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Corynebacterium glutamicum strains based on
multi-locus sequence typing (MLST) scheme
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Abstract

Background: Confusing parental information may hinder to dissect mechanisms of amino acid hyper-producing
Corynebacterium glutamicum strains. Thus, an efficient method for genotyping of the C. glutamicum is heavily
called.

Results: Multi-locus sequence typing (MLST) is currently the most popular molecular typing technique. But currently
this method is not available for C. glutamicum. In this study, a MLST scheme was established based on sequences of
seven housekeeping genes, for genotyping of C. glutamicum. The MLST method performed an efficient discrimination
of 17 strains and helps to understand the population structure of this bacterium.

Conclusions: This work has expanded the MLST method to C. glutamicum and developed an efficient technique to
discriminate strains of uncertain origin.
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Background
Non-spore-forming Gram-positive bacteria Corynebac-
terium glutamicum are widely used in amino acid pro-
duction industry with numerous ideal attributes [1,2].
Due to roughly identical 16S rDNA sequences, many in-
dependent strains previously regarded as Brevibacterium
and Corynebacterium species in the Corynebacteriaceae
family have been categorized into the C. glutamicum
species, especially Brevibacterium lactofermentum, Bre-
vibacterium flavum, and Corynebacterium acetoacido-
philum [3-5]. Consequently, the C. glutamicum species
dropped into a mixture of strains from diversified
resources.
Clear genetic or phylogenetic information is occasionally

missing after a long-term utilization and preservation.
Confusing parental information may hinder to dissect
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mechanisms of amino acid hyper-production in these
strains. For example, although genome sequences are now
available for several glutamate-hyper-producing strains,
e.g., SCgG1, SCgG2, and Z188, detail typing and paren-
tal information of these strains were still absent. To our
knowledge, only an identification method by phage
sensitivity has been reported, but this method is not
very convenient because of the experimental procedure
for handling phages [6]. Thus, an efficient method for
genotyping of the C. glutamicum is heavily called for in
this field.
Compared with other molecular typing techniques,

multi-locus sequence typing (MLST) is currently the
most popular one [7,8]. MLST relies on allelic variants
in conserved genes to calculate phylogenetic relationship
of strains. Multiple housekeeping genes (usually seven
genes) are examined in the analysis as their sequences
are constrained and variations are nearly neutral. Each
strain is then assigned with an allelic profile or sequence
type (ST). The MLST method excels other molecular
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typing methods of being unambiguous and easily port-
able between laboratories.
To our knowledge, in the family of Corynebacteria-

ceae, MLST scheme is only developed in Corynebacter-
ium diphtheriae. More than 70 STs were identified and
fall into at least 11 groups of C. diphtheriae. Mean-
while, no ST is currently available for C. glutamicum.
In order to have accurate typing techniques for C. glu-
tamicum, we developed a MLST scheme, which would
promote applied research of this amino acid-producing
species.

Methods
The strains used in this study are listed in Table 1 [3-6,9-13].
Genome sequences of the strains used for MLST analysis
include ATCC13032 [5,2,1], MB1 [14], R [15], ScCG1,
ScCG2, ATCC14067 [16], S9114 [17], Z188, ‘C. crenatum’
MT. Primers 27F 5′-AGAGTTTGATCMTGGCTCAG-3′
and 1492R 5′-TACGGYTACCTTGTTACGACTT-3′ were
used to identify 16S rDNA sequences of the strains [3,4].
The retrieved 16S rDNA sequences are almost identical,
with a similarity >99% compared with the sequence of the
C. glutamicum ATCC 13032, indicating that all of the
strains belong to C. glutamicum [3,4].
Referring to the genotyping scheme in C. diphtheriae

[7], another species belonging to the same genus, seven
housekeeping genes of the C. glutamicum strains were
selected for analysis, including atpA, dnaE, dnaK,
fusA, rpoB, leuA, and odhA (Table 2). All the loci are
single copy in the genome sequences, according to the
BLAST analysis. Considering the possibility to meet
the case when only crude amino acid fermentation
samples are available, which would limit the efficiency
of PCR reactions, approximately 300~400 bp length of
the PCR amplicon in housekeeping genes was designed
for downstream experiments and analysis (Table 2).

Results and discussion
The PCR amplicon size ranges from 318 bp (leuA) to
402 bp (fusA), with a mean size of 369 bp (Table 2,
Additional file 1: Figure S1 and Dataset S1). Each locus
of housekeeping gene alleles for comparison and identi-
fication has a length ranging from 150 bp (leuA) to
243 bp (dnaK), with a mean length of 206 bp. All alleles
for a given locus are of equal lengths and in a correct
reading frame. The proportion of variation sites in each
locus varies from 3% (odhA) to 17% (leuA) (Table 2).
Primer and allele sequences are listed in Table 2 and
Additional file 1: Dataset S2.
The dendrogram was drawn from allelic profile data

using the UPGMA (unweighted pair group method with
arithmetic mean) method. The online tool (http://pubmlst.
org/) of the PHYLIP suite programs and Phylodendron
[18] were implemented for tree generation, output,
and display. The dendrogram demonstrates that eight
groups of the strains could be classified according to
their genetic distinctions (Figure 1). Except ST4/ST5 and
ST9/ST10, which share six alleles respectively, most of STs
share no more than three alleles with each other (Table 1),
indicating that the strains could be well separated. The next
section briefly describes the eight classified groups.
Group 1 (ST#1): The C. glutamicum type strain

ATCC13032 is a member of this group. MB001 is a
prophage-free variant of ATCC13032 with a 6% re-
duced genome [14]. Consistently, it has the same ST
with ATCC13032.
Group 2 (ST#2): ‘B. lactofermentum’ ATCC13869 rep-

resents an independent ST, as expected.
Group 3 (ST#3): ‘C. acetoacidophilum’ ATCC13870

also represents an independent ST.
Group 4 (ST#4 and #5): Although ‘B. flavum’

ATCC14067 and its derived strain ATCC21493 [13]
contain different STs, in fact, there is only 1-bp differ-
ence (in odhA, resulting in Ala701Thr) among the
seven analyzed genes. So, the classification is correct.
Group 5 (ST#6): C. glutamicum R [15] represents an

independent ST.
Group 6 (ST#7): ‘C. pekinense’ AS1.299 and its derived

strain AS1.563 [9,10] contain the same ST and were
consequently classified into the same group.
Group 7 (ST#8): C. glutamicum 617 (SIIM B1) also

represents an independent ST.
Group 8 (ST#9 and #10): Several ‘B. tianjinese’ and ‘C.

crenatum’ strains, including both ‘wild-type’ strains
[11,12,19] and derived strains [12,17,20], represent the
same ST (ST#9), so they are categorized in this group.
The strain ‘C. crenatum’ MT also fall into the group.
It has a different ST (ST#10) from ‘wild-type’ strain
AS1.542 with only one different locus.
Taken together, the MLST results reveal a correct

typing of the related strains. We also tested a commer-
cially obtained crude lysine sample and several amino
acid-producing strains preserved in our laboratory.
The crude lysine sample represented a MLST result
same to 13032, so it would be produced by an ATCC
13032-derived strain. Three lysine-producing strains
fall into group 1 (ST#1), group 2 (ST#2), and group 6
(ST#7), separately. A proline-producing strain falls into
group 3 (ST#3). These results suggest that the eight
groups defined in this study could encompass most of the
amino acid-producing strains for laboratory use.
The aim of this work was to expand the MLST

method to C. glutamicum and develop an efficient
technique to discriminate strains of uncertain origin.
After a long-term preservation, activation, and fermen-
tation, parental information of the amino acid-
producing strains is easily confused. The MLST
scheme developed in our study addresses the problem

http://pubmlst.org/
http://pubmlst.org/


Table 1 Details and allelic profile of the strains used in this study

ST Group Strains Synonym Descriptions Genome sequencea Allelic profile

atpA dnaE dnaK fusA leuA odhA rpoB

ATCC13032 C. glutamicum type strain NC_003450, NC_006958

1 1 MB001 Prophage-free variant of ATCC 13032 with a 6% reduced genome NC_022040 1 1 1 1 1 1 1

Crude sample A crude lysine sample, commercially obtained

2 2 ATCC13869 B. lactofermentum ‘Wild-type B. lactofermentum’ 1 2 2 4 2 4 4

3 3 ATCC13870 C. acetoacidophilum ‘Wild-type C. acetoacidophilum’ 4 6 5 5 6 1 1

4 4 ATCC14067 B. flavum J. Bacteriol. 194 (3), 742-743 (2012) AGQQ01000000 3 2 4 6 2 2 2

5 4 ATCC21493 B. flavum Producing arginine, derived from ATCC 14067 (SIIM B234) 3 2 4 6 2 5 2

6 5 R C. glutamicum isolated in Japan from a meadow soil sample NC_009342 5 3 7 3 3 2 1

7 6 AS1.299 C. pekinense ‘Wild-type C. pekinense,’ producing glutamate (=CICC 10119, SIIM B3) 2 5 3 5 4 3 3

AS1.563 C. pekinense (=CICC 10178, SIIM B165) producing lysine, derived from AS1.299

8 7 617 A glutamate-producing strain previously used in China
(=CICC 10117, SIIM B1)

1 2 4 7 7 3 2

T6-13 B. tianjinese ‘Wild-type B. tianjinese’ (=CICC 20182, SIIM B226)

SCgG1 Hyper-producing glutamate NC_021351

9 8 SCgG2 Hyper-producing glutamate NC_021352 5 4 6 2 5 3 1

S9114 A strain for industrial production of glutamate AFYA01000000

Z188 Hyper-producing glutamate AKXP01000000

AS1.542 C. crenatum ‘Wild-type C. crenatum’ (=CICC10124, SIIM B6)

10 8 MT C. crenatum A mutant of AS1.542 AQPS01000000 6 4 6 2 5 3 1
aDDBJ/EMBL/GenBank accession number.
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Figure 1 Dendrogram analysis of Corynebacterium glutamicum
from allelic profile data. The dendrogram was generated with
the UPGMA (unweighted pair group method with arithmetic
mean) method based on the internal fragments of 7 housekeeping
genes of the 17 strains. ATCC13032 and MB001, ATCC14067 and
ATCC21493, and AS1.299 and AS1.563 were classified into the same
groups, respectively. Several ‘B. tianjinese’ and ‘C. crenatum’ strains,
including AS1.542, T6-13, S9114, etc., were also classified into the
same group. Each of the other strains falls into an independent
group separately.

Table 2 Primer sequence and characteristics of the seven loci used in MLST

Gene primer Sequence (5′-3′) Amplicon
size (bp)

Amplicon bps (from-to)
in NC_006958.1

Allele
size (bp)

Number of
distinct alleles

Number of
polymorphic sites

atpA atpA_F ATGTACCAGGGCAACCAC 390 1277256-1277645 240 6 13

atpA_R GGCAACCTTCTTCATACC

dnaE dnaE_F GGCGAAGGATATTCCGTTG 366 2220485-2220120 225 6 23

dnaE_R ACTTCCCCATCGCGGTTG

dnaK dnaK_F CACCTCACAGGAAATCTC 397 2959446-2959050 243 7 17

dnaK_R GGACTGGAACTTCTCTAC

fusA fusA_F CAAGGCAGCTATCCGTAAGATG 402 524614-525015 237 7 11

fusA_R ATGTTACCAGCGTGTGCAACC

leuA leuA_F CTGGTTCAGGCTCGTGAGCA 318 267591-267274 150 7 26

leuA_R GATCATTGGGTTCTCAGGA

odhA odhA_F CTTTGGCTGGGTCATGGAAGG 327 1175355-1175681 186 5 5

odhA_R CTGGGCATCGTGCCAGAAAC

rpoB rpoB_F TATGTGACCGCGGAGTTC 357 513278-513634 165 4 5

rpoB_R GAAACGCTCGGTGATCTG
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and proved to be an efficient way to distinguish them.
According to our results, three glutamate-producing
strains mentioned above (SCgG1, SCgG2, and Z188)
would derive from T6-13 or AS1.542. Their common
genetic origin serves a firm premise for downstream
comparative genomic analysis to compare parental
strains and their offsprings. According to our MLST
result, a lysine-producing strain CICC20042 was
found to show ST#9 (including T6-13, S9114,
AS1.542, etc.) (detailed data not shown). But accord-
ing to the CICC database, CICC20042 is derived from
AS1.563 (ST#7, including AS1.299 and AS1.563). This
suggests that confusion about the parental informa-
tion might have happened.
Several strains previously regarded as Brevibacterium

and Corynebacterium species had been classified to C.
glutamicum [3,4]. Our analysis extends the conclusion
and proposes that C. glutamicum should also contain
several C. pekinense, B. tianjinese, and C. crenatum
strains. The ‘wild-type’ strains of B. tianjinese and C.
crenatum exhibit the same ST. Both of them are highly
sensitive to specific phages [6], supporting a close
relationship of these strains. A brief comparative gen-
omic analysis of S9114 ([GenBank:AFYA01000000],
derived from B. tianjinese T6-13) and ‘C. crenatum’ MT
[GenBank:AQPS01000000] discovered only hundreds
of SNPs and InDels (unpublished data). Some of these
SNPs and InDels may be responsible for the high
glutamate yield. Further genomic analyses should be
conducted in a broad range of C. glutamicum strains,
especially the parental wild-type strains, to reveal details
of their relationships as well as mechanisms for amino
acid hyper-production.
Conclusions
This work has expanded the MLST method to C. glutami-
cum and developed an efficient technique to discriminate
strains of uncertain origin.
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Additional file

Additional file 1: Supplementary material. Figure S1. PCR fragments
of seven genes: atpA 390 bp, dnaE 366 bp, dnaK 397 bp, fusA 402 bp,
rpoB 357 bp, leuA 318 bp, and odhA 327 bp. Dataset S1. PCR fragment
sequences of seven genes. Dataset S2. Allele sequences of seven genes.
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