt% P(70 mol% LA-co-3HB)

Jung and Lee (2011)

E. coli XB-F

Deleting lacI, pflB, frdABCD, and adhE; replacing ldhA and acs natural promoters with trc; strains lacking lacI does not need additional IPTG

20 g/L glucose

E. coli JLXF5 expressing PhaC1310Ps6-19 and Pct540Cp can synthesize 15.2 wt% P(67.4 mol% LA-co-3HB)

Nduko et al. (2014)

E. coli BW25113

Deleting pflA, pta, ackA, poxB, and dld; overexpressing GatC to increase the utilization of xylose; adding 10 mM calcium pantothenate

20/30/40 g/L xylose

E. coli JWMB1 expressing PhaC1Ps(ST/FS/QK) and PctMe can synthesize 58 wt% P(73 mol% LA-co-3HB) from 20 g/L xylose; Mn: (×104) = 1.7, Mw: (×104) = 3.8, Mw/Mn = 2.2

Salamanca-Cardona et al. (2014a)

E. coli LS5218

Deleting pflA

20 g/L xylose

E. coli RSC10 expressing PhaC1Ps(ST/QK) and PctMe can synthesize 41.1 wt% P(8.3 mol% LA-co-3HB)

Kadoya et al. (2015a)

E. coli BW25113

Deleting RpoS, RpoN, FliA, and FecI, which are E. coli non-essential σ factors; adding 10 mM calcium pantothenate

20 g/L glucose

E. coli JW3169 expressing PhaC1Ps(ST/QK) and PctMe can synthesize 75.1 wt% P(26.2 mol% LA-co-3HB)

Kadoya et al. (2015a)

E. coli BW25113

Deleting mtgA, which plays an auxiliary role in peptidoglycan synthesis; adding 10 mM calcium pantothenate

20 g/L glucose

E. coli JW3175 expressing PhaC1Ps(ST/QK) and PctMe can synthesize 7.0 g/L copolymer with an increased yield

Kadoya et al. (2017)

E. coli BW25113

Deleting PdhR, CspG, YneJ, ChbR, YiaU, CreB, YgfI, and NanK, which are E. coli non-lethal transcription factors; adding 10 mM calcium pantothenate

30 g/L glucose

Engineered E. coli expressing PhaC1Ps(ST/QK) and PctMe with an increased copolymer yield (6.2–10.1 g/L)

Kadoya et al. (2018)

E. coli BW25113

Overexpression Mlc, which is a multiple regulator of glucose and xylose uptake; adding 10 mM calcium pantothenate

50 g/L mixed sugar (wt%, glucose:xylose = 4:1)

Engineered E. coli expressing PhaC1Ps(ST/QK) and PctMe can synthesize 64.9 wt% P(11.8 mol% LA-co-3HB); Mn: (×104) = 6.7, Mw: (×104) = 9.4, Mw/Mn = 1.4

Yang et al. (2018)

E. coli XL1-Blue

Deleting ldhA, adhE, pflB, frdB, and poxB; introducing the aromatic copolymer production module

20 g/L glucose

Engineered E. coli expressing PhaC1437Ps6-19 can synthesize the copolymers containing d-phenyllactate and d-4-hydroxyphenyllactate

Goto et al. (2019b)

E. coli DH5α

E. coli LS5218

E. coli XL1-Blue

Introducing ldhD

20 g/L glucose

Engineered E. coli expressing PhaC1Ps(ST/QK) and PctMe can synthesize the copolymers with an increased LA monomer fraction compared with original strains

Lu et al. (2019)

E. coli MG1655

Deleting ubiX to attenuate respiratory chain; deleting dld; checking effect of different concentrations of IPTG and l-arabinose

20 g/L glucose

E. coli JX041 expressing PhaCm(ED/ST/QK) and Pct540Cp can synthesize 81.7 wt% P(14.1 mol% LA-co-3HB)

Wei et al. (2021)

E. coli MG1655

Deleting ydiI, yciA, and dld

20 g/L glucose; 20 g/L xylose

E. coli WXJ03 expressing PhaCm(ED/ST/QK) and Pct540Cp can synthesize 66.3 wt% P(46.1 mol% LA-co-3HB) from xylose

Wu et al. (2021)

E. coli MG1655

Deleting ubiX, ptsG, and dld

10 g/L mixed sugar (wt%, glucose:xylose = 7:3)

E. coli WJ03 expressing PhaCm(ED/ST/QK) and Pct540Cp can synthesize P(7 mol% LA-co-3HB)

Nduko et al. (2013)

Different substrates

E. coli BW25113

Deleting pflA; checking effect of glucose and xylose; adding 10 mM calcium pantothenate

20 g/L glucose; 20 g/L xylose

E. coli JW0885 expressing PctMe produces the copolymer have a higher LA monomer fraction (34 mol%) from xylose; Mn: (×104) = 4.0, Mw: (×104) = 17, Mw/Mn = 4.1; PhaC1Ps(ST/FS/QK) has a better effect than PhaC1Ps(ST/QK)

Oh et al. (2014)

E. coli W

Sucrose is broken down into fructose and glucose in vivo

20 g/L sucrose

Engineered E. coli expressing PhaC1437Ps6-19 and Pct540Cp can synthesize 12.2 wt% P(16 mol% LA-co-3HB); Mn: (×104) = 1.53, Mw: (×104) = 2.78, Mw/Mn = 1.82

Salamanca-Cardona et al. (2014b)

E. coli LS5218

Introducing xylB and xynB; adding single sugar to assist the copolymer production from beechwood xylan

10 g/L xylan; combination of a single sugar substrate (20 g/L xylose or arabinose) and xylan (10 g/L)

Engineered E. coli expressing PhaC1Ps(ST/QK) and PctMe can synthesize 40.4 wt% P(2.1 mol% LA-co-3HB) from xylose and xylan; Mn: (×105) = 1.18, Mw: (×105) = 2.78, Mw/Mn = 2.35; 30.3 wt% P(3.7 mol% LA-co-3HB) from arabinose and xylan; Mn: (×105) = 1.13, Mw: (×105) = 3.03, Mw/Mn = 2.67

Salamanca-Cardona et al. (2014a)

E. coli LS5218

Deleting pflA; using xylose and acetate to simulate xylan derived from beechwood

20 g/L xylose; 33 mM acetate

E. coli RSC10 expressing PhaC1Ps(ST/QK) and PctMe can synthesize 41.1 wt% P(8.3 mol% LA-co-3HB) from xylose; 4.2 wt% P(18.5 mol% LA-co-3HB) from xylose and acetate; adding acetate increases LA monomer fraction

Oh et al. (2015)

E. coli XL1-Blue

C. necator

Introducing ldhA into C. necator; rice bran hydrolysates are purified by a series of processes and concentrated; resulting solution contains 16.3% (w/w) glucose

10 mL/L rice bran hydrolysate solution (corresponds to 20 g/L glucose and 3.4 g/L fructose)

Engineered E. coli expressing PhaC1437Ps6-19 and Pct540Cp can synthesize 82.3 wt% P(28.6 mol% LA-co-3HB); C. necator 437–540 expressing the same enzymes can synthesize 35.8 wt% P(7.3 mol% LA-co-3HB)

Sun et al. (2016)

E. coli BW25113

Lignocellulosic biomass is treated by NaClO2 and NaOH in the two-step process to obtain the highest total sugar yield; the two-step process does not produce the toxic hydrolysates; the hydrolysates mainly include glucose, xylose, and trace arabinose; adding 10 mM calcium pantothenate

Miscanthus × giganteus (hybrid Miscanthus); rice straw hydrolysate solution

Engineered E. coli expressing PhaC1Ps(ST/QK) and PctMe basically has no effect on content, yield, and LA monomer fraction of the copolymer when using the hydrolysate solution derived from hybrid Miscanthus; Mn: (×104) = 7.7 Mw: (×104) = 37.0, Mw/Mn = 4.8; decreases LA monomer fraction when using the hydrolysate solution derived from rice straw; Mn: (×104) = 7.1, Mw: (×104) = 36.2, Mw/Mn = 5.1

Salamanca-Cardona et al. (2017)

E. coli BW25113

E. coli BW25113 (ΔpflA)

E. coli LS5218

E. coli LS5218 (ΔpflA)

E. coli LS5218 (ΔpflA) is an acetate-tolerant strain and even produces the copolymer using acetate as a sole carbon source

20 g/L xylose; 25 mM acetate

E. coli RSC10 expressing PhaC1Ps(ST/QK) and PctMe can synthesize 45.3 wt% P(13.1 mol% LA-co-3HB); Mn: (×104) = 6.3, Mw: (×104) = 26.5, Mw/Mn = 5.0

Takisawa et al. (2017)

E. coli BW25113

Woody extract is treated by a series of processes and the hemicellulosic hydrolysate’s total sugar concentration is 154.5 g/L; the purified hydrolysates’ total sugar concentration are 133.0 and 62.4 g/L for active charcoal treatment and ion-exchange resin treatment, respectively; adding 10 mM calcium pantothenate

The hemicellulosic hydrolysate solution derived from dissolving pulp manufacturing-obtained woody extract; 0/1/2/5/10 g/L acetate

Engineered E. coli expressing PhaC1Ps(ST/QK) and PctMe can synthesize 62.4 wt% P(5.5 mol% LA-co-3HB); Mn: (×104) = 6.9, Mw: (×104) = 48, Mw/Mn = 7.0; adding acetate decreases PHA content and LA monomer fraction

Kadoya et al. (2018)

E. coli BW25113

Hybrid Miscanthus is treated by NaClO2 and NaOH in the two-step process; assuming a small amount of acetate in the hydrolysate inhibits the copolymerization of LA; adding 10 mM calcium pantothenate

Miscanthus × giganteus (hybrid Miscanthus) hydrolysate solution

Engineered E. coli expressing PhaC1Ps(ST/QK) and PctMe decreases LA monomer fraction; Mn: (×104) = 6.7, Mw: (×104) = 9.4, Mw/Mn = 1.4

Sohn et al. (2020)

E. coli DH5α

E. coli JM109

E. coli Top10

E. coli W3110 (ΔlacI)

E. coli XL1-Blue

E. coli XL10-Gold

Introducing sacC; sucrose is broken down into fructose and glucose; all E. coli produces the copolymers

20 g/L sucrose

Engineered E. coli XL1-Blue expressing PhaC1437Ps6-19 and Pct540Cp can synthesize P(42.3 mol% LA-co-3HB) with the highest concentration (0.576 g/L) and a relatively high content (29.44 wt%)

Wu et al. (2021)

E. coli MG1655

Deleting ubiX, ptsG, and dld; corn straw is hydrolyzed with sodium hydroxide solution and the impurities are removed by active charcoal treatment and filtration

Corn straw hydrolysate solution

E. coli WJ03 expressing PhaCm(ED/ST/QK) and Pct540Cp can synthesize P(7.1 mol% LA-co-3HB)

Yamada et al. (2009)

Culture conditions

E. coli W3110

Culturing in anaerobic conditions after 24 h aerobic cultivation; adding 10 mM calcium pantothenate

20 g/L glucose

Engineered E. coli expressing PhaC1Ps(ST/QK) and PctMe can synthesize 2 wt% P(47 mol% LA-co-3HB); Mn: (×104) = 1.5, Mw: (×104) = 2.0, Mw/Mn = 1.3

Yamada et al. (2010)

E. coli BW25113

Deleting pflA; culturing in anaerobic conditions after 16 h aerobic cultivation in a jar fermentor; adding 10 mM calcium pantothenate

20 g/L glucose

E. coli JW0885 expressing PhaC1Ps(ST/QK) and PctMe can synthesize 15 wt% P(47 mol% LA-co-3HB);

Mn: (×104) = 2, Mw: (×104) = 6, Mw/Mn = 3.0; expressing PhaC1Ps(ST/FS/QK) and PctMe can synthesize 12 wt% P(62 mol% LA-co-3HB); Mn: (×104) = 1, Mw: (×104) = 4, Mw/Mn = 4.0; anaerobic conditions decrease the copolymer content and increase LA monomer fraction

Yang et al. (2010)

E. coli XL1-Blue

Adjusting DOC (30%, 10%), pH (by 28% (v/v) ammonia water) and glucose concentration in a jar fermentor

15/5 g/L glucose

Engineered E. coli expressing PhaC1310Ps6-19 and Pct540Cp can adjust LA monomer fraction ranging from 8.7 to 64.4 mol%

Jung and Lee (2011)

E. coli XB-F

Deleting lacI, pflB, frdABCD, and adhE; replacing ldhA and acs natural promoters with trc; strains lacking lacI does not need additional IPTG; adjusting DOC (above 40%), pH (by 28% (v/v) ammonia water) in a jar fermentor

20 g/L glucose

E. coli JLXF5 expressing PhaC1310Ps6-19 and Pct540Cp can synthesize 43 wt% P(39.6 mol% LA-co-3HB) in about 80 h; molecular weight: (×105) = 1.41

Yamada et al. (2011)

E. coli JM109

E. coli BW25113 (ΔpflA)

Culturing in anaerobic conditions after 16 h aerobic cultivation in a jar fermentor; adding 10 mM calcium pantothenate

20 g/L glucose

E. coli JW0885 expressing PhaC1Ps(ST/QK) and PctMe can adjust LA monomer fraction ranging from 29 to 47 mol%

Oh et al. (2015)

E. coli XL1-Blue

C. necator

Introducing ldhA into C. necator; adjusting pH by 28% (v/v) NH4OH in a jar fermentor; the utilization of batch fermentation overcomes the bottleneck of the utilization of fructose

100 mL/L rice bran hydrolysate solution

Engineered E. coli expressing PhaC1437Ps6-19 and Pct540Cp can synthesize 53.89 wt% P(3.63 mol% LA-co-3HB) in 39 h resulting in the highest LA monomer fraction; C. necator 437–540 expressing the same enzymes can’t use up fructose in 63 h; Mn: (×104) = 2.19, Mw: (×104) = 4.16, Mw/Mn = 1.90

David et al. (2017)

E. coli XL1-Blue

Adjusting pH by 28% (v/v) NH4OH in a jar fermentor

20 g/L glucose

Compared with Pct540Cp, engineered E. coli expressing PhaC1437Ps6-19 and BctEh shows higher OD600 and weight percentage, but LA monomer fraction is lower

Yang et al. (2018)

E. coli XL1-Blue

Introducing the aromatic copolymer production module; using fed-batch fermentation, which is performed by the pH-stat strategy and the pulsed-feeding strategy; adjusting DOC (above 40%) and pH (by 28% (v/v) ammonia solution) in a jar fermentor

20/10 g/L glucose

Engineered E. coli expressing PhaC1437Ps6-19 can synthesize aromatic PHAs to a reasonably high concentration

Goto et al. (2019b)

E. coli DH5α

E. coli LS5218

E. coli XL1-Blue

Introducing ldhD; creating relatively anaerobic conditions (shaking speed = 0/60 strokes/min)

20 g/L glucose

Engineered E. coli expressing PhaC1Ps(ST/QK) and PctMe can synthesize the copolymers with an increased LA monomer fraction in relatively anaerobic conditions

Hori et al. (2019)

E. coli MG1655

Initial sugar is glucose; feed is xylose, and its concentration rises with time; adjusting pH by 4 N NaOH in a jar fermentor

20 g/L glucose; 5/10/30 g/L xylose

Engineered E. coli expressing PhaC1Ps(ST/QK) and PctMe can synthesize 44.3 wt% P(4.9 mol% LA-co-3HB); Mn: (×104) = 2.8, Mw: (×104) = 16, Mw/Mn = 5.7

Sohn et al. (2020)

E. coli XL1-Blue

Introducing sacC; adjusting pH by 28% (v/v) NH4OH in a jar fermentor; the utilization of batch fermentation overcomes the bottleneck of the utilization of fructose

20 g/L sucrose

Engineered E. coli expressing PhaC1437Ps6-19 and Pct540Cp can synthesize 20.88 wt% P(38 mol% LA-co-3HB) in 28 h

Song et al. (2012)

Non-traditional chassis cells

C. glutamicum

Introducing ldhA; adding 0.45 mg/L biotin causes C. glutamicum not to produce glutamate

60 g/L glucose

Engineered C. glutamicum expressing PhaC1Ps(ST/QK) and PctMe can synthesize 2.4 wt% P(96.8 mol% LA-co-3HB); Mn: (×103) = 5.2, Mw: (×103) = 7.4, Mw/Mn = 1.4

Park et al. (2013b)

C. necator

Introducing ldhA

20 g/L glucose

C. necator 437–540 expressing PhaC1437Ps6-19 and Pct540Cp can synthesize 33.9 wt% P(37 mol% LA-co-3HB)

Park et al. (2015)

C. necator

Introducing sacC and ldhA; adjusting pH by 28% (v/v) NH4OH in a jar fermentor

20 g/L sucrose

C. necator 437–540 expressing PhaC1437Ps6-19 and Pct540Cp can synthesize 19.5 wt% P(21.5 mol% LA-co-3HB); Mn: (×104) = 2.19, Mw: (×104) = 4.17, Mw/Mn = 1.90

Tran and Charles (2016)

S. meliloti Rm1021

Replacing phbC with PhaC1400Ps6-19 and Pct532Cp

Yeast mannitol

S. meliloti SmUW254 expressing PhaC1400Ps6-19 and Pct532Cp can synthesize P(30 mol% LA-co-3HB)

  1. Enzymes related to copolymer synthesis which are not specifically described include propionyl-CoA transferase (Pct), β-ketothiolase (PhaA), and NADPH-dependent acetoacetyl-CoA reductase (PhaB). If engineered strains do not have a 3HB synthesis pathway, 3HB needs to be added to the medium
  2. Mn: number-average molecular weight; Mw: weight-average molecular weight; Mw/Mn: polydispersity index