Skip to main content

Table 4 Enhancement of curcumin production by metabolic engineering

From: Biotechnological advances for improving natural pigment production: a state-of-the-art review

Hosts

Strategies

Substrate

Yield

Year

References

Curcuma longa

In vitro propagation

/

260 μg/g fresh weight

2012

Pistelli et al. (2012)

Curcuma aromatica

In vitro propagation

/

534 μg/g

2015

Wu et al. (2015)

Curcuma longa

Chitosan elicitation

/

1.3 mg/g DCW

2016

Sathiyabama et al. (2016)

Curcuma longa

Bacillus endophyticus TSH42 and Bacillus cereus TSH77 were used for bacterization of rhizome

in C. longa

/

4.16 g/100 g

2017

Chauhan et al. (2017)

E. coli

Introduction of 4CL, acetyl-CoA carboxylase (ACC) and CUS

Ferulic acid

57 mg/L

2008

Katsuyama et al. (2008)

E. coli

Co-expression of TAL, C3H, COMT, 4CL, DCS and CURS1

Tyrosine

0.2 mg/L

2015

Rodrigues et al. (2015)

E. coli

Co-expression of TAL, C3H, COMT, 4CL, and CUS

Tyrosine

0.67 mg/L

2015

Wang et al. (2015)

E. coli

Optimization of PBS; employment of heat shock promoters

Ferulic acid

17 μM

2017

Rodrigues et al. (2017)

E. coli

Optimization of cultivation conditions, including E. coli subspecies, induction parameters, culture media and carbon source concentration

Ferulic acid

817.7 μM

2017

Couto et al. (2017)

E. coli

Screening a library of 5’-UTR sequence mutants via MAGE

Glucose

3.8 mg/L

2018

Kang et al. (2018)

Aspergillus oryzae

Overexpression of CUS; Strengthening malonyl-CoA supply via disruption of SnfA and SCAP

Feruloyl-N-acetylcysteamine

404 μg/plate

2019

Kan et al. (2019)

E. coli

Gene expression optimization via replacement of plasmids;

Co-culture system

Tyrosine

15.9 mg/L

2020

Rodrigues et al. (2020)

E. coli

Direction evolution of CUS, and cell membrane engineering via overexpression of monoglucosyldiacylglycerol synthase and supplementation of unsaturated fatty acid

0.6 g/L palmitoleic acid and 4 mM ferulic acid

1.46 mM curcumin

2020

Wu et al. (2020a)