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Current status and future perspectives of kinetic
modeling for the cell metabolism with
incorporation of the metabolic regulation
mechanism
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Abstract

It becomes more and more important to develop appropriate models for the efficient design of the cell factory for
microbial biofuels and biochemical productions, since the appropriate model can predict the effect of culture
environment and/or the specific pathway genes knockout on the growth characteristics. Among various modeling
approaches, kinetic modeling is promising in the sense of realizing the essential feature of metabolic regulation.
A brief overview is given for the current status of the kinetic modeling of the cell metabolism from the point of
view of metabolic regulation focusing on Escherichia coli (but not limited to E. coli). For the proper modeling,
it is important to realize the systems behavior by integrating different levels of information to understand and
unravel the underlying principles of the living organisms, namely, it is important to properly understand how
the environmental stimuli are detected by the cell, how those are transduced, and how the cell metabolism is
regulated, and to express these into the model. In particular, it is important to incorporate the enzymatic
regulations of Pyk, Pfk, and Ppc by fructose-1,6-bisphosphate (FBP), phosphoenol pyruvate (PEP), and acetyl-coenzyme
A (AcCoA) to realize the flux-sensing and homeostatic behavior. The proper modeling for phosphotransferase system
(PTS) and the transcriptional regulation by cAMP-Crp and Cra is also important to simulate the main metabolism in
relation to catabolite regulation. The coordinated regulation between catabolic and anabolic (nitrogen source-assimilation)
metabolisms may be simulated by the behavior of keto acid such as α-ketoglutarate (αKG). The metabolism under
micro-aerobic conditions may be made by incorporating the global regulators such as ArcA/B and Fnr. It is quite
important to develop quantitative kinetic models, which incorporate enzyme level and gene level regulations from the
biological science and metabolic engineering points of view.
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Introduction
Microbial production of biofuels and biochemicals from
renewable resources or biomass has been paid recent
attention from global sustainability and environmental
protection points of view, and many attempts have been
made for the cell design by metabolic engineering ap-
proach. However, the practical application is limited in
many cases, and more innovative design of cell factories
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reproduction in any medium, provided the orig
is desired [1]. On the other hand, significant progress
has been made on molecular biology from the reduc-
tionist point of view. However, the molecular knowledge
alone is in many cases not sufficient to understand the
cell system's behavior, where the system's behavior emerges
from the interactions between the characterized molecules
[2]. Thus, the systems biology approach has been paid re-
cent attention in the post genome era. The ultimate goal of
systems biology is to reconstruct a cell system into the
computer which can predict observable phenotypes. If this
could be attained, the effects of culture environment and/
or the specific genetic mutation on the metabolism can be
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predicted without conducting many exhaustive experi-
ments, and metabolic engineering may be made more effi-
cient with verification by the experiment for the selected
mutants in the optimized condition based on the computer
simulation. Thus, the appropriate model can contribute for
the efficient design of cell factories from the practical appli-
cation point of view.
It is quite important to quantitatively understand the

complex and highly interrelated cellular behavior from
biological science and metabolic engineering points of
view. This may be attained with the help of informatics
and systems biology by integrating different levels of
ever increasing data with deep insight into the available
data by biological knowledge [2-4].
In living organisms, metabolic network, defined as the

set and topology of metabolic biochemical reactions in
a cell, plays an essential role for the cell to survive,
where it is under well-organized control. Thousands of
different biochemical reactions as well as transport pro-
cesses are linked together to break down organic com-
pounds to generate energy (catabolism) and to synthesize
macromolecular compounds (anabolism) for the cell syn-
thesis. Similarly, complex signaling networks interconvert
signals or stimuli that are important for the cellular
function and interactions with the environment. This
implies the importance of the transfer of information in
signal transduction pathways and cascades designed to
maximize the efficiency for cellular responses to envir-
onmental perturbations.
In order to understand the cell system in response to

culture environment, the coupling between the recogni-
tion or sensing of the environmental condition and ad-
justment of the metabolic system must be properly
incorporated into the model. In particular, it is import-
ant to incorporate the coupling between enzymatic reac-
tions and the transcriptional regulation [5]. Moreover,
although local regulation mechanisms are known to
exist, it is not clear how those local regulation systems
are coordinated on the systems level, where this may be
made by ‘distributed sensing of the intracellular meta-
bolic fluxes’ [5].
In the present article, current status of kinetic modeling

is overviewed from the point of view of proper modeling
with incorporation of metabolic regulation mechanism.
Metabolic regulation analysis is critical for the proper
modeling and has to be made in evaluating the perform-
ance of the designed cell as well as for reengineering the
cell factories [6]. In bacterial adaptation to the culture en-
vironment, the global regulators detect the change in cul-
ture environment and control the metabolic pathway
genes [7-9]. Here, the modeling of the metabolic regula-
tion is considered focusing on Escherichia coli (but not
limited to E. coli) based on the kinetic modeling approach
with consideration of metabolic regulation.
Basic modeling approach
A variety of models have been proposed in the past,
where they are discriminated from others depending on
the underlying assumptions for the modeling, the data
they require, and the accuracy of the model prediction
[10]. The types of modeling formalism depend on such
characteristics [11].
The model development may start with considering

the network structure with kinetic rate expressions,
model structure, parameter identification, and model
validation, which may differ depending on the purpose
of using a model [12]. It must be careful that the deter-
mination of kinetic rate expression is not straightforward
due to the difficulty in identifying the mechanisms of en-
zymes and transporters [13], and therefore, some appro-
priate model simplification may be considered. Although
parameter identification, sensitivity analysis, identifiabil-
ity, experimental design, and optimization are important
for the modeling in practice [12,14,15], here, we rather
focus on the kinetic modeling with consideration of
metabolic regulation.

Metabolic flux analysis
Among different levels of information, the metabolic
fluxes are located on top of those, and it is the most im-
portant information from the phenotypic fermentation
point of view [16-18], and it can be used for the analysis
of the specific pathway gene knockout on the metabol-
ism [19,20]. 13C-metabolic flux analysis (13C-MFA) has
been shown to be useful for the metabolic regulation
analysis [16,19-23]. However, this is essentially the ana-
lysis method for the physiological state of the organism
based on mass balance together with isotopomer bal-
ance, and it does not have the predictability. It is highly
desirable and useful to be able to predict the cell growth
characteristics and the metabolic changes in response to
the change in culture environment and/or the specific
pathway mutation.

Flux balance analysis and its extensions
Flux balance analysis (FBA) and its extension to genome
scale has made significant progress as it requires only
basic knowledge of the metabolic reaction stoichiometry
and has a reasonably accurate predictability. Significant ef-
forts have also been made to integrate gene level regula-
tion and metabolic networks to reveal the regulation
mechanism [24,25]. In such approach, however, some ap-
propriate objective functions such as the maximization of
the cell growth rate, the specific substrate consumption
rate, and/or the metabolite production rate must be intro-
duced due to excess degrees of freedom. It was, however,
shown that no single objective function can accurately
represent the flux data for the different culture condition
[26]. Rather, a vector-valued objective function or multiple
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objective functions must be considered, resulting in the
Pareto optimal set to represent the metabolic fluxes [27],
where the influential objective function may be the max-
imum ATP yield, maximum biomass yield, and minimum
sum of absolute fluxes (which corresponds to minimum
enzyme investment).
The formulation may be as follows:

maxJ ¼ j1; j2;…; jk
� �T ð1aÞ

Subject to:

Xn
j¼1

Sijvj ¼ 0 i ¼ 1; 2;…;mð Þ ð1bÞ

where ji is the ith objective function, Sij is the stoichio-
metric coefficient, and vj is the flux. However, it is
not easy to determine the optimal point on the Pareto
optimal set in practice depending on the variety of cul-
ture conditions.
FBA approach together with MFA information may be

considered for the metabolic engineering purpose such
as OptKnock [28], a bi-level programming framework
for identifying gene knockout for the strain improve-
ment. This has been extended as OptReg to consider not
only knockouts but also overexpression and downregula-
tions of various reactions in the network [29]. Another
extension has also been made as OptForce [30], OptFlux
[31], and differential bees FBA (DFFBA) with OptKnock
to identify the optimal gene knockout strategies for
maximizing the yield of the desired phenotypes while
sustaining the growth rate [32]. Further extension has
been made as OptStrain aiming at guiding pathway
modifications, through reaction additions and deletions,
of microbial networks for the overproduction of targeted
compounds based on stoichiometrically balanced ap-
proach imposing maximum product yield requirements,
pinpointing the optimal substrates, and evaluating the
different microbial hosts such as Helicobacter pylori,
E. coli, S. cerevisiae, and other microorganisms [33].
Stoichiometry-based strain design algorithms are often

formulated as bi-level mixed integer linear programming
problems [28-30,34,35], where outer level optimizes the
objective function(s), while the inner level optimizes the
cellular system that counteract any externally imposed
genetic or environmental perturbations [36,37]. Different
fitness functions may be considered [38,39].
The linear property of stoichiometric equations under-

lying FBA is the computational advantage and allows for
genome-scale extension. However, it is not easy to con-
firm the designed cell metabolism in view of enzymatic
reactions with intracellular metabolite concentrations.
The problem in FBA and its extension to genome-scale

is the difficulty for the dynamic analysis as compared to
kinetic modeling approach. Some extension has been
made by incorporating kinetic expressions of multiple car-
bon sources and other nutrients into the quasi steady-
state [40-42]. The dynamic multi-species metabolic
modeling (DMMM) approach has been considered by in-
corporating the metabolite uptake kinetics into stoichio-
metric models of a microbial consortium [43,44]. On the
other hand, steady-state flux distributions obtained from
FBA and stoichiometric information have been used to
parameterize genome-scale kinetic models applicable for
small perturbations [45-48]. Lin-log kinetic expression
and thermodynamics may be incorporated to constrain
FBA simulation [49].
Although some attempts have been made by the hybrid

type of stoichiometric/kinetics-based modeling approach
[45,50,51], its potential may not be fully investigated. The
dynamic flux balance analysis (dFBA) may be considered
for diauxic growth of E. coli consuming glucose and acet-
ate by taking into account the constraints that govern the
cell growth at different phases in the batch culture [52].
Moreover, dFBA may be used for the co-culture with mul-
tiple sugars for the cellulosic biofuels production [53-55].
Recently, OptForce formalism has been extended as k-
OptForce by bridging the gap between stoichiometric ap-
proach and kinetics-based approach, where the procedure
seamlessly integrates the mechanistic detail given by kin-
etic models within a constraint-optimization framework
tractable for genome-scale models [56].
The proper formulation for the interaction between

the metabolism and gene expression by applying the
principle of growth optimization enables the accurate
prediction of multi-scale phenotypes [25], where consti-
tutively expressed genes show growth-rate-dependent
expression trends [57,58]. This implies the economic
ways of the cell system that is regulated in response to
global change in metabolic efficiency [59]. Moreover,
such optimality model may be used for the adaptive la-
boratory evolution [60].
The construction of a virtual microbe will be an ambi-

tious but realistic target that builds a novel resource that
can provide significant benefits in the variety of practical
applications. As an extension of the constraint-based
genome-scale models [61], a whole cell computational
model was developed for Mycoplasma genitalium, a uro-
genital parasite adored by synthetic biologists for its re-
duced genome [62]. This model constitutes 28 processes
of the cell's operation, where these include processes
that track exchanges with the extracellular medium, all
the metabolic fluxes, the state of the supercoiled
chromosome, transcription of all active genes, process-
ing of all mRNAs, translation of all proteins, formation
of all macromolecular complexes including RNA poly-
merases and ribosomes, and progresses of cytokinesis
and FtsZ polymerization [63]. This may be the dawn of
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virtual cell biology [64], and this might even go beyond
the previous attempt of the so-called ‘a grand challenge
of the twenty-first century’ [65].
Once again, although powerful and attractive for the

possible extension to the whole cell modeling or the so-
called virtual microbes, the main drawback of the above
approach is the difficulty in incorporating ‘explicitly’ the
metabolic regulation mechanism.

Kinetic modeling and incorporation of metabolic
regulation
Kinetic models for the metabolism require quantitative
expressions that connect fluxes and metabolite concen-
trations. Those can be obtained with respect to time by
solving a set of ordinary differential equations (ODEs)
such as:

dxi
dt

¼
Xni
j¼1

Sijvj vj
max; x; p

� �
i ¼ 1;…;mð Þ ð2aÞ

where the typical mechanistic expression may be the
Michaelis-Menten type such as:

vj ¼ vjmaxS

Ks þ S
ð2bÞ

or Hill type expression may be considered, where vj
max and

Ks are the model parameters, and S is the substrate con-
centration for the corresponding pathway reaction. These
expressions require detailed enzyme reaction mechanism
and characterization [66,67]. In order to reduce the com-
putational burden in association with kinetic modeling,
various approximate kinetic forms such as lin-log [68-70]
and log-lin [71] kinetics, power-law kinetic expressions
such as S-system [72], generalized mass action [45], and
others [73-75] have been proposed.
As mentioned in the previous section, although the

stoichiometric constraint-based genome-scale metabolic
models have been developed for a variety of organisms
[76], it is not easy to incorporate or express the effects
of intracellular metabolites and enzyme activities appro-
priately with such approach. Although some attempts
have been made for incorporating transcriptional regula-
tion into FBA framework in the form of Boolean rules
[77-80], the regulatory rules are not based on the meta-
bolic regulation mechanisms, but on the basis of the
available data which may be the manifestation of part or
snapshot of the real regulation mechanism [81].
In contrast to the stoichiometric models, the kinetic

modeling approach is attractive in the sense that such
mechanism can be incorporated into the model appro-
priately. The primary attempts of incorporating the
regulation mechanisms into kinetic models have been
made by cybernetic modeling approach, where the or-
ganisms are considered to utilize the available nutrient
sources with the maximum efficiency by the optimal
strategy [82]. This approach has been extended to more
structural models that contain detailed pathways [83].
More recently, this approach has been considered for the
potential applications to metabolic engineering [84,85]. In
such modeling approach, an elementary mode was con-
sidered as a metabolic subunit to model cellular regula-
tory processes, where the elementary modes are a set of
metabolic pathways by which the cellular metabolic
routes can be completely described, and any feasible
fluxes can be represented by their combinations at
steady state [86]. The elementary modes consist of a
minimal set of reactions that function at steady state,
which implies that the elementary mode cannot be a
functional unit if any reaction is removed [86]. The hy-
brid type modeling has also been developed by assum-
ing quasi-steady-state for the intracellular metabolites
[87,88], where several applications were made for E. coli
[88] and for yeast [81].
In the kinetic modeling approach, it is critical to

identify kinetic parameter values and kinetic rate laws
applicable to a variety of genetic and/or environmental
perturbations. Moreover, the large-scale extension may
be limited by considering unambiguous kinetic model
parameterization [89]. Several attempts have been made
towards postulating a generalized uniform kinetic ex-
pression such as approximate enzyme kinetic equations
[68,73,90-93], S-system formalism [94,95], or a combin-
ation of in vitro-based lumped and approximate rate
equations [96,97]. However, the predictability may not
be the satisfied level [68,75].
Recently, the ensemble modeling (EM) has been con-

sidered to cope with large-scale kinetic modeling by suc-
cessively reducing the size of parameter space based on
the available experimental data such as fluxes and/or
intracellular metabolite concentrations together with
thermodynamic constraints for the direction of the net
fluxes [98]. In EM approach, any type of pathway reac-
tion mechanism can be considered as well as already
known mechanism, where each reaction is decomposed
into elementary reaction steps with mass action kinetics
[99] such as:

Aþ E ⇔
k1

k−1
AE ⇔

k2

k−2
BE ⇔

k3

k−3
Bþ E ð3Þ

where A and B are the metabolites and E is the enzyme.
The EM procedure starts with initially assumed kinetic

models that predict the experimentally observed pheno-
typic characteristics, and the additional data such as
those of the strain under environmental and/or genetic
perturbations are used to screen the models until a min-
imal set of kinetic models are obtained [99]. This model-
ing approach has been successfully applied for lysine
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production [100], fatty acid production [101], aromatic
production [98], robustness analysis for engineered non-
native pathways [102], and modeling cancer cells [103].
Moreover, this approach has been applied for the model-
ing of E. coli that reasonably predicts the fluxes and
intracellular metabolite concentrations of wild type and
its single gene knockout mutants [104] based on the
available multi-omics data [105].

Modeling of the main metabolism for catabolite
regulation
The metabolic reactions of the central metabolism play
important roles for energy generation and the produc-
tion of the precursors for biosynthesis, and those form
the hub on which all nearly catabolic and anabolic pro-
cesses are built. Metabolic regulation of the central me-
tabolism plays a key role in the adaptation of organisms
to changes in their environment. The overall structure
of central metabolic pathways is remarkably well con-
served in the living organisms. Thus, the metabolic
model of the central metabolism will provide a platform
for further extension to peripheral metabolism and
incorporation.
An attempt has been made for the modeling of the

main metabolic pathways to simulate the dynamic be-
havior of Saccharomyces cerevisiae in response to the
pulse addition of the carbon limited growth condition
and measurement by fast sampling system [106,107].
The kinetic model equations for the glycolysis and pen-
tose phosphate (PP) pathway have been developed for
E. coli to simulate the transient data obtained by the fast
sampling system [108]. The kinetic models for the tri-
carboxylic acid (TCA) cycle and anaplerotic pathways
as well as glycolysis and PP pathway were also consid-
ered to simulate the typical batch and continuous cul-
tures with some rule-based approach, where the cell
growth rate was estimated based on the specific ATP
production rate computed from the fluxes [109]. The
kinetic modeling for the main metabolism of E. coli has
also been made based on fluxomics and metabolomics
data [110].
A wealth of information is available on genetic regula-

tion, biochemistry, and physiology of cellular metabolism
in response to culture environment, and some attempt
has been made for the modeling and simulation, where
it is important to make modeling based on the inte-
grated information from gene level to flux level by in-
corporating the roles of transcription factors [5,111,112].
The important steps are how to incorporate (i) the effect
of culture environment on global regulators, (ii) the ef-
fects of global regulators on the metabolic pathway
genes, (iii) the effects of metabolic pathway genes on the
corresponding enzyme activities, as well as (iv) the ef-
fects of enzyme level regulations (Figure 1).
Importance of the modeling for the main metabolic
pathways
Although the modeling of the restricted metabolic path-
ways such as glycolysis only or glycolysis plus PP pathway,
etc. may be useful depending on the purpose of using the
model such as short-time transient responses against pulse
addition of substrate, it is by far important to model the
whole main metabolic pathways such as glycolysis, TCA
cycle, PP pathway, together with anaplerotic and gluco-
neogenic pathways. This enables us to simulate the typical
batch culture, where the metabolic transition occurs from
glucose-rich (glycolysis) condition to acetate-rich (gluco-
neogenic) condition in E. coli and others.
In relation to the model development of the main me-

tabolism, the accurate estimation of the cell growth rate
is critical for the practical application point of view. In
general, the cell growth rate may be expressed as a func-
tion of substrate such as Monod type model:

dX
dt

¼ μ Sð ÞX ð4aÞ

with:

μ Sð Þ ¼ μmS
Ks þ S

ð4bÞ

where X and S are the cell and substrate concentrations,
and μ is the specific cell growth rate. However, the satur-
ation constant Ks is small, and the dynamics depend on
the maximum specific growth rate parameter μm which
is usually constant, resulting in the difficulty in estimat-
ing the reasonable cell growth rate by Monod type
model and its modification. The importance of accurate
estimation of the cell growth rate is more eminent for
the dynamic simulation of the specific gene knockout
mutants and for the effect of culture condition. Thus, it
is desirable to be able to accurately predict the cell
growth rate in general.
The cell growth rate is determined by the catabolic re-

actions such as ATP production as well as anabolic reac-
tions under typical growth conditions. Once the main
metabolic pathways could be appropriately modeled, the
ATP production rate can be estimated. The model equa-
tions are established by the mass balance with kinetic
equations for the main metabolic pathways (Figure 2).
The solution to such ODEs can be used to compute the
fluxes with respect to time. This enables us to compute
the specific ATP production rate with respect to time
such as:

νATP ¼ OPNADH þ OPFADH2 þ vPgk þ vPyk þ vAck
þvSCS−vPfk−vPck−vAcs

ð5Þ

where v is the reaction rate of the pathway (Figure 2).
OPNADH and OPFADH2 are the specific ATP production



Figure 1 Overall metabolic regulation scheme.

Matsuoka and Shimizu Bioresources and Bioprocessing  (2015) 2:4 Page 6 of 19
rate via oxidative phosphorylation by NADH and FADH2,
respectively, and those may be expressed as:

OPNADH ¼ vGAPDH þ vPDH þ vKGDH þvICDHð Þ þ vMDHð Þ � P=Oð Þ
ð6aÞ

OPFADH2 ¼ vSDH � P=Oð Þ0 ð6bÞ
where (P/O) and (P/O)' are the P/O ratios for NADH
and FADH2, respectively, and those are most likely to be
2.5 and 1.5, respectively, under typical aerobic condition.
Those may be considered as model parameters and can
be adjusted by the experimental data [109].
Now, 13C-MFA shows the correlation between the spe-

cific ATP production rate and the specific cell growth
rate [109,113-115]. This indicates that the above νATP
can be used to estimate the specific growth rate, and in
fact, it was shown that this approach allows us to esti-
mate the cell growth rate and fluxes of the specific gene
knockout mutant for E. coli to some extent [109,112].
In particular, in the case of anaerobic fermentation,

NADH re-oxidation and substrate level phosphorylation
for ATP generation are important, and ATP generation
by acetate kinase (Ack) pathway is critical for survival in
the case of using only xylose as a carbon source [116].
This may be simulated by the model with the cell
growth rate taking into account the effect of ATP pro-
duction rate as mentioned above.
Moreover, if the main metabolism was appropriately

modeled, the specific CO2 production rate can be also
estimated by:

νCO2 ¼ vPGDH þ vPDH þ vICDH þ vKGDH þ vMez

þvPck−vPpc

ð7Þ

where this can be used to estimate CO2 evolution rate
(CER), and thus the cell yield may be estimated together
with other metabolite production rates and the cell
growth rate. Since CER can be measured in practice, this
may be also validated by the experimental data.
In relation to NADH production as mentioned above,

the specific NADPH production rate can be also esti-
mated as:

νNADPH ¼ vG6PDH þ vPGDH þvICDHð Þ þ vMez ð8Þ

where NADH is produced in many bacteria, while some
bacteria such as E. coli produce NADPH at isocitrate de-
hydrogenase (ICDH). It has also been observed that the
specific NADPH production rate is linearly correlated
with the specific growth rate from the point of view of
anabolism. This means that the flux from G6P to the
oxidative PP pathway can be estimated as far as the oxi-
dative PP pathway is dominant for NADPH production,
once the specific growth rate was determined from the
catabolic ATP production rate [109].

Metabolic regulation mechanisms to be incorporated in
the kinetic model
As mentioned in the ‘Kinetic modeling and incorpor-
ation of metabolic regulation’ section, several efforts
have been made for the appropriate kinetic models
which can describe the metabolic regulation in response
to genetic and/or environmental perturbations. Here, we
consider the metabolic regulation mechanisms that have
to be incorporated into the kinetic models, where the
enzyme level regulation such as allosteric regulation may
be incorporated into the kinetic rate expression, while
the transcriptional regulation may be expressed as func-
tions of transcription factors (TFs), where the activities
of TFs may be considered to be functions of intracellular
metabolites as will be mentioned next.



Figure 2 Main metabolic pathways.
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The cell system achieves the coupling between recog-
nition and adjustment through TFs, whose activities re-
spond to the culture environment, and regulate the
expression of the associated genes. This combined rec-
ognition and adjustment forms the reaction networks
that overarch the metabolic and genetic layers [5]. In
general, fast action is made by the enzyme level regula-
tion such as the feed-forward activation of pyruvate kin-
ase (Pyk) by fructose 1,6-bisphosphate (FBP), and the
feedback inhibition of phosphofruct kinase (Pfk) by
phosphoenol pyruvate (PEP), a motif that enables a high
level of the upstream metabolite to lower the level of the
downstream metabolite [117] (Figure 3a). The slow action
is made through the transcriptional regulation, where
cAMP-Crp activates the expression of TCA cycle genes,
while (FBP-inhibited) catabolite repressor/activator, Cra
activates the expression of gluconeogenic pathway genes
as well as some of the TCA cycle genes and the glyoxylate



Figure 3 Metabolic regulation of the main metabolism. (a)
Enzyme level regulation of glycolysis. (b) Transcriptional and enzyme
level regulations of the main metabolic pathways.
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pathway genes, and represses the expression of the gly-
colysis genes in the case of E. coli (Figure 3b), which will
be explained later.
The levels of the flux-signaling metabolites become

coupled, enabling a robust, coherent response of the
TFs. The coherent behavior of the overall system is not
established by a common transcriptional master regula-
tor, but arises from the molecular interactions within the
system itself [5]. It may be considered that the system of
reactions of the lower glycolysis and the feed-forward
activation of Pyk by FBP translate flux information into
the concentration of FBP, and that this feed-forward ac-
tivation affects the linearization of the glycolytic kinetics,
where the glycolysis from FBP to PEP may be expressed
as the reversible Michaelis-Menten (MM) equation,
while Pyk may be expressed as the irreversible MM
equation [118] such as:

v→FBP⇔
k1

k−1
PEP�!Pyk PYR ð9Þ

where feed-forward activation of FBP on Pyk may be
expressed by Monod-Wyman-Changeux (MWC) kinet-
ics [118]. In fact, feed-forward regulation has been
known to ensure the structural robustness against per-
turbations [117]. This mechanism may be conserved in
many organisms. For example, in S. cerevisiae, sugar up-
take rate is well correlated with the respiratory and fer-
mentative pathways, or the specific ethanol production
rate, and the similar relationship may be seen between
the glycolytic flux and FBP [119,120], where Pyk is also
feed-forward activation by FBP in S. cerevisiae [121].
In order to realize the above mechanism, the kinetic ex-

pression of Pyk (and also phosphoenolpyruvate carboxylase
(Ppc)) must be a positive function of FBP such as:

vPyk ¼ vPyk PEP½ �; PYR½ �; FBP½ �; pPyk
� �

ð10Þ

where [・] denotes the concentration, and PEP and pyru-
vate (PYR) are the substrate and product of Pyk reaction,
respectively. FBP is the allosteric activator, and pPyk is the
kinetic parameter vector for Pyk. The feed-forward activa-
tion of Pyk by FBP may be enhanced by the feedback in-
hibition of Pfk by PEP, where the kinetic expression for
Pfk must be a negative function with respect to PEP:

vPfk ¼ vPFk F6P½ �; FBP½ �; PEP½ �; pPfkð Þ ð11Þ

where F6P and FBP are the substrate and product of Pfk
reaction, respectively, while PEP is the allosteric inhibi-
tor, and pPfk is the parameter vector for Pfk reaction,
namely, if the sugar uptake rate or the upper glycolytic
flux were increased, FBP increases, and in turn allosteri-
cally activates Pyk, which decreases PEP concentration,
and the feedback inhibition of Pfk by PEP is relaxed
and causes further increase in the upper glycolytic flux
(Figure 3a). In the nominal growth condition, the feed-
back inhibition of Pfk by PEP may not be important, but
this may cause oscillatory behavior under certain condi-
tion [122].
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Moreover, the increased pyruvate goes down through
pyruvate dehydrogenase (PDH) to acetyl-coenzyme A
(AcCoA), where AcCoA becomes homeostatic, namely,
the increase in AcCoA activates Ppc reaction [123,124],
thus reducing the upcoming Pyk-PDH fluxes, increases
oxaloacetate (OAA), and activates citrate synthase (CS)
reaction, and therefore activating the outgoing flux from
AcCoA. In this way, AcCoA concentration decreases,
forming the feed-back regulation against the initial in-
crease in AcCoA (Figure 4). This mechanism can be re-
alized by expressing the Ppc activity as a positive
function of AcCoA as well as FBP such as:

vPpc ¼ vPpc PEP½ �; OAA½ �; FBP½ �; AcCoA½ �; pPpc
� �

ð12Þ

where PEP and OAA are the substrate and product of
Ppc reaction, respectively, and FBP and AcCoA are the
allosteric activators. In another view, this phenomenon
may be considered as the feed-forward regulation in the
sense that the repression of TCA cycle activity is de-
tected by the increase in AcCoA, which causes the acti-
vation of the anaplerotic Ppc pathway, and backs up the
precursor metabolite such as OAA since it is expected
to be decreased due to deactivated TCA cycle.
As the glucose uptake rate increases, the TCA cycle

flux tends to increase by the increased OAA and
AcCoA, and then NADH is overproduced. The accumu-
lated NADH inhibits CS and ICDH allosterically [125],
forming feedback regulation, and thus results in AcCoA
accumulation, which in turn causes acetate overflow me-
tabolism. This enzyme level regulation by NADH in the
TCA cycle can be verified by incorporating NADH
Figure 4 Homeostasis of AcCoA by the activation of Ppc.
oxidase (NOX) [126] or nicotinic acid [125], whereby ac-
tivating TCA cycle. This effect is more enhanced under
arcA mutant [127]. In the long run, the expression of
TCA cycle genes is eventually repressed by the tran-
scriptional regulation by cAMP-Crp toward steady state
as will be explained later. The inhibitory effect of NADH
on CS and ICDH may be expressed explicitly in the rate
equation, but the problem is that the estimation of
NADH/NAD+ pool is difficult without detailed proper
modeling of the respiratory chain, which is not easy at
this stage.
The typical growth condition changes from glucose-

rich to acetate-rich in the batch culture. This requires a
significant reorganization of the central metabolism
from glycolysis to gluconeogenesis. Although the mo-
lecular mechanism underlying the metabolic transition
from glucose to acetate has been extensively investigated
in E. coli [128], its dynamics have been poorly under-
stood. Since it is critical for the cell to efficiently and
quickly reprogram the metabolism under the changing en-
vironmental condition, the cell must have the elaborate
managing system.
The expression of the reaction rate for Ppc is the func-

tion of both FBP and AcCoA as mentioned above, which
then enables us to simulate the ultrasensitive regulation
of anapleurosis [129], namely, after glucose depletion,
FBP concentration decreases accordingly, where Ppc and
Pyk activities decrease in turn by the allosteric regula-
tion, and PEP consumption is almost completely turned
off. These make PEP concentration to be increased, and
this buildup of PEP is kept during certain period [114],
and this may serve to quickly uptake the glucose by PTS
if it becomes available again [129]. This mechanism is
important for the fed-batch culture compensated by
DO-stat or pH-stat, where carbon limitation often oc-
curs periodically, and the uptake of carbon source can
be made quickly and efficiently without delay. Such
phenomenon can be simulated by the model as men-
tioned above as compared to the case without feed-
forward regulation mechanism. This feed-forward regu-
lation mechanism is also important for the modeling
and simulation of lactic acid bacteria, where lactate de-
hydrogenase (LDH) as well as Pyk is also activated by
FBP, thus producing lactate quickly and lowering the pH
around the cell as soon as the glucose is available [130].
Although the kinetic model for lactic acid bacteria has
been developed previously [131], the above mechanism
is not incorporated, and thus the simulation result does
not properly reflect the real characteristics.
Moreover, after glucose depletion, FBP level drops,

and thus Ppc activity decreases, while PEP carboxykinase
(Pck) activity is activated by the activated Cra caused by
the decreased FBP. This reveals the mechanism of avoid-
ing the futile cycling caused by Ppc and Pck during
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gluconeogenic phase [129], where ATP generation be-
comes important. During the active glycolysis with enough
sugars available, this futile cycling occurs, and loses ATP
without efficient use for the compensation of the flexible
metabolic fluxes and the metabolic regulation [123]. This
may be simulated by the appropriate models taking into
account both enzymatic and transcriptional regulations.
Now, the enzyme level regulation in the glycolysis

made by Pyk and Pfk as well as FBP and PEP as men-
tioned above keeps increasing the substrate uptake rate,
where this makes the system unstable. This is counterba-
lanced by the transcriptional regulation by cAMP-Crp,
where cAMP level decreases due to the lower level of
phosphorylated EIIA (EIIA-P), and lower activity of ad-
enylate cyclase (Cya) at higher glucose consumption
rate. Since ptsG which encodes EIIBC of PTS is under
control of cAMP-Crp, the glucose uptake rate is re-
pressed by the lower level of cAMP-Crp (Figure 3b).
Thus, the transcriptional repression of PTS by cAMP-
Crp must be incorporated into the model to realize such
feedback regulation for the glucose uptake rate. The mo-
lecular mechanism for catabolite regulation has been il-
lustrated by several researchers [132-136], and the PTS
and catabolic regulation have been modeled by several
researchers [5,109,111,137].
Moreover, the TCA cycle is transcriptionally repressed

by the lower level of cAMP-Crp as the glucose con-
sumption rate was increased. In the continuous culture
(Chemostat), the effect of the cell growth rate or the di-
lution rate on the metabolism can be appropriately sim-
ulated for E. coli [112]. Namely, as the specific growth
rate was increased, FBP increases due to the increase in
the fluxes of the upper glycolysis and Cra decreases.
Moreover, PEP concentration decreases as the PTS flux
increases, since PEP is the co-substrate of PTS, and in
turn EIIA-P decreases, resulting in the decrease in Cya
activity and cAMP-Crp level. The decrease in cAMP-
Crp causes the repression of the TCA cycle, and acetate
overflow metabolism occurs as the specific growth rate
increases. The trend of the simulation result by reflect-
ing the above mechanism [112] is the similar as the ex-
perimental data [105] (Figure 5).
In E. coli, acetate is formed from AcCoA by Pta-Ack

and from pyruvate by pyruvate oxidase, Pox [128]. Acetate
can be metabolized to AcCoA either by the reversed reac-
tions of Pta-Ack or by acetyl-coenzyme A synthetase
(Acs). Acetate formation has been known to be due to
metabolic imbalance, where the rate of AcCoA formation
via glycolysis surpasses the capacity of the TCA cycle in E.
coli [138]. Pox and Acs may be expressed as functions of
the sigma factor (σ38) RpoS, but it may be difficult to pre-
dict the behavior of RpoS, while Acs may be expressed as
a function of cAMP-Crp, where Acs is activated by
cAMP-Crp during gluconeogenic phase [112].
Among intracellular metabolites, α-keto acid such as
αKG turns to be a master regulator for catabolite regula-
tion and co-ordination of different regulations [139].
Namely, when favored carbon source such as glucose
was depleted, αKG level fall, and cAMP increases to
stimulate other carbon catabolic machinery. Namely,
when preferred carbon source such as glucose is abun-
dant, the cell growth rate becomes higher with lower
cAMP level, while if it is scarce, the cell growth rate de-
clines with higher cAMP level. In particular, under nitro-
gen (N)-limitation, αKG accumulates due to decreased
activity of glutamate dehydrogenase (GDH) and inhibits
carbon assimilation, where there is less need for carbon-
catabolic enzymes, and more demand for those involved
in such nutrient assimilation. On the other hand, when
anabolic nutrient such as ammonia is in excess, αKG
concentration decreases due to activated GDH, produ-
cing glutamate (Glu) from αKG, cAMP level increases,
and carbon catabolic enzymes increases to accelerate
carbon assimilation. Namely, αKG coordinates the cata-
bolic (C)-regulation and N-regulation by inhibiting EI of
PTS [140] or cAMP via Cya [58,141]. Moreover, the
physiological function of cAMP signaling goes beyond
simply enabling hierarchical utilization of carbon sources
as will be mentioned later but also controls the function
of the proteome [139,142]. In order to model such
phenomenon, EI of PTS has to be expressed as the in-
hibition by αKG, or Cya has to be expressed as the in-
hibition by keto acids such as OAA and PYR as well as
αKG, where the modeling for nitrogen regulation will be
mentioned later.
In the case of biofuels production from cellulosic bio-

mass, the hydrolyzed biomass contains multiple sugars,
and those sugars are selectively assimilated with catabol-
ite repression depending on the type of microorganism
used [143,144]. The metabolic regulation differs depend-
ing on the carbon sources used.
Glycerol has been paid recent attention for the pro-

duction of biofuels and biochemicals, since it is a by-
product of the biodiesel production [145-149]. In E. coli,
glycerol is transported and phosphorylated to produce
dihydroxy acetone phosphate (DHAP) of the central me-
tabolism via the pathway encoded by glpF, glpK, and
glpD, where ATP (or in certain cases PEP) is used for
the phosphorylation at glycerol kinase (GlpK) reaction,
while NADH is produced at glycerol 3-phosphate de-
hydrogenase (G3PDH) reaction under aerobic condition
(Figure 6). These genes are under catabolic regulation by
cAMP-Crp, so that glycerol is assimilated after glucose
was depleted if glucose co-exists. NADH production at
G3PDH becomes important for the biofuels production
under anaerobic condition affecting NADH/NAD+ bal-
ance for dehydrogenase reactions. In the case of using
glycerol as a single carbon source, cAMP-Crp increases



Figure 5 Comparison of the simulation results (a-c) [112] and the experimental data (d-f) [105,113].
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due to the increase in the phosphorylated EIIAGlc, where
cAMP-Crp induces glpFKD genes. Since FBP concentra-
tion decreases in the case of using glycerol as a carbon
source, Cra is activated, and this together with upregula-
tion of cAMP-Crp causes pckA gene as well as TCA
cycle genes to be upregulated [150,151]. The kinetic ex-
pressions for the glycerol uptake pathways have been
proposed [152]. This together with the inclusion of PTS
and the transcriptional regulation as mentioned above
enables the simulation for the case of using multiple car-
bon sources such as glucose and glycerol. Moreover, the
enhancement of the TCA cycle caused by the increase in
cAMP-Crp can be also simulated in the case of using
glycerol as a single carbon source.



Figure 6 Glycerol-, fructose-, and xylose-assimilating pathways (a,b).
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In the case of using fructose, it is transported by
fructose-PTS, which has its own HPr-like protein do-
main called FPr. Namely, the phosphate of PEP is first
transferred to EI (as EI-P), but then this phosphate is
transferred to FPr instead of HPr, and in turn the phos-
phate is transferred via fructose specific EIIAFru and
EIIBCFru, and phosphorylates fructose, where phosphory-
lated fructose becomes fructose 1-phosphate (F1P) [153].
The fruBKA operon is under control of cAMP-Crp, and
thus glucose is preferentially consumed by glucose PTS
when glucose co-exists. On the other hand, this operon is
repressed by Cra [154]. Because of this, cra gene knockout
enables co-consumption of glucose and fructose with fruc-
tose to be consumed faster as compared to glucose [155],
where activated FruB in cra mutant competes with HPr
(for glucose phosphorylation) for the phosphate of EI-P.
Since phosphorylation of EIIAGlc via HPr becomes lower
[156], the glucose uptake rate decreases as compared to
the wild-type strain [155]. This phenomenon may be also
simulated by the similar expression as glucose-PTS but
compete the phosphate of EI with glucose-PTS (Figure 6).
In the case of using xylose as a carbon source, it is trans-

ported either by an ATP-dependent high affinity ABC
transporter encoded by xylFGH or ATP-independent low
affinity proton symporter encoded by xylE [157,158]. In
the case of xylose utilization, the transcription factor XylR
regulates xylAB/xylFGH [159], where xylR is under control
of cAMP-Crp, and then catabolite repression occurs when
glucose co-exists, where glucose is preferentially con-
sumed first. The kinetic model for xylose uptake pathways
as well as Entner-Doudoroff (ED) pathways has been pro-
posed for Zymomonas mobilis [160], and thus it is neces-
sary to incorporate the activation of the transporter by
cAMP-Crp, and this can be made for the catabolite re-
pression when co-exist with glucose [112] (Figure 6).

Modeling for the peripheral metabolism
Although it is critical to consider the main metabolism for
the metabolic regulation as well as for the cell growth rate,
the peripheral metabolic pathways become important for
the practical applications such as amino acids fermentation.
The kinetic model for lysine synthetic pathways from

OAA in the TCA cycle has been proposed [161], and this
can be used to apply sensitivity analysis such as metabolic
control analysis (MCA) to identify the limiting pathways
in Corynebacterium glutamicum [162]. This investigation
revealed that lysine production is primarily controlled by
aspartokinase (Ask) and lysine permease. This was verified
by the experiment using the recombinant strain overex-
pressing Ask, resulting in the significant increase in lysine
production, although that flux did not increase as much as
would be expected by MCA [162].
Shikimic acid production and aromatic amino acids pro-

duction may be also simulated based on the formation of
the precursor metabolites such as erythrose 4-phosphate
(E4P) and PEP in the central metabolism [111]. Other
amino acid fermentation may be also simulated using
dynamic metabolic models [111,137,163].

Modeling for the metabolism under oxygen
limitation
Most of the biofuels and biochemical productions by mi-
crobes is made by the fermentation under anaerobic
condition, and thus it is important to properly model
such fermentation as well as under aerobic condition,
where the latter is often employed for the enhancement
of the cell growth rate before anaerobic condition to im-
prove the productivity of the target metabolites.
Although the modeling and computer simulation of a

microbial cell cultivated under anaerobic condition such
as lactate fermentation [131], and acetone-butanol-
ethanol fermentation [164-166] has been proposed by
several researchers, the regulatory mechanisms are rarely
incorporated. Moreover, cofactor balance such as NADH
balance becomes important under anaerobic condition,
and thus it may be better to appropriately incorporate in
the model equations. However, this is not so easy with-
out proper modeling of the respiratory pathways under
different oxygen concentration.
In order to properly model the metabolic transition

from aerobic to anaerobic conditions, the roles of global
regulators such as ArcA/B and Fnr must be properly in-
corporated, where the effect of dissolved oxygen concen-
tration on the activation of such TFs has been reported
[167,168], and this may be taken into account for the
simulation under microaerobic conditions. In particular, it
is important to properly simulate the behavior at the
branch point of PYR, where the reaction rate through
PDH, νPDH must be the negative function of ArcA (or
phosphorylated ArcA, ArcA-P), while the reaction rate
through pyruvate formate lyase (Pfl), νPfl is the positive
function with respect to ArcA and Fnr, where PYR is con-
verted to formate (FOR) and AcCoA (Figure 7). More-
over, ethanol-forming pathway from AcCoA, alcohol
dehydrogenase (ADH) must be activated where NADH
is required for this reaction. As for TCA cycle, α-
ketoglutarate dehydrogenase (KGDH) may be repressed
by ArcA, while formate reductase (Frd) is activated by Fnr,
thus the TCA cycle will be branched under anaerobic con-
ditions. Some attempt has been made to estimate the
fluxes in relation to such global regulators [169].

Modeling for the nitrogen regulation
Next to carbon (C) catabolite regulation, the nitrogen (N)
regulation is also important [170], and the silicon-cell
models have been developed based on experimental kinetic
data for the enzymes, involved that predict the flux of as-
similation of extracellular ammonia into glutamate in E. coli.



Figure 7 Anoxic regulation of the metabolic pathways by ArcA and Fnr.
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Glutamate (Glu) and glutamine play key roles in cellular
metabolism and serve as precursors of protein synthesis.
Glutamate can be synthesized from two different pathways
such as by one simple step reaction catalyzed by glutamate
dehydrogenase (GDH) from αKG, and by glutamine syn-
thetase (GS) and glutamate synthase (GOGAT) [171]. GS
is active during low ammonium concentration while GDH
is active at higher ammonium concentrations, where GS
has a higher affinity than GDH for ammonia (Km = 0.1
and 1.1 mM, respectively) [172,173]. The activity of GS
was controlled by PII which acts in response to the con-
centration of glutamine and αKG [174,175]. AmtB is used
for NH3 for transport when the ammonia concentration is
lower than 0.05 μM [176], while the AmtB will be blocked
when it was higher than 50 μM.
The activation (adenylylation) and inactivation (deadeny-

lylation) of GS depends on C/N ratio such as αKG (C)-to-
glutamine (N) ratio. In the case where C/N ratio was
higher, GS will be adenylylated, otherwise, GS is deadenyly-
lated. Sensing of the C/N ratio for GS adenylylation in-
volves the protein PII, which is in two forms such as
urydylylated PI-UMP and deurydylylated PII. Urydylylation/
deurydylylation of PII catalyzed by UT/UR enzymes are
promoted by glutamine (Figure 8).
The model developed by Bruggeman et al. [173]

combined metabolic regulation with signal transduction
through the covalent modification of PII and GS by
urydylyl transferase (UTase) and adenylyl transferase
(ATase). It shows that the regulation is distributed between
the two modes of regulation. However, the model may be
incomplete in the sense that αKG pool size was assumed
to be constant, while it changes significantly during nitro-
gen perturbations, where it is not only the substrate for
ammonia assimilation but also a regulator of the GS cova-
lent modification cascade [177]. Moreover, it is important
to capture the interdependence of metabolite pools and
growth, where metabolite pool size of αKG affects the glu-
cose uptake by inhibiting EI of PTS [140].
In order to see the effect of ammonium assimilation, the

main metabolic pathway must be considered. This model
involves GDH, GS, and GOGAT pathways together with
nitrogen regulation mechanism. At present, several kinetic
models have been proposed for ammonium assimilation
[173,176,178], but little has been analyzed for the relation-
ship between cell growth rate and NADPH production
rate in relation to ammonium assimilation. Moreover, it is
strongly desirable to combine the models for catabolite
regulation and nitrogen regulation in order to simulate
the coordinated regulation between C- and N-regulations
via the dynamic behavior of intracellular metabolite αKG.

Conclusions
Completeness of the model may not be necessary for it to
improve predictions or rationalizations. The uncertainty
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of the model or the simulation result comes either from
uncertainty of the model parameters, uncertainty of the
model structure due to ambiguity in the selection of
rate laws, or uncertainty caused by neglecting the regu-
lation mechanism or neglecting cofactor balances etc.
The importance of the above factors depends on the
strains and culture conditions. It is useful in under-
standing cellular mechanism, and the process towards
the development of the whole cell metabolism could
well pay off. The appropriate model will be of immense
value to the following:

� Biotechnologists aiming to improve fermentation
performances such as the yield and productivity of
the target metabolite,

� Microbial engineers aiming to design novel microbes
able to capture available carbon and produce
bio-fuels and biochemicals,

� Basic scientists aiming to understand the metabolic
regulation system in the living organisms, which
can be used for the synthetic biology, and

� Systems biologists aiming to advance the science
of modeling.

The modeling approach will greatly exceed the import-
ance of the microbial genome sequencing projects, as it
will be much closer to understanding biological function
and will have widespread practical application.
In the present article, it is stressed the importance of

incorporating the enzyme level and transcriptional
regulations appropriately in the kinetic model to pre-
dict the cell's growth characteristics under environ-
mental and/or genetic perturbations. The drawback of
the kinetic modeling is the increase in the kinetic
model parameters as the system becomes large, and
thus it may be difficult to expand to genome-scale.
The reasonable idea may be to consider the kinetic
modeling only for the main metabolism, and the sim-
plified model may be considered for the peripheral
metabolisms.
Moreover, it is quite important to combine the catabolic

regulation model with nitrogen regulation model for the
coordination between C- and N-regulations, where the
intracellular pool sizes of α-keto acids play important roles
affecting PTS and cAMP level.
The simulation result based on the model developed

must be verified by experiments, or the simulation re-
sult may give hint for additional experimental design.
In this way, modeling approach together with experi-
mental works contributes to the innovation for the
efficient design of the cell factories for biofuels and bio-
chemical production.



Matsuoka and Shimizu Bioresources and Bioprocessing  (2015) 2:4 Page 16 of 19
Abbreviations
6PG: 6-phosphogluconate; FBA: Flux balance analysis; MFA: Metabolic flux
analysis; ED pathway: Entner-Doudoroff pathway; TCA cycle: Tricarboxylic
acid cycle; PTS: Phosphotransferase system; Crp: cAMP receptor protein;
Cya: Adenylate cyclase; EI: Enzyme I; EII: Enzyme II; EIIAGlc-P: Phosphorylated
EIIAGlc; HPr: Histidine-phosphorylatable protein; Cra: Catabolite repressor/
activator; Arc system: Anoxic respiration control system; Fnr: Fumarate and
nitrate reduction; Ack: Acetate kinase; Acs: Acetyl coenzyme A synthetase;
ADH: Alcohol dehydrogenase; Ask: Aspartokinase; CS: Citrate synthase;
Eno: Enolase; Fbp: Fructose bisphosphatase; Frd: Fumarate reductase;
Fum: Fumarase; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase;
GDH: Glutamate dehydrogenase; Glk: Glucokinase; GlpK: Glycerol kinase;
GOGAT: Glutamate synthase; G3PDH: Glycerol 3-phophate dehydrogenase;
G6PDH: Glucose-6-phosphate dehydrogenase; GS: Glutamine synthetase;
ICDH: Isocitrate dehydrogenase; Icl: Isocitrate lyase; KGDH: Ketoglutarate
dehydrogenase; LDH: Lactate dehydrogenase; MDH: Malate dehydrogenase;
Mez: Malic enzyme; MS: Malate synthase; Pck: Phosphoenolpyruvate
carboxykinase; PDHc: Pyruvate dehydrogenase complex; Pfk: Phosphofructokinase;
Pfl: Pyruvate formate-lyase; 6PGDH: 6-phosphogluconate dehydrogenase;
Pgi: Phosphoglucose isomerase; Pgk: phosphoglycerate kinase; Pox: Pyruvate
oxidase; Ppc: Phosphoenolpyruvate carboxylase; Pps: Phosphoenolpyruvate
synthase; Pta: Phosphotransacetylase; Pyk: Pyruvate kinase; Rpe: Ribulose
phosphate epimerase; Rpi: Ribose phosphate isomerase; SCS: Succinyl-CoA
synthetase; SDH: Succinate dehydrogenase; Tal: Transaldolase; TktA: Transketolase I;
TktB: Transketolase II; AcCoA: Acetyl-coenzyme A; ACE: Acetate; AcP: Acetyl
phosphate; CIT: Citrate; DHAP: Dihydroxy acetone phosphate; E4P: Erythrose-4-
phosphate; ETH: Ethanol; F1P: Fructose-1-phosphate; F6P: Fructose-6-phosphate;
FBP: Fructose-1,6-bisphosphate; FOR: Formate; G6P: Glucose-6-phosphate;
GAP: Glycelaldehyde-3-phosphate; GLC: Glucose; GLU: Glutamate;
GOX: Glyoxylate; ICT: Isocitrate; LAC: Lactate; MAL: Malate; OAA: Oxaloacetate;
PEP: Phosphoenol pyruvate; PYR: Pyruvate; R5P: Ribose-5-phosphate;
RU5P: Ribulose-5-phosphate; S7P: Sedoheptulose-7-phosphate; SUC: Succinate;
X5P: Xylulose-5-phosphate; αKG: α-ketoglutarate.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YM and KS both contributed for the preparation of the manuscript. Both
authors read and approved the final manuscript.

Acknowledgements
The discussion on the virtual microbe is also made with Prof. H. Westerhoff
of the University of Manchester, Prof. J. McFadden of the Surrey University in
UK, and the UK-Japan systems biology project funded by JST (Japan) and
BBSRC (UK).

Received: 30 September 2014 Accepted: 16 December 2014

References
1. Shimizu K (2014) Microbial production of biofuels and biochemicals from

biomass. NOVA publ, Co, New York
2. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664
3. Kitano H (2002) Computational systems biology. Nature 420:206–210
4. Stelling J (2004) Mathematical models in microbial systems biology.

Curr Opin Microbiol 7:513–518
5. Kotte O, Zaugg JB, Heinemann M (2010) Bacterial adaptation through

distributed sensing of metabolic fluxes. Mol Sys Biol 6:355
6. Vemuri GN, Aristidou A (2005) Metabolic engineering in the -omics era:

elucidating and modulating regulatory networks. Microbiol Mol Biol Rev
69:197–216

7. Shimizu K (2014) Regulation systems of bacteria such as Escherichia coli in
response to nutrient limitation and environmental stresses. Metabolites
4:1–35

8. Matsuoka Y, Shimizu K (2011) Metabolic regulation in Escherichia coli in
response to culture environments via global regulators. Biotechnol J
6:1330–1341

9. Chuvukov V, Gerosa L, Kochanowski K, Sauer U (2014) Coordination of microbial
metabolism. Nat Rev 12:327–340
10. Selinger DW, Wright MA, Church GM (2003) On the complete determination
of biological systems. Trends Biotechnol 21:251–254

11. Machado D, Costa R, Rocha M, Ferreira E, Tidor B, Rocha I (2011) Modeling
formalisms in systems biology. AMP Expre 1:1–34

12. Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M (2014) Kinetic
models in industrial biotechnology-improving cell factory performance.
Metabolic Eng 24:38–60

13. Costa RS, Machado D, Rocha I, Pereira EC (2011) Critical perspective on the
consequences of the limited availability of kinetic data in metabolic
dynamic modeling. IET Syst Biol 5:157–163

14. Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JG (2009)
Systems biology: parameter estimation for biochemical models. FEBS J
276:886–902

15. Cvijovic M, Bordel S, Nielsen J (2011) Mathematical models of cell factories:
moving towards the core of industrial biotechnology. Microb Biotechnol
4:572–584

16. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol
Syst Anal 2:62

17. Long CP, Antoniewicz MR (2014) Metabolic flux analysis of Escherichia coli
knockouts: lessons from the Keio collection and future outlook. Curr Opin
Biotechnol 28:127–133

18. Quek LE, Nielsen LK (2014) Steady-State 13C Fluxomics Using OpenFLUX. In:
Krömer JO, Nielsen LK, Blank LM (eds) Metabolic flux analysis: methods and
protocols, vol. 1191, Springer, New York, 209-224

19. Shimizu K (2004) Metabolic flux analysis based on 13C-labeling experiments
and integration of the information with gene and protein expression
patterns. Adv Biochem Eng Biotechnol 91:1–49

20. Shimizu K (2013) Bacterial cellular metabolic systems. Woodhead Publ Ltd., Oxford
21. Matsuoka Y, Shimizu K (2014) 13C-Metabolic flux analysis for Escherichia coli.

In: Krömer JO, Nielsen LK, Blank LM (eds) Metabolic flux analysis: methods
and protocols, vol. 1191, Springer, New York, 261-289

22. Shimizu K (2009) Toward systematic metabolic engineering based on the
analysis of metabolic regulation by the integration of different levels of
information. Biochem Eng J 46:235–251

23. Wittman C (2007) Fluxome analysis using GC-MS. Microb Cell Fact 6:6
24. Herrgard MJ, Lee B-S, Portnoy V, Palsson BO (2006) Integrated analysis of

regulatory and metabolic networks reveals novel regulatory mechanisms in
Saccharomyces cerevisiae. Genome Res 16:627–635

25. O'Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BO (2013) Genome-
scale models of metabolism and gene expression extend and refine growth
phenotype prediction. Mol Sys Biol 9:693

26. Schuetz R, Kuepfer SU (2007) Systematic evaluation of objective functions
forpredicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

27. Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U (2012)
Multidimensional optimality of microbial metabolism. Science 336:601–604

28. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming
framework for identifying gene knockout strategies for microbial strain
optimization. Biotechnol Bioeng 84:647–657

29. Pharkya P, Maranas CD (2006) An optimization framework for identifying
reaction activation/inhibition or elimination candidates for overproduction
in microbial systems. Metab Eng 8:1–13

30. Ranganathan S, Suthers PF, Maranas CD (2010) OptForce: an optimization
procedure for identifying all genetic manipulations leading to targeted
overproductions. Plos Comput Biol 6:e1000744

31. Rocha I, Maia P, Evangelista P, Vilaca P, Soares S, Pinto JP, Nielsen J, Patil KR,
Ferreira EC, Rocha M (2010) OptFlux: an open-source software platform for
in silico metabolic engineering. BMC Syst Biol 4:45

32. Choon YW, Mohamad MS, Deris S, Illias RM, Chong CK, Chai LE, Omatu S,
Corchado JM (2014) Differential bees flux balance analysis with OptKnock
for in silico microbial strains optimization. PLoS One 9:e102744

33. Pharkya P, Burgard AP, Maranas CD (2014) OptStrain: a computational
framework for redesign of microbial production systems. Genom Res
14:2367–2376

34. Yang L, Cluett WR, Mahadevan R (2011) EMILiO: a fast algorithm for
genome-scale strain design. Metab Eng 13:272–281

35. Cotten C, Reed JL (2013) Constraint-based strain design using continuous
modifications (CosMos) of flux bounds finds new strategies for metabolic
engineering. Biotechnol J 8:595–604

36. Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes
adaptive evolution to achieve in silico predicted optimal growth. Nature
420:186–189



Matsuoka and Shimizu Bioresources and Bioprocessing  (2015) 2:4 Page 17 of 19
37. Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and
perturbed metabolic networks. Proc Natl Acad Sci U S A 99:15112–15117

38. Rark JM, Kim TY, Lee SY (2009) Constraints-based genome-scale metabolic
simulation for systems metabolic engineering. Biotechnol Adv 27:979–988

39. Zomorrodi AR, Suthers PF, Ranganathan S, Maranas CD (2012) Mathematical
optimization applications in metabolic networks. Metab Eng 14:672–686

40. Covert MW, Xiao N, Chen TJ, Karr JR (2008) Integrating metabolic,
transcriptional regulatory and signal transduction models in Escherichia coli.
Bioinformatics 24:2044–2050

41. Meadows AL, Karnik R, Lam H, Forestell S, Snedecor B (2010) Application of
dynamic flux balance analysis to an industrial Escherichia coli fermentation.
Metab Eng 12:150–160

42. Feng X, Xu Y, Chen Y, Tang YJ (2012) MicrobesFlux: a web platform for
drafting metabolic models from the KEGG database. BMC Syst Biol 6:94

43. Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR
(2011) Genome-scale dynamic modeling of the competition between
Rhodoferax and Geobacter in anoxic subsurface environments. Isme
J 5:305–316

44. Salimi F, Zhuang K, Mahadevan R (2010) Genome-scale metabolic modeling
of a clostridial co-culture for consolidated bioprocessing. Biotechnol
J 5:726–738

45. Jamshidi N, Palsson BØ (2008) Formulating genome-scale kinetic models in
the post-genome era. Mol Syst Biol 4:171

46. Jamshidi N, Palsson BØ (2010) Mass action stoichiometric simulation
models: incorporating kinetics and regulation into stoichiometric models.
Biophys J 98:175–185

47. Smallbone K, Simeonidis E, Broomhead DS, Kell DB (2007) Something
from nothing - bridging the gap between constraint-based and kinetic
modelling. FEBS J 274:5576–5585

48. Smallbone K, Simeonidis E, Swainston N, Mendes P (2010) Towards a
genome-scale kinetic model of cellular metabolism. BMC Syst Biol 4:6

49. Fleming RM, Thiele I, Provan G, Nasheuer HP (2010) Integrated
stoichiometric, thermodynamic and kinetic modelling of steady state
metabolism. J Theor Biol 264:683–692

50. Antoniewicz MR (2013) Dynamic metabolic flux analysis-tools for probing
transient states of metabolic networks. Curr Opin Biotechnol 24:973–978

51. Hoffner K, Harwood SM, Barton PI (2013) A reliable simulator for dynamic
flux balance analysis. Biotechnol Bioeng 110:792–802

52. Mahadevan R, Edwards JS, Doyle FJ (2002) Dynamic flux balance analysis of
diauxic growth in Escherichia coli. Biophys J 83:1331–1340

53. Hanly TJ, Henson MA (2011) Dynamic flux balance modeling of microbial
co-cultures for efficient batch fermentation of glucose and xylose mixtures.
Biotechnol Bioeng 108:376–385

54. Hanly TJ, Urello M, Henson MA (2012) Dynamic flux balance modeling of
S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose
mixtures. Appl Microbiol Biotechnol 93:2529–2541

55. Hanly TJ, Henson MA (2013) Dynamic metabolic modeling of a microaerobic
yeast co-culture: predicting and optimizing ethanol production from glucose/
xylose mixtures. Biotechnol Biofuels 6:44

56. Chowdhury A, Zomorrodi AR, Maranas CD (2014) k-OptForce: integrating kinetics
with flux balance analysis for strain design. PLoS Comput Biol 10:e1003487

57. Klumpp S, Hwa T (2008) Growth-rate dependent partitioning of RNA
polymerases in bacteria. PNAS USA 105:20245–20250

58. Klumpp S, Zhang Z, Hwa T (2009) Growth-rate dependent global effects on
gene expression in bacteria. Cell 139:1366–1375

59. Valgepea K, Adamberg K, Seiman A, Vilu R (2013) Escherichia coli achieves
faster growth by increasing catalytic and translational rates of proteins.
Mol Biosyst 9:2344–2358

60. Harcomb WR, Delaney NF, Leiby N, Klitgord N, Marx CJ (2013) The ability of
flux balance analysis to predict evolution of central metabolism scales with
the initial distance to the optimum. PLoS Comput Biol 9:e1003091

61. Edwards JS, Covert MW, Palsson BØ (2002) Metabolic modelling of
microbes: the flux-balance approach. Environ Microbiol 4:133–140

62. Karr JR, Sanghvi JC, Macklin DN, Gutschow MW, Jacobs JM, Bolival B Jr,
Assad-Garcia N, Glass JI, Covert MW (2012) A whole-cell computational
model predicts phenotype from genotype. Cell 150:389–401

63. Gunawardera J (2012) Silicon dreams of cells into symbols. Nature 30:838–840
64. Freddolino PL, Tavazoie S (2012) The dawn of virtual cell biology. Cell

150:248–250
65. Tomita M (2001) Whole-cell simulation: a grand challenge of the 21st

century. Trends in Biotech 19:205–210
66. Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic
chains. General properties, control and effector strength. Eur J Biochem
42:89–95

67. van Riel NA (2006) Dynamic modelling and analysis of biochemical
networks: mechanism-based models and model-based experiments. Brief
Bioinform 7:364–374

68. Heijnen JJ (2005) Approximative kinetic formats used in metabolic network
modeling. Biotechnol Bioeng 91:534–545

69. Wu L, Wang WM, van Winden WA, van Gulik WM, Heijnen JJ (2004) A new
framework for the estimation of control parameters in metabolic pathways
using lin-log kinetics. Eur J Biochem 271:3348–3359

70. del Rosario RCH, Mendoza E, Voit EO (2008) Challenges in lin-log modelling
of glycolysis in Lactococcus lactis. Iet Syst Biol 2:136–149

71. Hatzimanikatis V, Emmerling M, Sauer U, Bailey JE (1998) Application of
mathematical tools for metabolic design of microbial ethanol production.
Biotechnol Bioeng 58:154–161

72. Wang L, Hatzimanikatis V (2006) Metabolic engineering under uncertainty-II:
analysis of yeast metabolism. Metab Eng 8:142–159

73. Pozo C, Marín-Sanguino A, Alves R, Guillén-Gosálbez G, Jiménez L, Sorribas A
(2011) Steady-state global optimization of metabolic non-linear dynamic models
through recasting into power-law canonical models. BMC Syst Biol 5:137

74. Sorribas A, Hernandez-Bermejo B, Vilaprinyo E, Alves R (2007) Cooperativity
and saturation in biochemical networks: a saturable formalism using Taylor
series approximations. Biotechnol Bioeng 97:1259–1277

75. Liebermeister W, Klipp E (2006) Bringing metabolic networks to life:
convenience rate law and thermodynamic constraints. Theor Biol Med
Model 3:41

76. Kim JI, Song HS, Sunkara SR, Lali A, Ramkrishna D (2012) Exacting
predictions by cybernetic model confirmed experimentally: steady state
multiplicity in the chemostat. Biotechnol Prog 28:1160–1166

77. Covert MW, Palsson BØ (2002) Transcriptional regulation in constraints-
based metabolic models of Escherichia coli. J Biol Chem 277:28058–28064

78. Covert MW, Palsson BØ (2003) Constraints-based models: regulation of gene
expression reduces the steady-state solution space. J Theor Biol 221:309–325

79. Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin II, Selkov E, Palsson
BØ (2001) Metabolic modeling of microbial strains in silico. Trends Biochem
Sci 26:179–186

80. Herrgård MJ, Fong SS, Palsson BØ (2006) Identification of genome-scale
metabolic network models using experimentally measured flux profiles. Plos
Comput Biol 2:676–686

81. Song HS, Morgan JA, Ramkrishna D (2009) Systematic development of
hybrid cybernetic models: application to recombinant yeast co-consuming
glucose and xylose. Biotechnol Bioeng 103:984–1002

82. Ramkrishna D, Kompala DS, Tsao GT (1987) Are microbes optimal strategists.
Biotechnol Progr 3:121–126

83. Varner J, Ramkrishna D (1999) Metabolic engineering from a cybernetic
perspective. 1. Theoretical preliminaries. Biotechnol Prog 15:407–425

84. Young JD (2005) A system-level mathematical description of metabolic
regulation combining aspects of elementary mode analysis with cybernetic
control laws. PhD thesis, Purdue University

85. Young JD, Henne KL, Morgan JA, Konopka AE, Ramkrishna D (2008) Integrating
cybernetic modeling with pathway analysis provides a dynamic, systems-level
description of metabolic control. Biotechnol Bioeng 100:542–559

86. Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic
pathways useful for systematic organization and analysis of complex
metabolic networks. Nat Biotechnol 18:326–332

87. Kim JW, Dang CV (2005) Multifaceted roles of glycolytic enzymes. Trends
Biocem Sci 30:142–150

88. Kim JI, Varner JD, Ramkrishna D (2008) A hybrid model of anaerobic E. coli
GJT001: combination of elementary flux modes and cybernetic variables.
Biotechnol Prog 24:993–1006

89. Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC,
Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL
(2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the
constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329

90. Chakrabarti A, Miskovic L, Soh KC, Hatzimanikatis V (2013) Towards kinetic
modeling of genome-scale metabolic networks without sacrificing stoichiometric,
thermodynamic and physiological constraints. Biotechnol J 8:1043–1057

91. Hatzimanikatis V, Bailey JE (1996) MCA has more to say. J Theor Biol 182:233–242
92. Smallbone K, Messiha HL, Carroll KM, Winder CL, Malys N, Dunn WB,

Murabito E, Swainston N, Dada JO, Khan F, Pir P, Simeonidis E, Spasić I,



Matsuoka and Shimizu Bioresources and Bioprocessing  (2015) 2:4 Page 18 of 19
Wishart J, Weichart D, Hayes NW, Jameson D, Broomhead DS, Oliver SG,
Gaskell SJ, McCarthy JE, Paton NW, Westerhoff HV, Kell DB, Mendes P (2013)
A model of yeast glycolysis based on a consistent kinetic characterisation of
all its enzymes. FEBS Lett 587:2832–2841

93. Stanford NJ, Lubitz T, Smallbone K, Klipp E, Mendes P, Liebermeister W
(2013) Systematic construction of kinetic models from genome-scale
metabolic networks. PLoS One 8:e79195

94. Savageau MA (1970) Biochemical systems analysis. 3. Dynamic solutions
using a power-law approximation. J Theor Biol 26:215–226

95. Voit Eberhard O (2013) Biochemical systems theory: a review. ISRN
Biomathematics 2013:897658

96. Dräger A, Kronfeld M, Ziller MJ, Supper J, Planatscher H, Magnus JB, Oldiges
M, Kohlbacher O, Zell A (2009) Modeling metabolic networks in C.
glutamicum: a comparison of rate laws in combination with various
parameter optimization strategies. BMC Syst Biol 3:5

97. Costa RS, Machado D, Rocha I, Ferreira EC (2010) Hybrid dynamic modeling
of Escherichia coli central metabolic network combining Michaelis-Menten
and approximate kinetic equations. Biosystems 100:150–157

98. Rizk ML, Liao JC (2009) Ensemble modeling for aromatic production in
Escherichia coli. PLoS One 4:e6903

99. Tan YK, Liao JC (2012) Metabolic ensemble modeling for strain engineers.
Biotechnol J 7:343–353

100. Contador CA, Rizk ML, Asenjo JA, Liao JC (2009) Ensemble modeling
for strain development of L-lysine-producing Escherichia coli. Metab Eng
11(4–5):221–233

101. Dean JT, Rizk ML, TanY DKM, Liao JC (2010) Ensemble modeling of
hepatic fatty acid metabolism with a synthetic glyoxylate shunt. Biophys
J 98:1385–1395

102. Lee Y, Lafontaine Rivera JG, Liao JC (2014) Ensemble modeling for
robustness analysis in engineering non-native metabolic pathways. Metab
Eng 25:63–71

103. Khazaei T, McGuigan A, Mahadevan R (2012) Ensemble modeling of cancer
metabolism. Front Physiol 3:135

104. Khodayari A, Zomorrodi AR, Liao JC, Maranas CD (2014) A kinetic model of
Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
Metab Eng 25:50–62

105. Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba
M, Hirai K, Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada S,
Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K,
Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H, Tomita M
(2007) Multiple high-throughput analyses monitor the response of E. coli to
perturbations. Science 316:593–597

106. Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic
dynamic in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol
Bioeng 55:592–608

107. Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis
of metabolic dynamic in Saccharomyces cerevisiae: I. Experimental
observations. Biotechnol Bioeng 55:305–316

108. Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M (2002)
Dynamic modeling of the central carbon metabolism of Escherichia coli.
Biotechnol Bioeng 79:53–73

109. Kadir TA, Mannan AA, Kierzek AM, McFadden J, Shimizu K (2010) Modeling and
simulation of the main metabolism in Escherichia coli and its several single-gene
knockout mutants with experimental verification. Microb Cell Fact 9:88

110. Peskov K, Mogilevskaya E, Demin O (2012) Kinetic modelling of central
carbon metabolism in Escherichia coli. FEBS J 279:3374–3385

111. Usuda Y, Nishio Y, Iwatani S, Van Dien SJ, Imaizumi A, Shimbo K, Kageyama
N, Iwahata D, Miyano H, Matsui K (2010) Dynamic modeling of Escherichia
coli metabolic and regulatory systems for amino-acid production.
J Biotechnol 147:17–30

112. Matsuoka Y, Shimizu K (2013) Catabolite regulation analysis of Escherichia
coli for acetate overflow mechanism and co-consumption of multiple
sugars based on systems biology approach using computer simulation.
J Biotechnol 168:155–173

113. Yao R, Hirose Y, Sarkar D, Nakahigashi K, Ye Q, Shimizu K (2011) Catabolic
regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG
mutants. Microb Cell Fact 10:67

114. Toya Y, Ishii N, Nakahigashi K, Hirasawa T, Soga T, Tomita T, Shimizu K
(2010) 13C-metabolic flux analysis for batch culture of Escherichia coli and its
Pyk and Pgi gene knockout mutants based on mass isotopomer distribution
of intracellular metabolites. Biotechnol Prog 26:975–992
115. Toya Y, Nakahigashi K, Tomita M, Shimizu K (2012) Metabolic regulation
analysis of wild-type and arcA mutant Escherichia coli under nitrate
conditions using different levels of omics data. Mol Biosyst 8:2593–2604

116. Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT (2004) Pyruvate
formate lyase and acetate kinase are essential for anaerobic growth of
Escherichia coli on xylose. J Bacteriol 186:7593–7600

117. Kremling A, Bettenbrock K, Gilles ED (2008) A feed-forward loop guarantees
robust behavior in Escherichia coli carbohydrate uptake. Bioinformatics
24:704–710

118. Kochanowski K, Volkmer B, Gerosa L, Haverkorn van Rijsewijk BR, Schmidt A,
Heinemann M (2013) Functioning of a metabolic flux sensor in Escherichia
coli. Proc Natl Acad Sci U S A 110:1130–1135

119. Huberts DH, Niebel B, Heinemann M (2012) A flux-sensing mechanism could
regulate the switch between respiration and fermentation. FEMS Yeast Res
12:118–128

120. Christen S, Sauer U (2011) Intracellular characterization of aerobic glucose
metabolism in seven yeast species by 13C flux analysis and metabolomics.
FEMS Yeast Res 11:263–272

121. Boels E, Hollenberg CP (1997) The molecular genetics of hexose transport in
yeasts. FEMS Microbiol Rev 21:85–111

122. Ricci JCD (1996) Influence of phosphenolpyruvate on the dynamic behavior
of phosphofructokinase of Escherichia coli. J Theor Biol 178:145–150

123. Yang C, Hua Q, Baba T, Mori H, Shimizu K (2003) Analysis of Escherichia coli
anaprelotic metabolism and its regulation mechanisms from the metabolic
responses to altered dilution rates and phosphoenolpyruvate carboxykinase
knockout. Biotechnol Bioeng 84:129–144

124. Lee B, Yen J, Yang L, Liao JC (1999) Incorporating qualitative knowledge in
enzyme kinetic models using fuzzy logic. Biotechnol Bioeng 63:722–729

125. Nizam SA, Zhu JF, Ho PY, Shimizu K (2009) Effects of arcA and arcB genes
knockout on the metabolism in Escherichia coli under aerobic condition.
Biochem Eng J 44:240–250

126. Vemuri GN, Eiteman MA, Altman E (2006) Increased recombinant protein
production in Escherichia coli strains with overexpressed water-forming
NADH oxidase and a deleted ArcA regulatory protein. Biotechnol Bioeng
94:538–542

127. Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA (2006)
Overflow metabolism in Escherichia coli during steady-state growth: tran-
scriptional regulation and effect of the redox ratio. Appl Environ Microbiol
72:3653–3661

128. Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50
129. Xu YF, Amador-Noguez D, Reaves ML, Feng XJ, Rabinowitz JD (2012)

Ultrasensitive regulation of anapleurosis via allosteric activation of PEP
carboxylase. Nat Chem Biol 8:562–568

130. Voit E, Neves AR, Santos H (2006) The intricate side of systems biology. Proc
Natl Acad Sci U S A 103:9452–9457

131. Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M,
Van Swam II, Bongers R, Westerhoff HV, Snoep JL (2002) Metabolic engineering
of lactic acid bacteria, the combined approach: kinetic modeling, metabolic
control and experimental analysis. Microbiol 148:1003–1013

132. Kremling A, Jahreis K, Lengeler JW, Gilles ED (2000) The organization of
metabolic reaction networks: a signal-oriented approach to cellular models.
Metab Eng 2:190–200

133. Kremling A, Gilles ED (2001) The organization of metabolic reaction
networks. II. Signal processing in hierarchical structured functional units.
Metab Eng 3:138–150

134. Kremlng A, Fischer S, Sauter T, Bettenbrock K, Gilles ED (2004) Time
hierarchies in the Escherichia coli carbohydrate uptake and metabolism.
BioSystems 73:57–71

135. Sauter T, Gilles ED (2004) Modeling and experimental validation of the
signal transduction via the Escherichia coli sucrose phospho transferase
system. J Biotech 110:181–199

136. Bettenbrock K, Fischer S, Kremling A, Jahreis K, Sauter T, Gilles ED (2006) A
quantitative approach to catabolite repression in Escherichia coli. J Biol
Chem 281:2578–2584

137. Nishio Y, Usuda Y, Matsui K, Kurata H (2008) Computer-aided rational design of
the phosphotransferase system for enhanced glucose uptake in Escherichia coli.
Mol Syst Biol 4:160

138. Majewski RA, Domach MM (1990) Simple constrained-optimization view of
acetate overflow in Escherichia coli. Biotech Bioeng 35:732–738

139. Rabinowitz J, Silhavy TJ (2012) Metabolite turns master regulator. Nature
500:283–284



Matsuoka and Shimizu Bioresources and Bioprocessing  (2015) 2:4 Page 19 of 19
140. Doucette CD, Schwab DJ, Wingreen NS, Rabinowitz JD (2011)
Alpha-ketoglutarate coordinates carbon and nitrogen utilization via
enzyme I inhibition. Nat Chem Biol 7:894–901

141. Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010)
Interdependence of cell growth and gene expression: origins and
consequences. Science 330:1099–1102

142. You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, Wang Y-P, Lenz P,
Yan D, Hwa T (2013) Coordination of bacterial proteome with metabolism
by cyclic AMP signaling. Nature 500:301–306

143. Vinuselvi P, Kim MK, Lee SK, Ghim C-M (2012) Rewiring carbon catabolite
repression for microbial cell factory. BMB Rep 45(2):59–70

144. Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways
to make the most out of nutrients. Nature Rev Microbiol 6:613–24

145. Vasudevan P, Briggs M (2008) Biodiesel production-current state of the art
and challenges. J Ind Microbiol Biotechnol 35:421–430

146. Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of
glycerol by Escherichia coli: a new platform for metabolic engineering.
Biotechnol Bioeng 94:821–829

147. Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a
platform for renewable fuels and chemicals. Trends Biotechnol 31:20–28

148. Almeida JRM, Fávaro LCL, Betania F, Quirino BF (2012) Biodiesel biorefinery:
opportunities and challenges for microbial production of fuels and
chemicals from glycerol waste. Biotechnol for Biofuels 5:48

149. Martínez-Gómez K, Flores N, Castañeda HM, Martínez-Batallar G,
Hernández-Chávez G, Ramírez OT, Gosset G, Encarnación S, Bolivar F (2012)
New insights into Escherichia coli metabolism: carbon scavenging, acetate
metabolism and carbon recycling responses during growth on glycerol.
Micob Cell Fact 11:46

150. Oh MK, Liao JC (2000) Gene expression profiling by DNA microarrays and
metabolic fluxes in Escherichia coli. Biotechnol Prog 16:278–286

151. Peng L, Shimizu K (2003) Global metabolic regulation analysis for Escherichia
coli K12 based on protein expression by 2-dimensional electrophoresis and
enzyme activity measurement. Appl Microbiol Biotechnol 61:163–178

152. Cintolesi A, Clomburg JM, Rigou V, Zygourakis K, Gonzalez R (2012)
Quantitative analysis of the fermentative metabolism of glycerol in
Escherichia coli. Biotechnol Bioeng 109:187–198

153. Saier MH, Ramseier TM (1996) The catabolite repressor/activator (Cra)
protein of enteric bacteria. Journal of Bacteriology 178:3411–3417

154. Kornberg HL (2001) Routes for fructose utilization by Escherichia coli. J Mol
Microbiol Biotechnol 3:355–359

155. Yao R, Shimizu K (2013) Recent progress in metabolic engineering for the
production of biofuels and biochemicals from renewable sources with
particular emphasis on catabolite regulation and its modulation. Process
Biochem 48:1409–1417

156. Crasnier-Mednansky M, Park MC, Studley WK, Saier MH Jr (1997) Cra-mediated
regulations of Escherichia coli adenylate cyclase. Microbiology 143:785–792

157. Griffith JK, Baker ME, Rouch DA, Page MG, Skurray RA, Paulsen IT, Chater KF,
Baldwin SA, Henderson PJ (1992) Membrane transport proteins: implications
of sequence comparisons. Curr Opin Cell Biol 4:684–695

158. Sumiya M, Davis EO, Packman LC, McDonald TP, Henderson PJ (1995)
Molecular genetics of a receptor protein for d-xylose, encoded by the gene
xylF, in Escherichia coli. Receptors Channels 3:117–128

159. Song S, Park C (1997) Organization and regulation of the d-xylose operons
in Escherichia coli K-12: XylR acts as a transcriptional activator. J Bacteriol
179:7025–7032

160. Altintas MM, Eddy CK, Zhang M, McMillan JD, Kompala DS (2006) Kinetic
modeling to optimize pentose fermentation in Zymomonas mobilis.
Biotechnol Bioeng 94:273–295

161. Yang C, Hua Q, Shimizu K (1999) Development of a kinetic model for
L-lysine biosynthesis in Corynebacterium glutamicum and its application to
metabolic control analysis. J Biosci Bioeng 88:393–403

162. Hua Q, Yang C, Shimizu K (2000) Metabolic control analysis for lysine
synthesis using Corynebacterium glutamicum and experimental verification.
J Biosci Bioeng 90:184–192

163. Nishio Y, Ogishima S, Ichikawa M, Yamada Y, Usuda Y, Masuda T, Tanaka H
(2013) Analysis of L-glutamic acid fermentation by using a dynamic metabolic
simulation model of Escherichia coli. BMC Sys Biol 7:92

164. Li R-D, Li Y-Y, Lu L-Y, Ren C, Li Y-X, Liu L (2011) An improved kinetic model
for the acetone-butanol-etahnol pathway of Clostridium acetobutyricum and
model-based perturbation analysis. BMC Sys Biol 5:S12
165. Shinto H, Tashiro Y, Kobayashi G, Sekiguchi T, Hanai T, Kuriya Y,
Okamoto M, Sonomoto K (2007) Kinetic modeling and sensitivity analysis
of acetone-butanol-ethanol production. J Biotechnol 131:45–56

166. Shinto H, Tashiro Y, Kobayashi G, Sekiguchi T, Hanai T, Kuriya Y, Okamoto M,
Sonomoto K (2008) Kinetic study of substrate dependency for higher
butanol production in acetone-butanol-ethanol fermentation. Proc Biochem
43:1452–1461

167. Alexeeva S, Hellingwerf KJ, de Mattos JT (2003) Requirement of ArcA for
redox regulation in Escherichia coli under microaerobic but not anaerobic
or aerobic conditions. J Bacteriol 185:204–209

168. Shalel-Levanon S, San K-Y, Bennett GN (2005) Effect of oxygen, and ArcA
and FNR regulators on the expression of genes related to the electron
transfer chain and the TCA cycle in Escherichia coli. Metab Eng 7:364–374

169. Cox SJ, Levanon SS, Bennett GN, San K-Y (2005) Genetically constrained
metabolic flux analysis. Metab Eng 7:445–456

170. van Heeswijk WC, Westerhoff HV, Boogerd FC (2013) Nitrogen assimilation
in Escherichia coli: putting molecular data into a systems perspective.
Microbiol Mol Biol Rev 77:628–695

171. Rhee SG, Chock PB, Stadtman ER (1985) Glutamine synthetase from
Escherichia coli. Methods Enzymol 113:213–241

172. Sakamoto N, Kotre AM, Savageau MA (1975) Glutamate dehydrogenase
from Escherichia coli: purification and properties. J Bacteriol 124:775–783

173. Bruggeman FJ, Boogerd FC, Westerhoff HV (2005) The multifarious short-term
regulation of ammonium assimilation of Ecsherichia coli: dissection using
an in silico replica. FEBS J 272:1965–1985

174. Atkinson MR, Blauwkamp TA, Bondarenko V, Studitsky V, Ninfa AJ (2002)
Activation of the glnA, glnK, and nac promoters as Escherichia coli
undergoes the transition from nitrogen excess growth to nitrogen
starvation. J Bacteriol 184:5358–5363

175. Reitzer L (2003) Nitrogen assimilation and global regulation in Escherichia
coli. Annu Rev Microbiol 57:155–176

176. Ma H, Boogerd FC, Goryanin I (2009) Modelling nitrogen assimilation of
Escherichia coli at low ammonium concentration. J Biotechnol 144:175–183

177. Yuan J, Doucette CD, Fowler WU, Feng XJ, Piazza M, Rabitz HA, Wingreen
NS, Rabinowitz JD (2009) Metabolomics-driven quantitative analysis of
ammonia assimilation in E. coli. Mol Syst Biol 5:302

178. Lodeiro A, Melgarejo A (2008) Robustness in Escherichia coli glutamate and
glutamine synthesis studied by a kinetic mode. J Biol Phys 34:91–106
Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Introduction
	Basic modeling approach
	Metabolic flux analysis
	Flux balance analysis and its extensions
	Kinetic modeling and incorporation of metabolic regulation

	Modeling of the main metabolism for catabolite regulation
	Importance of the modeling for the main metabolic pathways
	Metabolic regulation mechanisms to be incorporated in the kinetic model

	Modeling for the peripheral metabolism
	Modeling for the metabolism under oxygen limitation
	Modeling for the nitrogen regulation
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

