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Abstract 

Background:  Methanol is regarded as a biorenewable platform feedstock because nearly all bioresources can be 
converted into methanol through syngas. Biological conversion of methanol using synthetic methylotrophs has thus 
gained worldwide attention.

Results:  Herein, to endow Escherichia coli with the ability to utilize methanol, an artificial linear methanol assimila-
tion pathway was assembled in vivo for the first time. Distinct from native cyclic methanol utilization pathways, such 
as ribulose monophosphate cycle, the linear pathway requires no formaldehyde acceptor and only consists of two 
enzymatic reactions: oxidation of methanol into formaldehyde by methanol dehydrogenase and carboligation of for-
maldehyde into dihydroxyacetone by formolase. After pathway engineering, genome replication engineering assisted 
continuous evolution was applied to improve methanol utilization. 13C-methanol-labeling experiments showed that 
the engineered and evolved E. coli assimilated methanol into biomass.

Conclusions:  This study demonstrates the usability of the linear methanol assimilation pathway in bioconversion of 
C1 resources such as methanol and methane.
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Background
Methanol is a C1 compound that can be synthesized 
either from petrochemical or renewable resources (Car-
valho et  al. 2017; Patel et  al. 2016). Owning to its cost 
advantage and biocompatibility, methanol is regarded 
as an attractive feedstock for production of biochemi-
cals and biofuels (Pfeifenschneider et al. 2017). Although 
native methylotrophs are capable of using C1 resources 
including methanol as carbon and energy sources, they 
are more challenging to engineer than genetically tracta-
ble hosts due to inefficient genetic-transfer systems and 
editing tools (Whitaker et al. 2015).

Recently, synthetic methylotrophs were constructed by 
introducing native methanol assimilation pathways into 
non-native methylotrophs such as Escherichia coli (Dai 
et al. 2017; Leßmeier et al. 2015; Müller et al. 2015; Rohl-
hill et al. 2017; Whitaker et al. 2017; Witthoff et al. 2015). 
To date, ribulose monophosphate (RuMP) cycle that 
utilizes ribulose-5-phosphate (Ru5P) as a formaldehyde 
acceptor is the only pathway used for synthetic methylo-
trophs. Despite the fact that Ru5P could be regenerated 
through pentose phosphate (PP) pathway, high coordina-
tion of heterologous RuMP cycle and native PP pathway 
is challenging (Whitaker et al. 2015). A computationally 
designed enzyme formolase (FLS) that can catalyze the 
carboligation of three formaldehyde molecules into one 
dihydroxyacetone (DHA) molecule was reported recently 
and used to construct an artificial carbon fixation path-
way in vitro (Siegel et al. 2015). In the present study, an 
artificial linear methanol assimilation pathway based 
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on FLS was assembled in E. coli, and a combined strat-
egy of metabolic engineering and adaptive evolution was 
applied to facilitate methanol utilization.

Methods
Bacterial strains, plasmids, and growth conditions
All bacterial strains and plasmids used in this study are 
listed in Additional file  1: Table S1. Gene expression 
and methanol utilization were performed in strain E. 
coli BW25113 ΔfrmA (Ec-ΔfrmA). The pTrc99A vector 
with a trc promoter was used for expression of the genes 
required for methanol utilization. Primers used for plas-
mid construction are listed in Additional file 1: Table S2. 
E. coli strains were cultured aerobically in lysogeny broth 
(LB) medium or M9 minimal medium supplemented 
with carbon sources at 30 or 37 °C. Detailed methods are 
described in Additional file 1: Additional methods.

Enzyme activity assay
Methanol dehydrogenase (MDH) and FLS activities were 
assayed using the methods described previously (Mül-
ler et  al. 2015; Siegel et  al. 2015). Detailed methods are 
described in Additional file 1: Additional methods.

Adaptive evolution
Detailed methods are described in Additional file  1: 
Additional methods.

Analysis of 13C‑labeling of proteinogenic amino acids
13C-labeling of proteinogenic amino acids was ana-
lyzed using a method described previously with some 

modifications (You et  al. 2012). Detailed methods are 
described in Additional file 1: Additional methods.

Results and discussion
Assembly of linear methanol utilization pathway in E. coli
The linear methanol utilization pathway consists of two 
steps: oxidation of methanol into formaldehyde and 
carboligation of formaldehyde into DHA, which can be 
phosphorylated to dihydroxyacetone phosphate by dihy-
droxyacetone kinase and enter lower glycolysis (Fig. 1a). 
According to the calculation by eQuilibrator (Flamholz 
et al. 2012), the ΔrG′o values for the linear pathway and 
the RuMP pathway are 9.1 and −  3.4  kJ/mol, respec-
tively, suggesting that the RuMP pathway is more ther-
modynamically feasible. However, the product of the 
linear pathway can enter glycolysis and be metabolized 
quickly, providing a strong driven force for methanol uti-
lization. Therefore, the linear pathway is also supposed 
to be feasible. To assemble the linear pathway in  vivo, 
NAD+-dependent MDH from Bacillus methanolicus 
and artificial FLS were overexpressed in E. coli. The mul-
ticopy plasmid pTrc99A with a strong trc promoter was 
used to achieve high-level expression of MDH and FLS 
since their specific activities are quite low (Krog et  al. 
2013; Siegel et  al. 2015). Two recombinants Ec-ΔfrmA-
mdh3MGA3-fls and Ec-ΔfrmA-mdh2PB1-fls carrying the fls 
gene and different mdh genes (Additional file 1: Table S3) 
were constructed. Enzyme activity assays demonstrated 
that both MDHs were functionally expressed. Strain 
Ec-ΔfrmA-mdh2PB1-fls showed higher methanol oxida-
tion activity that was approximately twice as high as the 

Fig. 1  Assembly of linear methanol utilization pathway in E. coli. a Schematic illustration of methanol utilization by introducing heterologous 
pathway in E. coli. MDH methanol dehydrogenase, FLS formolase, DHAK dihydroxyacetone kinase, DHA dihydroxyacetone, DHAP dihydroxyacetone 
phosphate. The red cross represents native formaldehyde detoxification pathway (formaldehyde to CO2) is blocked by knocking out formaldehyde 
dehydrogenase gene frmA. b Specific activity of MDH in recombinant E. coli strains. ± indicates standard deviation (n = 3). ND indicates that no 
MDH activity was detected. c SDS-PAGE analysis of MDH and FLS overexpression. Lane M, marker; lane 1, crude extract of Ec-ΔfrmA-pTrc99A; lane 2, 
crude extract of Ec-ΔfrmA-mdh3MGA3-fls; lane 3, Ec-ΔfrmA-mdh2PB1-fls
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MDH activity of strain Ec-ΔfrmA-mdh3MGA3-fls (Fig. 1b). 
FLS activity was determined by coupled reactions involv-
ing DHA formation from formaldehyde by FLS and DHA 
reduction by NAD+-dependent glycerol dehydrogenase. 
However, the reverse activity of MDH that could reduce 
formaldehyde to methanol with NADH consumption 
interfered with the NADH-dependent DHA reduction. 
Therefore, FLS activity was not determined here, whereas 
SDS-PAGE analysis indicated that MDHs and FLS 
were successfully expressed (Fig.  1c). Strain Ec-ΔfrmA-
mdh2PB1-fls was used in the subsequent experiments for 
higher MDH activity.

Bioconversion of methanol into biomass of the engineered 
E. coli
Despite the equipment of linear methanol assimilation 
pathway, the engineered strain could not initiate growth 
in M9 minimal medium with methanol (approximately 
8 g/L, 1% v/v) as the sole carbon source. Similar phenom-
ena were observed in previous studies on RuMP-based 
synthetic methylotrophs and undefined supplements 
such as yeast extract and tryptone were added to initi-
ate cell growth on methanol (Whitaker et al. 2017). Thus, 

small amounts of yeast extract (1 g/L) were added in M9 
minimal medium. Any improvements in cell growth in 
the presence of methanol might derive from the contri-
bution of methanol assimilation. As controls, a ΔfrmA 
strain containing the empty pTrc99A vector (strain 
Ec-ΔfrmA-pTrc99A) was cultivated using the aforemen-
tioned media. A methanol evaporation control without 
inoculation was also conducted.

As shown in Fig.  2a, approximately 1  g/L methanol 
evaporated away during the cultivation. When the con-
trol strain Ec-ΔfrmA-pTrc99A was cultivated using 
yeast extract and methanol as co-substrate, no addi-
tional methanol consumption but slightly decrease in 
cell growth was observed (Fig.  2a, b). We speculated 
that methanol might be oxidized to toxic intermediate 
formaldehyde by the non-specific activities of alcohol 
dehydrogenases of E. coli, which affected the cell growth 
negatively. Regarding to strain Ec-ΔfrmA-mdh2PB1-fls, no 
significant increase in biomass was observed when meth-
anol was added (Fig. 2c), whereas slightly more methanol 
(1.45  g/L) was consumed compared to the evaporation 
control, suggesting methanol utilization of the engi-
neered strain. To further validate methanol utilization, 

Fig. 2  Methanol consumption and growth characteristics of E. coli strains. a Methanol evaporation and consumption. b Cell growth of strain 
Ec-ΔfrmA-pTrc99A. c Cell growth of strain Ec-ΔfrmA-mdh2PB1-fls. d Cell growth of strain Ec-ΔfrmA-mdh2PB1-fls-M11. Cells were cultured in M9 minimal 
medium supplemented with 1 g/L yeast extract or M9 minimal medium supplemented with 1 g/L yeast extract and methanol. Error bars indicate 
standard deviation (n = 3)
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13C-methanol-labeling experiment was performed. When 
13C-methanol was used as a carbon source, 13C-labeled 
amino acids in biomass including alanine, aspartic acid, 
glutamic acid, phenylalanine, proline, glycine, lysine, ser-
ine, threonine, tyrosine, and 13C-labeled citric acid were 
detected (Fig. 3a; Additional file 1: Table S4). It has been 
reported that amino acids measurement could provide 
isotopic labeling information about eight crucial pre-
cursor metabolites in the central metabolism (You et al. 
2012). The presented results showed that biosynthesis 
of key intermediates of glycolysis, PP pathway and TCA 
cycle, including 3-phosphoglycerate, phosphoenolpyru-
vate, pyruvate, acetyl-CoA, α-ketoglutarate, oxaloace-
tate, and erythrose 4-phosphate, withdrew carbon from 
13C-methanol.

Adaptive evolution of the engineered E. coli to improve 
methanol utilization
To further improve the microbial performance in meth-
anol medium and screen methanol-utilizing mutants, 
adaptive evolution based on GREACE (genome repli-
cation engineering assisted continuous evolution) was 
conducted (Luan et  al. 2013). A proofreading-defec-
tive element of the DNA polymerase of E. coli (ε subu-
nit encoded by dnaQ gene) was expressed in strain 
Ec-ΔfrmA-mdh2PB1-fls to introduce random mutations 
into the genomic DNA during continuous passage culti-
vation in LB medium. For each passage, cells were trans-
ferred into M9 minimal medium supplemented with 
methanol to enrich potential mutants with improved 
cell growth on methanol. Mutants were then isolated 
from the culture and a mutant with the best cell growth 
on methanol was isolated and designated as Ec-ΔfrmA-
mdh2PB1-fls-M11 (Additional file  1: Figure S1). When 
mutant Ec-ΔfrmA-mdh2PB1-fls-M11 was cultivated in 

M9 minimal medium supplemented with 1  g/L yeast 
extract and methanol, 2  g/L methanol was consumed, 
which was more than that consumed by its parent strain 
Ec-ΔfrmA-mdh2PB1-fls. It was noticed that biomass of the 
mutant declined after 5 h and addition of methanol helps 
maintain the biomass (Fig. 2d). We speculated that such 
decline in cell growth was caused by the random muta-
tions introduced by GREACE. 13C-methanol-labeling 
experiment was then conducted and the results validated 
that mutant Ec-ΔfrmA-mdh2PB1-fls-M11 assimilated 
more 13C-methanol into biomass (Fig.  3b; Additional 
file 1: Table S5). The results demonstrated that coupling 
of metabolic engineering and adaptive evolution was 
an enabling strategy to endow microorganisms with the 
ability to utilize methanol.

Synthetic methylotrophs have been constructed by 
heterogenous expressing MDH and RuMP genes (Pfeif-
enschneider et al. 2017). RuMP cycle depends on regener-
ating the formaldehyde acceptor Ru5P, which requires high 
coordination of many enzymes involved in formaldehyde 
assimilation and PP pathway (Whitaker et  al. 2015). On 
the contrary, the linear formaldehyde assimilation path-
way used in this study only requires one enzyme FLS and 
directly produces C3 intermediate DHA, which could be 
a great advantage for pathway engineering. Previous and 
the present studies revealed that constructing synthetic 
methylotrophs was far more complicated than comple-
menting metabolic pathways where several crucial factors 
need to be considered, such as how to keep the intracellu-
lar formaldehyde concentration below the toxicity thresh-
old (Witthoff et al. 2015) and how to balance the reducing 
equivalent generated by methanol oxidation (Price et  al. 
2016). In this case, combining metabolic engineering and 
adaptive evolution could be an easy strategy to prepare 
a desirable mutant that assimilates methanol efficiently. 

Fig. 3  Biomass mass isotopomers of strain Ec-ΔfrmA-mdh2PB1-fls (a) and strain Ec-ΔfrmA-mdh2PB1-fls-M11 (b) using 13C-labeled methanol. CA citric 
acid. Values are corrected for natural abundance. Data are the means from three parallel experiments
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By using such a combined strategy, improved metha-
nol assimilation was obtained in the mutant Ec-ΔfrmA-
mdh2PB1-fls-M11. Whole-genome resequencing revealed 
that no mutation was introduced into the plasmid, which 
was consistent with the unchanged MDH activity (Fig. 1b). 
Meanwhile, 66 missense, synonymous, and intergenic 
mutations that covered amino acid transport and metabo-
lism, signal transduction, cell wall/membrane/envelope 
biogenesis, etc. were discovered (Additional file  2: Table 
S6). Further investigation of these mutations will likely 
elucidate key factors of methanol utilization in synthetic 
methylotrophs.

Conclusions
In this study, an artificial linear methanol assimilation 
pathway was functionally assembled in E. coli. Methanol 
utilization by the engineered strain was facilitated and 
further improved by adaptive evolution. 13C-methanol-
labeling experiment revealed the methanol incorporation 
into cellular biomass. This study is the first demonstra-
tion of applying the linear methanol assimilation path-
way for biological conversion of methanol. The combined 
strategy of metabolic engineering and adaptive evolution 
is also a useful approach to endow platform strains with 
the ability to utilize other C1 resources such as the main 
component of natural gas, methane.
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