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Abstract 

Background:  Cellulose is hydrolyzed to sugar monomers by the synergistic action of multiple cellulase enzymes: 
endo-β-1,4-glucanase, exo-β-1,4 cellobiohydrolase, and β-glucosidase. Realistic modeling of this process for vari-
ous substrates, enzyme combinations, and operating conditions poses severe challenges. A mechanistic hydrolysis 
model was developed using stochastic molecular modeling approach. Cellulose structure was modeled as a cluster of 
microfibrils, where each microfibril consisted of several elementary fibrils, and each elementary fibril was represented 
as three-dimensional matrices of glucose molecules. Using this in-silico model of cellulose substrate, multiple enzyme 
actions represented by discrete hydrolysis events were modeled using Monte Carlo simulation technique. In this work, 
the previous model was modified, mainly to incorporate simultaneous action enzymes from multiple classes at any 
instant of time to account for the enzyme crowding effect, a critical phenomenon during hydrolysis process. Some 
other modifications were made to capture more realistic expected interactions during hydrolysis. The results were 
validated with experimental data of pure cellulose (Avicel, filter paper, and cotton) hydrolysis using purified enzymes 
from Trichoderma reesei for various hydrolysis conditions.

Results:  Hydrolysis results predicted by model simulations showed a good fit with the experimental data under all 
hydrolysis conditions. Current model resulted in more accurate predictions of sugar concentrations compared to pre-
vious version of the model. Model results also successfully simulated experimentally observed trends, such as product 
inhibition, low cellobiohydrolase activity on high DP substrates, low endoglucanases activity on a crystalline substrate, 
and inverse relationship between the degree of synergism and substrate degree of polymerization emerged naturally 
from the model.

Conclusions:  Model simulations were in qualitative and quantitative agreement with experimental data from 
hydrolysis of various pure cellulose substrates by action of individual as well as multiple cellulases.
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Background
During bioethanol production from lignocellulosic bio-
mass, cellulose hydrolysis can be achieved using chemi-
cals or biological catalysts (enzymes). Although acid 
hydrolysis is a relatively fast process, it suffers from some 

major limitations such as high operational cost, by-prod-
uct formation, corrosion of equipment, neutralization 
requirement, high disposal cost (Bansal et al. 2009; Wang 
et  al. 2012). Therefore, enzymatic hydrolysis is consid-
ered more feasible option during bioethanol production 
and has been the focus of research in last several decades. 
However, due to extensive hydrogen bonding, cellulose 
chains form a recalcitrant crystalline structure, which is 
difficult to degrade and require a much higher amount of 
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enzymes (40–100 times) for hydrolysis compared to that 
of starch (Merino and Cherry 2007; Wang et al. 2012).

Cellulose is hydrolyzed to glucose by synergetic action 
of multiple cellulase enzymes, such as endoglucanases 
(EG) (EC3.2.1.4), exoglucanases [also known as cello-
biohydrolases (CBH)] (EC3.2.1.91) and β-glucosidase 
(BG) (EC3.2.1.21) (Bansal et  al. 2009; Kadam et  al. 2004; 
Zhang and Lynd 2004). Although all these enzymes have 
a different mode of action, they act in highly cooperative 
(“synergism”) action for efficient degradation cellulose. 
Exoglucanases adsorb only from the chain ends (CBH I 
from reducing end and CBH II from the non-reducing end) 
and act in a processive manner to produce mainly cellobi-
ose units. Processive enzymes remain bound to the glucose 
chain after cleaving a cellobiose molecule and will continue 
to cleave cellobiose units until a minimum chain length is 
reached. On the other side, endoglucanases are non-pro-
cessive enzymes that act randomly on the surface glucose 
chains, hydrolyze one/few accessible internal bonds in the 
glucose chains and produce new chain ends. β-glucosidases 
hydrolyze the cellobiose and short soluble oligomers to glu-
cose and complete the hydrolysis process (Fig. 1).

Due to high cost of cellulase enzymes (up to 30% of 
ethanol cost) and low sugar yields, the hydrolysis process 
is one of the major obstacles in the commercialization of 
cellulosic ethanol production (Bansal et  al. 2009; Kadam 
et al. 2004; Kumar and Murthy 2011). There is potential for 
cost reduction by improving the understanding of the pro-
cess, by testing a wide array of enzymes and various sub-
strates under different conditions to determine optimum 

hydrolysis conditions. Designing highly efficient cellulase 
mixtures (“optimized enzyme cocktails”) that can yield 
high hydrolysis rate at minimal enzyme dosage, is one such 
approach. Cellulase extracted from various microorgan-
isms contain different amount of each enzyme and many 
commercial preparations consist of mixes from a differ-
ent organism. For example, cellulase from Trichoderma 
reesei contains low fractions of β-glucosidase enzyme 
and this enzyme is added to the cellulase preparation to 
increase hydrolysis rates. It has been reported that syn-
thetic enzyme mixture (designer combinations) of cellu-
lase enzymes can give relatively higher hydrolysis yields 
(Ballesteros 2010; Banerjee et al. 2010a, b; Besselink et al. 
2008). Currently, the only reliable method for designing 
optimal cellulase mixtures involves extensive experimen-
tation using statistically designed combinations of various 
enzyme levels (Baker et al. 1998; Banerjee et al. 2010a, b; 
Berlin et al. 2007; Gao et al. 2010). Since conducting such 
large number of hydrolysis experiments is expensive, 
time-consuming and labor intensive, a comprehensive 
hydrolysis model that can that can capture process dynam-
ics and predict hydrolysis profile under various scenarios 
could be an alternate feasible approach. However, due to 
multiple variables such as use of several enzymes acting 
synergistically, complex cellulose structure, and dynamic 
enzyme–substrate interactions make it difficult to develop 
mathematical models that can predict accurate hydroly-
sis profile under different operating conditions. Using a 
novel stochastic molecular modeling approach, in which 
each hydrolysis event is translated into a discrete event, we 

Fig. 1  Hydrolysis of cellulose by action of various cellulase enzymes. Red color represents crystalline region and black color are in amorphous 
region (Adapted from Kumar and Murthy 2013)
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developed a first three-dimensional mechanistic cellulose 
hydrolysis model. The model captured the structural prop-
erties of cellulose, enzyme properties, the effect of reac-
tion conditions, and most importantly dynamic changes 
in these properties (Kumar and Murthy 2013). Other than 
accurate predictions of hydrolysis profile, this modeling 
approach incorporates detailed structural features of cel-
lulose and provides unique advantages compared to math-
ematical models, such as tracking of multiple oligomers 
as well as chain distribution, tracking of morphological 
changes in cellulose, elimination of the need for param-
eter changes with a change in experimental data set. Please 
refer to our earlier paper (Kumar and Murthy 2013) for 
more detailed comparison of this modeling approach and 
comparisons to other modeling approaches.

Although the previous model incorporated significant 
cellulose structural details and complex enzyme–substrate 
interactions, it did not include the simultaneous action of 
multiple classes of enzymes at any instant of time. During 
each iteration, only one class of enzymes (e.g., EG, CBH I or 
CBH II) was acting, which ignores the enzyme crowding/
jamming effect, a critical phenomenon at high enzyme con-
centrations (Hall et al. 2010; Igarashi et al. 2011). This work 
presents the updated model with incorporation of enzyme 
jamming phenomenon by modeling simultaneous action of 
multiple enzymes, and also including other practical con-
siderations, such as oligomer solubility and glucose pro-
duction by cellobiohydrolase enzymes. Our earlier model 
was validated with very limited experimental data from the 
literature. In this work, the model simulations were vali-
dated with comprehensive experimental data sets obtained 
from hydrolysis of pure cellulose (Avicel, filter paper, and 
cotton) using purified T. reesei enzymes. Experiments were 
performed with purified CBH I and CBH II under various 
hydrolysis conditions, to cover the effect of enzyme load-
ings, substrate properties, and product inhibition.

Methods
Materials
Celluclast, a commercial cellulase from T. reesei (Lot # 
CCN03141), was donated by Novozymes (Novo, Bags-
vaerd, Denmark). P-Aminophenyl β-d-cellobioside 
(sc-222106, Lot #K213), used as an affinity ligand for cel-
lobiohydrolase, was purchased from Santa Cruz Biotech-
nology Inc. (Santa Cruz, CA, USA). All other chemicals 
required for protein purification and hydrolysis experi-
ments were purchased from Sigma-Aldrich (Milwaukee, 
WI). Whatman No. 1 filter paper (Whatman, Inc., Flor-
ham Park, NJ) and cotton balls (Kroger Co., Cincinnati, 
Ohio) were used as the pure cellulose samples for the 
hydrolysis experiments. The commercial β-glucosidase 
(Novozyme 188) from Aspergillus niger was purchased 
from Sigma-Aldrich (Milwaukee, WI).

Model development
Stochastic hydrolysis model
Development of this comprehensive model consisting 
cellulose structural details and complex enzyme–sub-
strate interactions consisted of in silico representative 
cellulose model, enzyme characterization, and develop-
ing algorithms for modeling the enzyme actions. In this 
model, cellulose was modeled based on the structure of 
cellulose Iβ, the most abundant cellulose form in higher 
plants. The structure was modeled as a group of micro-
fibrils (MF) (2–20  nm diameter), and each microfibril 
contains multiple elementary fibrils (EF), the basic build-
ing block of cellulose with about 3.5  nm diameter and 
containing 36 glucose chains (Chinga-Carrasco 2011; 
Fan and Lee 1983; Lynd et  al. 2002). The number of EF 
in an MF, glucose molecules in one chain of glucose (i.e., 
degree of polymerization, DP), was assumed to be con-
stant during each simulation. These parameters were 
dynamically determined at the beginning of the cellulose 
structure simulation, based on the type of cellulose simu-
lated. The degree of crystallinity in cellulose (50–90%) is a 
critical factor affecting the cellulose hydrolysis, as amor-
phous regions are believed to be relatively more suscep-
tible to enzyme action and determine initial hydrolysis 
rates. To capture this important property in this model, 
glucose chain in each EF were assumed to pass through 
multiple crystalline regions (200 glucose molecules long 
regions) separated by amorphous regions. The concept 
of modeled cellulose structure and its resemblance with 
actual cellulose structure is illustrated in Fig. 2.

Each glucose molecule in the modeled microfibril 
was given a unique serial number as its identity, and a 
big data set containing other parameters (e.g., reduc-
ing/non-reducing end, EF surface, MF surface, crystal-
line or amorphous, soluble, non-soluble, distance from 
chain end, etc.) that describe structural properties of that 
bond. During developing algorithms for cellulase actions, 
enzyme accessibility was determined based on these 
parameters (data set with each glucose molecule) and 
action pattern of enzymes. For additional details of cel-
lulose model please refer to earlier publications (Kumar 
2014; Kumar and Murthy 2013).

Cellulase enzymes vary in mode of actions, and for 
this model, the enzymes were classified into eight classes 
depending upon their structure and mode of action (e.g., 
non-processive endocellulase with cellulose binding mol-
ecule (CBM), processive CBH I with CBM, processive 
CBH II with CBM, etc.). Please refer to our earlier paper 
(Kumar and Murthy 2013) for more details on enzyme 
classifications, their characteristics, and mode of actions. 
Cellulose hydrolysis is dependent on biomass-dependent 
extrinsic factors (crystallinity, accessibility, and DP) and 
enzyme action is dependent on intrinsic factors (enzyme 
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activity, stability with pH and temperature, etc.). The 
extrinsic factors were modeled in the simulated cellu-
lose structure described above. Enzyme activity (depends 
on enzyme origin and level of purification) and enzyme 
loading (amount of enzyme/g substrate; based on experi-
mental conditions) information was transformed into 
theoretical maximum turnover number (maximum pos-
sible number of bonds hydrolyzed per unit time for each 
enzyme) (Nhi_max) (Eq. 1) for each class of enzyme.

where ‘Ei’ is amount of ‘ith’ enzyme used (mg cellulose); 
‘Ui’ is activity of ‘ith’ enzyme (IU/mg enzyme); ‘Gsim’ is 
the number of glucose molecules simulated in the model; 
“162” is the average molecular weight of anhydrous glu-
cose; ‘Si’ is stability of ‘ith’ enzyme under experimental 
conditions (temperature and pH). Value of “Si” could 
be calculated for any enzyme using empirical equations 
developed, such as Arrhenius rate relationship for tem-
perature. Value of ‘Si’ is a real number between 0 and 1.

These numbers were further transformed to numbers 
of hydrolyzed bonds per microfibril based on the total 
number of microfibrils simulated and mode of action 
of enzymes. For example, for endoglucanase enzymes, 

(1)

Nhi_max = Ei ∗ Ui ∗ 6.023 ∗ 10
17

∗

GSim

6.023 ∗ 1023
∗ 162 ∗ Si,

these numbers were proportional to relative glucose 
molecules on the surface of microfibril. On the other 
hand, for CBH I and CBH II, these numbers were pro-
portional to a relative number of chain ends available in 
one microfibril. Please refer to Kumar (2014) for more 
details.

The hydrolysis process was modeled using Monte Carlo 
simulation technique, which has been used successfully 
earlier for modeling the starch hydrolysis (Marchal et al. 
2001, 2003; Murthy et  al. 2011; Wojciechowski et  al. 
2001). The overall schematic for simulating the enzy-
matic hydrolysis for each enzyme is shown in Fig. 3 and 
detailed description is provided in Kumar and Murthy 
(2013). All the required substrate–enzyme interactions, 
such as binding of CBH only on chain ends, the higher 
binding probability of binding EG on MF surface than 
at EF surface, were incorporated into the model using 
algorithms. It was also made sure that sufficient glucose 
molecules (based on the size of enzyme) are available to 
allow binding.

Only one class of enzymes was modeled working at a 
time, so the model did not account for the enzyme crowd-
ing effect (locations occupied by other class of enzymes 
at the same time). These effects were incorporated in the 
modified model discussed in next section. Other than 
cellulose structural restrictions, some probabilities were 

Fig. 2  Structure of cellulose: a actual cellulose structure; b structure of cellulose simulated in model. Glucose molecules in red color represent 
crystalline region and glucose molecules in black color are in amorphous region. (Adapted from Kumar 2014)
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defined corresponding to enzyme action. For example, 
the probability of hydrolysis of a β-1,4 bond hydrolysis 
located in amorphous regions was more than that of in 
crystalline region by an endoglucanase enzyme. Choice 
was made by generating a random number at each deci-
sion point and comparing it with the defined probability. 
The hydrolysis event would happen only in the case when 
the random number was greater than the probability of 
hydrolysis. Number of iterations were restricted using a 
counter (Fig. 3). If all conditions for hydrolysis were met 
for that bond, it was converted to broken bond and the 
counter was incremented. Similarly, the counter was 
given an increment corresponding to unsuccessful events 
also (in case binding or hydrolysis does not occur). After 
each broken bond, it was made sure to change proper-
ties of other glucose molecules in that chain (e.g., chain 
length, distance from chain end, solubility, etc.). If a 
glucose chain becomes soluble, part of the chain just 
beneath the soluble chain is exposed and becomes acces-
sible to enzymes. The concept is described in detail else-
where (Kumar 2014).

Modifications in the model
The model described in above section was the first report 
of a comprehensive stochastic model for cellulose hydrol-
ysis that successfully captured the cellulose structural 
features (three dimensional), enzyme characteristics, and 
dynamic enzyme–substrate interactions. In this work, 
the model was further modified to capture more realistic 
expected interactions during hydrolysis by incorporat-
ing the (1) simultaneous action of enzymes from multiple 
classes at any instant of time to account for the enzyme 
crowding; (2) partial solubility of cello-oligomers with 
DP 6–13, and (3) production of glucose by exocellulase. 
In the previous version of the model, the model was 
simulated based on the iterative concept only; however, 
in real conditions multiple enzyme molecules act simul-
taneously and block the hydrolysis sites for each other 
(Igarashi et  al. 2011). Enzyme crowding and simultane-
ous action of enzymes were incorporated in the current 
model by calculating the number of enzyme molecules 
based on the enzyme loading, their molecular weight, 
and number of glucose molecules simulated. The itera-
tions are performed for every minute of hydrolysis and 
properties of substrate are changed after that at the end 
of the 1-min time step. For processive enzymes, once an 
enzyme molecule bound to chain end, it remains bound 
at the end of 1-min time step and continues further down 
the chain until it reaches the end of the chain or desorbs 
from the molecule as per its probability. Exocellulase 
enzyme binds to multiple cellulase chains (three chains in 
the model) (Asztalos et al. 2012; Levine et al. 2010), so it 
is essential that all three chains must be accessible to the 

enzyme (on surface and not blocked by other enzyme) for 
binding of the enzyme. In the previous version of model, 
it was assumed that glucose molecules equal to size of 
CBM only are required on surface and unblocked for 
binding, however in the current model whole length of 
enzyme was considered (except linker, because it is flex-
ible and is compressed during movement) (Wang et  al. 
2012). The detailed schematics explaining algorithms 
developed to model CBH I and EG actions have been 
provided in the in Additional files 1 and 2, respectively. 
Cellodextrins with DP  <  6 are considered to be com-
pletely soluble, DP 6–13 partially soluble and above 13 
are insoluble in water (Lynd et al. 2002; Zhang and Lynd 
2004). In the previous version of the model, all oligomers 
with DP > 6 were considered insoluble. While the CBM 
of the enzymes cannot bind to these chains due to its 
large size, the catalytic domains of the enzymes will still 
act on the oligomers in solution. In the absence of reli-
able literature data, the soluble fraction of the oligomers 
was set as a function of DP in the range of DP 7–13. The 
oligomers with DP 7–9, 10–11, and 12–13 were assumed 
75, 50, and 25% soluble, respectively. Oligomers with 
DP  <  6 were assigned a 100% solubility, and while oli-
gomers with DP more than 13 were set to 0% solubility. 
In the previous model, the CBH action could only pro-
duce cellobiose during cellulose hydrolysis. However, 
glucose formation during cellulose hydrolysis by CBH 
action has been observed by some researchers (Eriksson 
et al. 2002; Medve et al. 1998), and was also observed in 
our experiments (discussed later in the “Results and dis-
cussion” section). Therefore, the model was modified to 
include glucose formation in addition to the cellobiose. 
A probability of glucose formation was included in the 
model, and glucose/cellobiose formation was decided by 
generating a random number and comparing with that 
probability. The probabilities and increments associated 
with productive various events (productive binding, no 
binding, non-productive binding, etc.) are listed in Addi-
tional file 3: Table S1.

Enzyme crowding/jamming phenomenon might not be 
critical at low enzyme dosages and during action of indi-
vidual enzymes. Also, the other details incorporated into 
this model might be ignored if the final goal of the model 
is to simulate the sugar concentration only during the 
hydrolysis process. However, to simulate and optimize 
the composition/cocktail of enzymes, it is necessary to 
simulate the effects of each enzyme class carefully.

Model implementation and simulations
The algorithms of the hydrolysis model were written in 
C++ language. Random number generators were used in 
simulation of cellulose structure and hydrolysis process 
(Matsumoto and Nishimura 1998).
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The cellulose structure was simulated for three model 
cellulose substrates Avicel, filter paper and cotton, to 
cover the range of substrates with different structural 
properties (DP and degree of crystallinity). Avicel is low-
DP cellulose, with DP only about 300 and crystallinity 
index 0.5–0.6; whereas, cotton has relatively very high 
DP (about 2000–2500) and crystallinity index of 0.85–
0.95 (Zhang and Lynd 2004). Hydrolysis simulations were 
performed based on the experimental conditions: weight 
of solution (scale of hydrolysis), solid loading, cellulose 

content, total enzyme loading (mg protein/g cellulose), 
ratio of enzymes present (EG:CBH I:CBH II:BG), temper-
ature, pH and hydrolysis duration. Enzyme activities can 
be determined from supplier, literature, or can be deter-
mined using standard protocols (Ghose 1987). Unless 
determined in the lab, specific activities of enzymes from 
T. reesei were assumed as 0.4, 0.08, and 0.16 IU/mg of EG 
I, CBH I and CBH II, respectively (Zhang and Lynd 2006) 
for model simulations. The output from model included 
several data files containing glucose concentrations, 

Fig. 3  Basic schematic for hydrolysis simulations in model. (Detailed schematics provided in Additional files 1 and 2.) (Adapted from Kumar and 
Murthy 2013)
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oligosaccharide concentrations, chain distribution pro-
file (number of chains of various lengths), crystallinity 
index profile (ratio of crystallinity at various time inter-
vals), solubility profile and data sheets for each microfi-
bril (illustrating major properties associated with glucose 
molecules) at various times during hydrolysis.

Model validation
The data from model simulations were compared with 
various sets of experimental results from cellulose 
hydrolysis in our lab and from literature (Bezerra and 
Dias 2004; Bezerra et  al. 2011) to validate the model 
under various hydrolysis conditions.

Validation with experimental data
The model was validated with the results obtained from 
hydrolysis of pure cellulosic substrates (filter paper and 
cotton) using purified CBH I and CBH II. The cellulases 
CBH I and CBH II were purified from Celluclast (Novo-
zymes, Denmark) using a series of chromatography steps 
in BioLogic LP system (Bio-Rad Laboratories, Hercules, 
CA, USA). The purification experiments were performed 
at room temperature and the collected enzymes were 
transferred and stored in the refrigerator at 4 °C.

Enzyme purification
The flow diagram of steps followed in the CBH I and 
CBH II purification is shown in Fig. 4. In the first step of 
purification, the Celluclast enzyme mixture was desalted 
using Sephadex G-25 Fine (dimensions: 2.5 cm × 10 cm) 
gel filtration column. The protein was rebuffered in 
50  mM Tris–HCl buffer (pH 7.0) at 5  mL/min. The 
desalted protein was fractionated by anion-exchange 
chromatography using DEAE-Sepharose column (dimen-
sions: 2.5  cm  ×  10  cm). The sample was loaded using 
50 mM Tris–HCl buffer (pH 7.0) at 5 mL/min flow rate 
and was eluted stepwise: 1st elution at 35%, and 2nd elu-
tion at 100% of 0.2  M sodium chloride in 0.05  M Tris–
HCl buffer (pH 7) (Jäger et  al. 2010). The flow-through 
from DEAE column (rich in CBH II enzymes) was con-
centrated and rebuffered in 50 mM sodium acetate buffer 
(pH 5.0) using Pellicon XL 50 Ultrafiltration Cassette, 
with biomax 10 (Millipore, USA). The rebuffered pro-
tein was spiked with gluconolactone (final concentration 
of 1 mM) and loaded on the p-aminophenyl cellobioside 
(pAPC) affinity column (dimensions: 1.5  cm ×  10  cm) 
with 0.1  M sodium acetate, containing 1  mM gluconol-
actone and 0.2 M glucose (pH 5.0) at flow rate of 1.5 mL/
min (Jeoh et  al. 2007; Sangseethong and Penner 1998). 
The function of gluconolactone in the buffer is to sup-
press β-glucosidase activity, which otherwise can cleave 
the ligand (Sangseethong and Penner 1998). The bound 
CBH II protein was eluted using the running buffer 

containing 0.01  M cellobiose [100  mM sodium acetate 
buffer containing 1  mM gluconolactone, 0.2  M glucose, 
and 0.1 M cellobiose (pH 5.0)]. The purified CBH II from 
affinity column was concentrated and loaded on the phe-
nyl Sepharose column (dimensions: 1.0  cm  ×  10  cm) 
for hydrophobic interaction chromatography to sepa-
rate core and intact proteins (Sangseethong and Pen-
ner 1998). The sample was loaded in high salt (0.35  M 
ammonium sulfate in 25 mM sodium acetate buffer, pH 
5.0) and eluted with linear gradient from running buffer 
to elution buffer [25  mM acetate buffer containing 20% 
ethylene glycol (v/v), pH 5.0]. Hydrophobic interaction 
chromatography was performed on the second elution 
(CBH I rich) from the anion-exchange column, after con-
centrating and rebuffering with 25  mM sodium acetate 
buffer. The enzyme was loaded in very high salt (0.75 M 
ammonium sulfate in 25 mM sodium acetate buffer, pH 
5.0) and eluted with linear gradient from running buffer 
to elution buffer [25  mM acetate buffer containing 5% 
ethylene glycol (v/v), pH 5.0]. The purified CBH II and 
CBH I fractions from hydrophobic interaction column 
were concentrated and rebuffered in 50  mM sodium 
acetate buffer, pH 5.0. Protein containing fractions were 
determined by measuring absorbance at 280 nm.

The fractions collected from the chromatographic puri-
fications steps shown in Fig. 4 were analyzed by SDS-pol-
yacrylamide gel electrophoresis to check for their purity. 
Based on the molecular weight comparison with marker, 
and literature data, the single bands in the numbered 
lanes 1 and 2 of Fig. 5 correspond to CBH II (MW 54 kDa) 
and CBH I (MW 61–64  kDa), respectively (Jäger et  al. 
2010; Medve et al. 1998; Sangseethong and Penner 1998). 
The activities of CBH I and CBH II on Avicel were deter-
mined as 0.478 and 0.379 IU/mg of protein, respectively.

During protein purification, the protein concentrations 
in the samples were determined based on Bradford assay 
using Quick Start™ Bradford Protein Assay Kit (Bio-Rad, 
USA) and bovine serum albumin (BSA) as standard. The 
activities of purified CBH I and CBH II were determined 
on Avicel in 50 mM sodium acetate buffer, pH 5.0. 1 mL 
of Avicel solution (10 g/L) with final enzyme concentra-
tion of 0.1 mg/mL was incubated (mixed end to end) at 
45 °C in 2 mL Eppendorf centrifuge tubes for 2 h (Jäger 
et  al. 2010). After 2  h of incubation, the samples were 
heated at 95 °C for 5 min to stop the hydrolysis. The sam-
ples were centrifuged at 15,000 rpm for 5 min to separate 
the supernatant. The reducing sugar concentration in the 
supernatant was determined using dinitrosalicylic acid 
(DNS) assay and using glucose as standard.

Enzymatic hydrolysis
The hydrolysis experiments were conducted at 25  g/L 
cellulose (filter paper and cotton balls) concentration 
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and various enzyme loadings (5, 10, and 15  mg/g cel-
lulose) in 50  mM sodium acetate, pH 5.0, 10  mL total 
volume in 25  mL Erlenmeyer flasks closed with rubber 
stopper. 100  µL of 2% sodium azide was added in each 
flask to avoid microbial contamination. The experiments 
were carried out in controlled environment incubator 
shaker set at 45  °C and 125  rpm. 200 µL of sample was 
withdrawn at 3, 6, 9, 12, 18, 24, 36, 48, and 72 h to deter-
mine sugar concentrations and the hydrolysis profile. 
The samples were heated at 95  °C for 5 min to stop the 
reaction and were prepared for high-performance liquid 
chromatography (HPLC) analysis. All experiments were 
performed in triplicate.

Results and discussion
Validation with literature data
Model simulations were performed for Avicel hydroly-
sis by CBH I using experimental conditions mentioned 
in Bezerra and Dias (2004). Figures 6 and 7 illustrate the 
comparison of model simulations and experimental data 

from hydrolysis of cellulose at 5 and 2.5% solid loadings, 
respectively. The data from simulation of previous ver-
sion of model (Kumar and Murthy 2013) were also plot-
ted in these figures to demonstrate the differences in 
hydrolysis profiles. Results from experimental data and 
model simulation data were in qualitative and quanti-
tative agreement at both 25 and 50 g/L Avicel loadings. 
Coefficient of determination (R2) was found 0.97 (at 5% 
Avicel loading) and 0.94 (at 2.5% Avicel loading) and was 
higher than that obtained from previous model results: 
0.70 (at 5% Avicel loading) and 0.89 (at 2.5% Avicel load-
ing). Coefficient of determination value was low for pre-
vious version of model because, at such high enzyme 
loadings, enzyme crowding effect become predomi-
nant, which was not captured in the previous version of 
model. Current model captures the crowding effect and 
therefore results in more accurate cellobiose concentra-
tions. Quantitative match of model simulations with 
experimental data for various substrate–enzyme ratios 
also indicated that this model successfully captured the 

Fig. 4  Flow diagram of the chromatography steps used for purification of the CBH I and CBH II enzymes. Blue lines in the sub-plots refer to absorb-
ance at 280 nm and red line refers to conductivity
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cellobiose inhibition effect. Comparison of model simu-
lations with additional experimental data from literature 
(lower enzyme loadings) is illustrated in Additional file 3: 
Figures S1a and S1b.

Validation with experimental data from current study
Hydrolysis of filter paper by CBH I and CBH II
The results from model simulations and actual experi-
ments of hydrolysis of filter paper at various loadings 
of CBH I and CBH II are shown in Figs. 8, 9, 10 and 11, 
respectively.

In all of the cases, the model fitted filter paper hydroly-
sis data and predicted the sugar profiles and hydrolysis 
rates. It is very important to note that except enzyme 
activities (determined experimentally in this case), no 
other model parameter was changed during simulations 
under these hydrolysis conditions vs. earlier literature-
based experimental conditions. Excellent fitting of model 
with data with studies from two different lab groups 
demonstrates the robustness and potential usability 
(scope of using for any hydrolysis conditions with para-
metrization issues) of this model. As expected, cellobi-
ose, followed by glucose was the major product during 
hydrolysis by CBH I or CBH II. The model predictions 
were accurate in determining both cellobiose and glucose 
concentrations during hydrolysis. The previous version 
of model did not account for the glucose formation dur-
ing cellulose hydrolysis by cellobiohydrolases, hence, did 
not fit with the experimental data (Additional file 3: Fig-
ure S2). Small amounts of cellotriose were also observed 

both in experimental data and model simulations (data 
not shown). The cellobiose production rate is high at the 
beginning of hydrolysis and decreases significantly due 
to cellobiose inhibition on the CBH I and II enzymes. 
The inhibition effect was captured by the model and 
was also further validated when the effect disappears on 
removal of cellobiose by converting it to glucose through 
β-glucosidase action (discussed later in the manuscript).

The R2 values between experimental and model data 
for cellobiose production during filter paper hydrolysis 
by CBHI and CBH II were in the range of 0.65–0.90 and 
0.77–0.81, respectively. It was observed from the results 
that increase in enzyme loading did not result in the sig-
nificant increase in the final sugar yields. The enzymes 
used in the hydrolysis experiments had very high activ-
ity, and possibly increasing the enzyme loading resulted 
in the enzyme crowding effect due to limited availability 
of chain ends. It can be observed from the results, that 
the phenomenon was well captured by the model, as the 
simultaneous action of multiple enzyme, their blockage 
by each other was considered in the model.

Effect of beta‑glucosidase addition (exo‑BG synergism)
Cooperative action of different enzymes, known as 
synergism, is one of the most important phenomenon 
observed in cellulose degradation (Andersen et al. 2008; 
Bansal et  al. 2009; Wang et  al. 2012; Zhang and Lynd 
2004). Synergism between CBH I and/or CBH II and 
β-glucosidase enzymes is very important for the conver-
sion of cellulose (Zhang and Lynd 2004). This synergism 

Fig. 5  SDS-polyacrylamide gel electrophoresis of the purified cellulase enzymes. M molecular mass marker, (1) CBH II (2) CBH I
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occurs mainly because of strong inhibition effect of cello-
biose on the CBH performance. Primary product of CBH 
action on cellulose is cellobiose, a strong inhibitor to 
CBH activity (Andersen 2007; Ballesteros 2010; Fan et al. 

1987; Mosier et al. 1999; Zhang and Lynd 2004). Cellobi-
ose buildup is prevented by the action of β-glucosidase 
which further hydrolyzes cellobiose to glucose and results 
in CBH and β-glucosidase synergism. The synergistic 

Fig. 6  Comparison of model simulations (current and previous version) and experimental data of cellobiose production during hydrolysis of Avicel 
(50 g/L) at 20 mg/g cellulose loading. The data points are from literature studies (Bezerra and Dias 2004; Bezerra et al. 2011), solid lines are from the 
new model predictions, and dotted lines are for predictions from previous version of model

Fig. 7  Comparison of model simulations (current and previous version) and experimental data of cellobiose production during hydrolysis of Avicel 
(25 g/L) at 40 mg/g cellulose loading The data points are from literature studies (Bezerra and Dias 2004; Bezerra et al. 2011), solid lines are from the 
new model predictions, and dotted lines are for predictions from previous version of model
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effect of β-glucosidase addition was observed during fil-
ter paper hydrolysis by CBH I and CBH II and is illus-
trated in Figs. 12 and 13, respectively.

Cellulose conversions after 72  h of hydrolysis were 
observed about 82.7 and 15.1% higher for CBH I 
(10 mg/g glucans) and CBH II (10 mg/g glucans), respec-
tively, in presence of excess β-glucosidase than those in 
absence of β-glucosidase. To determine the model accu-
racy in predicting this trend, action of CBH I and CBH II 
was simulated in absence and presence of β-glucosidase. 
It can be observed from Figs. 11 and 12 that model simu-
lations capture this synergism successfully both for CBH 
I and CBH II enzymes.

The synergism was lower for CBH II compared to CBH 
I, possibly due to relatively less inhibitory effect of cel-
lobiose on CBH II. The observation of relatively lower 
cellobiose inhibition towards CBH II was also reported 
in a comprehensive study on cellobiose inhibition using 
14C-labeled cellulose substrates, conducted by Teug-
jas and Väljamäe (2013). In that study, it was reported 
that enzymes from glycoside hydrolase (GH) family 7 
were most sensitive to cellobiose inhibition followed by 
family 6 CBHs and endoglucanases (EGs). The model 
simulations successfully followed the trend observed 
experimentally. Other than cellulose conversion, hydroly-
sis rate of filter paper by CBH I and CBH II with excess 

Fig. 8  Comparison of model simulations (solid lines) with experimental data during hydrolysis of filter paper (25 g/L) at CBH I loading of 10 mg/g 
cellulose: a sugar production, b rate of conversion of cellulose

Fig. 9  Comparison of model simulations and experimental observations of sugar production during hydrolysis of filter paper (25 g/L) at a CBH I 
loading of 5 mg/g cellulose, b CBH I loading of 15 mg/g cellulose
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of β-glucosidase was markedly higher than that of CBH 
enzymes acting alone (data not reported).

Effect of structural properties of cellulose
Cellulose hydrolysis is highly affected by the structural 
properties of cellulose. In case of cellobiohydrolases 
(CBH I and CBH II) action, where the enzymes act on 
chain ends only, fractions of reducing/non-reducing ends 
relative to total glucose molecules would be critical fac-
tor affecting hydrolysis. For example, the percentage of 
chain ends for filter paper with average chain DP of 700 
is 0.13% compared to 0.05% for bacterial cellulose with 
average DP of 2000 and 0.033% for cotton with DP of 

3000 (Zhang and Lynd 2004, 2006). Therefore, it would 
be expected that CBH I and CBH II would hydrolyze fil-
ter paper more efficiently compared to cotton or bacte-
rial cellulose, as there are relatively many more reducing/
non-reducing ends. The expected trends were observed 
in both experimental and model simulations of CBH I 
and CBH II action on filter paper and cotton (Fig. 14a, b).

The cellulose conversion after 72 h of cotton hydrolysis 
was observed 77.0 and 92.6% less than those of filter paper 
hydrolysis by action of CBH I and CBH II, respectively. 
The model had a good fit with experimental data for cot-
ton hydrolysis in case of CBH I. For CBH II, although the 
absolute values of predicted cellulose conversion were 

Fig. 10  Comparison of model simulations (solid lines) with experimental data during hydrolysis of filter paper (25 g/L) at CBH II loading of 10 mg/g 
cellulose: a sugar production, b rate of conversion of cellulose

Fig. 11  Comparison of model simulations and experimental observations of sugar production during hydrolysis of filter paper (25 g/L) at a CBH II 
loading of 5 mg/g cellulose, b CBH II loading of 15 mg/g cellulose
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higher than the actual values, the expected trend was 
observed. So, the model simulations successfully captured 
the inverse relationship between substrate DP and hydrol-
ysis of cellulose and predicted 73 and 81.1% reduction in 
cellulose conversion for cotton compared to filter paper 
for CBH I and CBH II, respectively. Similar results have 
been reported in literature from both experimental as well 
as modeling studies (Wood 1974; Zhang and Lynd 2006).

As endoglucanases act on the surface chains, their 
activity is not severely affected by fraction of chain ends; 
however, degree of crystallinity plays an important role 
in deciding their performance. Bonds in the amorphous 
region are more susceptible to hydrolysis compared to 
those in crystallinity regions because of higher acces-
sibility of enzymes in amorphous regions (Chang and 
Holtzapple 2000). This behavior was also successfully 
captured by model simulations as cellulose conversion 
by action of endoglucanases on cotton (highly crystal-
line cellulose, CrI 0.85–0.90) was found 57.2% lower 
than that of filter paper (semi-crystalline cellulose, CrI 
0.4–0.5) after 48 h of hydrolysis (Additional file 3: Fig-
ure S3).

Other model simulations
Enzymatic hydrolysis of cellulose by individual enzymes
As discussed in sections above, model was simulated for 
filter paper hydrolysis by action of individual cellulase 
enzymes. Hydrolysis rates during action of individual 
enzymes (EGI, CBH I and CBH II) on filter paper (25 g/L) 
are presented in Fig. 15. For all enzyme classes, there was 

significant drop in hydrolysis rates after few initial hours 
of hydrolysis and then the rate became nearly constant. 
This decrease in rate after few hours of initial hydrolysis is 
widely an observed phenomenon and is believed to occur 
due to morphological changes in the cellulose structure 
(e.g., decrease in glucose chains on the surface, increased 
percentage of crystallinity regions). These changes affect 
the enzyme–substrate interactions by limiting the acces-
sibility of cellulase enzymes to glucose chains and results 
in rapid decline in hydrolysis rate (Zhang and Lynd 2004; 
Zhou et  al. 2009). As observed in experimental results 
also, cellobiose is the major product formed during cel-
lulose hydrolysis by CBH I and CBH II, which also acts as 
a strong inhibitor to these enzymes and negatively affects 
the hydrolysis rate.

After 48  h hydrolysis of filter paper by EG I, it was 
observed (from model simulations) that concentrations 
of oligomers with DP 2–4 and glucose were higher com-
pared to cellopentaose and cellohexaose concentrations 
(Additional file 3: Figure S4). There was increase in con-
centrations of cellopentaose and cellohexaose during 
initial few hours (3–4 h), and after that their concentra-
tions started decreasing. This trend was also expected 
because of change in availability of glucose molecules on 
surface. Surface glucose chains are easily accessible dur-
ing initial phase of hydrolysis, where endoglucanases act 
randomly to producing short chains. As the hydrolysis 
progress, availability of these glucose chains decreases, 
and enzymes start acting on soluble sugars. Concen-
tration of sugars with DP 2–4 did not decrease as EG I 

Fig. 12  Effect of β-glucosidase addition on cellulose hydrolysis by CBH I (25 g/L filter paper; CBH I: 10 mg/g cellulose)



Page 14 of 17Kumar and Murthy ﻿Bioresour. Bioprocess.  (2017) 4:54 

was assumed to act only on oligomers with DP  >  4. In 
case of hydrolysis by CBH I and CBH II, all soluble sug-
ars except cellobiose, glucose, and cellotriose were pro-
duced in negligible amounts (less than 0.01  mg/L, data 
not reported).

Endo–exo synergism
The endo–exo synergism is a highly effective synergism 
that has been reported in many studies and plays criti-
cal role in the hydrolysis rates and yields (Andersen 2007; 
Medve et al. 1998; Väljamäe et al. 1999; Zhang and Lynd 

2004). The model was simulated for hydrolysis of filter 
paper and cotton for individual and combined EG and 
CBH I. Simulations were performed for 48  h assum-
ing 25  g/L substrate concentration at enzyme loadings 
of 10  mg/g glucans (individually and total of 20  mg/g 
glucans in mixture, with EG to CBH I ratio of 1:1). Fig-
ure  16 illustrates the comparison between theoretical 
conversion (addition of cellulose conversions during 
hydrolysis by individual enzymes) and actual conversion 
(cellulose conversion during hydrolysis by enzymes act-
ing simultaneously).

Fig. 14  Effect of cellulose structural properties on hydrolysis: cellulose conversion during hydrolysis of filter paper and cotton (25 g/L) by action of 
a CBH I at loading of 10 mg/g cellulose b CBH II at loading of 10 mg/g cellulose

Fig. 13  Effect of β-glucosidase addition on cellulose hydrolysis by CBH II (25 g/L filter paper; CBH II: 10 mg/g cellulose)
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The common measure of synergism is “Degree of syn-
ergism (DS)”, which is defined as follows (Eq. 2):

where ∆Cmixed is cellulose conversion obtained from mix-
ture of ‘n’ enzymes; ∆Ci is cellulose conversion obtained 
from an individual action of ‘ith’ enzyme.

It can be seen from Fig.  16 that the expected syner-
gism was observed in the model simulations. The degree 
of synergism increased initially and then decreased 
towards the end of hydrolysis. Similar trends have been 
observed by other researchers: Kleman-Leyer et  al. 
(1996) for hydrolysis of cotton and Medve et al. (1998) for 
hydrolysis of Avicel. The phenomenon can be explained 
by the fact that at the beginning of hydrolysis, the sur-
face molecules are accessible for EG action, and chain 
ends were sufficient for CBH action. As the hydrolysis 
progresses, endoglucanases create additional chain ends 
and increase their availability for exoglucanases, which 
results in high hydrolysis rate and synergism. However, 
with further progress in hydrolysis, product (cellobiose 
and glucose mainly) inhibition becomes very dominant 
and total yields are not significantly higher than the case 
where the enzymes work individually. The highest values 
of degree of synergism were 1.33 and 4.35 for filter paper 
and cotton, respectively. The values of DS obtained from 
model simulations are consistent with the reported val-
ues in literature (Medve et al. 1998; Väljamäe et al. 1999; 
Zhang and Lynd 2004; Zhou et al. 2010). A large variation 

(2)Degree of synergism =

�Cmixed∑
n

i=1�Ci

,

in the DS values can be observed in literature studies, 
possibly because several factors such as total time of 
hydrolysis, purity of enzymes, activity of enzymes, and 
enzyme loadings can affect the synergism. The syner-
gism was observed higher for cotton hydrolysis than that 
of in case of filter paper hydrolysis. The inverse relation-
ship between DS and substrate DP was expected and 
has been reported in literature (Andersen 2007; Srisod-
suk et  al. 1998; Zhang and Lynd 2004). A comprehen-
sive review on hydrolysis from Zhang and Lynd (2004) 
compiled DS values from various studies and reported 
low DS values (1.3–2.2) for Avicel and high DS values 
(4.1–10) for cotton and bacterial cellulose from syner-
gism of T. reeesi enzymes. During cellulose hydrolysis by 
only CBH I, its accessibility to chain ends is very limited 
and cellulose conversion is very less. The accessibility is 
further reduced for substrates like cotton, with very high 
degree of polymerization. During combined action of EG 
and CBH I, creation of additional chain ends by random 
action of EG increases the substrate availability for action 
of CBH I, which results in more effective hydrolysis.

Conclusions
A novel approach of stochastic molecular modeling based 
on basic sciences and computer algorithms was used to 
model complex cellulose hydrolysis process. In this work, 
the model was further improved by incorporating some 
critical phenomenon, especially the enzyme crowding 
effect, and the model was validated with actual hydroly-
sis experiments using purified enzymes. Model was 

Fig. 15  Model predictions of hydrolysis rate by action of individual enzymes on filter paper (filter paper, 25 g/L; all enzymes, 10 mg/g glucans)
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accurate in predicting the cellulose hydrolysis profiles 
obtained from experimental studies from both literature 
as well as this work. The model captured the dynamics 
of cellulose hydrolysis during action of individual as well 
as multiple cellulase enzymes. Model results successfully 
followed all important trends, such as product inhibition, 
low cellobiohydrolase activity on high DP substrates, low 
endoglucanases activity on crystalline substrate, inverse 
relationship between degree of synergism and substrate 
DP, observed experimentally and reported in literature 
studies. The model was robust and has high potential 
usability as could be observed from the fact that model 
simulations fitted well with the experimental data from 
both literature as well as current work, without changes 
to any model parameters (except enzyme activity).

Additional files
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hydrolysis.
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CBH II action; Figure S1. Comparison of model simulations (previous and 
new version) with experimental data from literature: S1a for Avicel (50 g/L) 
and S1b for Avicel (25 g/L); Figure S2. Comparison of model simulations 
(old version and current model) with experimental data during hydrolysis 
of filter paper by CBH I; Figure S3. Endoglucanases action on substrates 
with different crystallinity; Figure S4. Glucose production profile during 
action of endoglucanases on filter paper.

Authors’ contributions
DK, and GM developed the model and designed experiments. DK conducted 
experiments, analyzed data and prepared the manuscript. GM reviewed the 
results, helped in data analysis and edited the manuscript. All authors read 
and approved the final manuscript.

Author details
1 Biological and Ecological Engineering, Oregon State University, Corvallis, OR, 
USA. 2 Agricultural and Biological Engineering, University of Illinois at Urbana-
Champaign, Urbana, IL, USA. 

Acknowledgements
Authors gratefully acknowledge the support by National Science Foundation 
through NSF Grant No. 1236349 from Energy for Sustainability program, CBET 
Division.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All data generated and analyzed during this study are included in within the 
manuscript in the form of graphs and tables. The authors promise to provide 
any missing data on request.

Consent for publication
Not applicable.

Ethical approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 20 September 2017   Accepted: 30 November 2017

Fig. 16  Endo–exo synergism during hydrolysis of filter paper and cotton cellulose 25 g/L, EG I 10 mg/g glucans, CBHI 10 mg/g glucans (total 20 mg 
enzymes when acting in mixture 1:1). Solid lines are results from combined action of enzymes and lines with points (theoretical) are sum of conver-
sions from action of individual enzymes

https://doi.org/10.1186/s40643-017-0184-2
https://doi.org/10.1186/s40643-017-0184-2
https://doi.org/10.1186/s40643-017-0184-2


Page 17 of 17Kumar and Murthy ﻿Bioresour. Bioprocess.  (2017) 4:54 

References
Andersen N (2007) Enzymatic hydrolysis of cellulose—experimental and mod-

eling studies. Technical University of Denmark, Copenhagen
Andersen N, Johansen KS, Michelsen M, Stenby EH, Krogh KBRM, Olsson L 

(2008) Hydrolysis of cellulose using mono-component enzymes shows 
synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), 
but competition on Avicel. Enzym Microb Technol 42:362–370

Asztalos A, Daniels M, Sethi A, Shen T, Langan P, Redondo A, Gnanakaran S 
(2012) A coarse-grained model for synergistic action of multiple enzymes 
on cellulose. Biotechnol Biofuels 5:55

Baker JO, Ehrman CI, Adney WS, Thomas SR, Himmel ME (1998) Hydrolysis of 
cellulose using ternary mixtures of purified celluloses. Appl Biochem 
Biotechnol 70:395–403

Ballesteros M (2010) Enzymatic hydrolysis of lignocellulosic biomass. In: Wal-
dron K (ed) Bioalcohol production: biochemical conversion of lignocel-
lulosic biomass. CRC Press, Boca Raton

Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Bongers M, Walton JD (2010a) 
Synthetic multi-component enzyme mixtures for deconstruction of 
lignocellulosic biomass. Bioresour Technol 101:9097–9105

Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Walton JD (2010b) Rapid opti-
mization of enzyme mixtures for deconstruction of diverse pretreatment/
biomass feedstock combinations. Biotechnol Biofuels 3:22

Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulase 
kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848

Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme com-
plexes for lignocellulose hydrolysis. Biotechnol Bioeng 97:287–296

Besselink T, Baks T, Janssen AEM, Boom RM (2008) A stochastic model for 
predicting dextrose equivalent and saccharide composition during 
hydrolysis of starch by α-amylase. Biotechnol Bioeng 100:684–697

Bezerra RMF, Dias AA (2004) Discrimination among eight modified Michaelis-
Menten kinetics models of cellulose hydrolysis with a large range of 
substrate/enzyme ratios. Appl Biochem Biotechnol 112:173–184

Bezerra RMF, Dias AA, Fraga I, Pereira AN (2011) Cellulose hydrolysis by cel-
lobiohydrolase Cel7A Shows mixed hyperbolic product inhibition. Appl 
Biochem Biotechnol 165:178–189

Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzy-
matic reactivity. Appl Biochem Biotechnol 84:5–37

Chinga-Carrasco G (2011) Cellulose fibres, nanofibrils and microfibrils: the 
morphological sequence of MFC components from a plant physiology 
and fibre technology point of view. Nanoscale Res Lett 6:417

Eriksson T, Karlsson J, Tjerneld F (2002) A model explaining declining rate in 
hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) 
and endoglucanase I (Cel7B) of Trichoderma reesei. Appl Biochem Bio-
technol 101:41–60

Fan L, Lee Y (1983) Kinetic studies of enzymatic hydrolysis of insoluble cel-
lulose: derivation of a mechanistic kinetic model. Biotechnol Bioeng 
25:2707–2733

Fan L, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis. Biotechnology 
monographs, vol 3. Springer, Berlin

Gao D, Chundawat SPS, Krishnan C, Balan V, Dale BE (2010) Mixture optimi-
zation of six core glycosyl hydrolases for maximizing saccharification 
of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour 
Technol 101:2770–2781

Ghose T (1987) Measurement of cellulase activities. Pure Appl Chem 
59:257–268

Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crys-
tallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 
277:1571–1582

Igarashi K et al (2011) Traffic jams reduce hydrolytic efficiency of cellulase on 
cellulose surface. Science 333:1279–1282

Jäger G et al (2010) Practical screening of purified cellobiohydrolases and 
endoglucanases with α-cellulose and specification of hydrodynamics. 
Biotechnol Biofuels 3:18

Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellu-
lase digestibility of pretreated biomass is limited by cellulose accessibility. 
Biotechnol Bioeng 98:112–122

Kadam KL, Rydholm EC, McMillan JD (2004) Development and validation of a 
kinetic model for enzymatic saccharification of lignocellulosic biomass. 
Biotechnol Prog 20:698–705

Kleman-Leyer KM, Siika-Aho M, Teeri TT, Kirk TK (1996) The cellulases endoglu-
canase I and cellobiohydrolase II of Trichoderma reesei act synergistically 

to solubilize native cotton cellulose but not to decrease Its molecular 
size. Appl Environ Microbiol 62:2883–2887

Kumar D (2014) Biochemical conversion of lignocellulosic biomass to ethanol: 
experimental, enzymatic hydrolysis modeling, techno-economic and life 
cycle assessment studies. Oregon State University, Corvallis

Kumar D, Murthy GS (2011) Impact of pretreatment and downstream process-
ing technologies on economics and energy in cellulosic ethanol produc-
tion. Biotechnol Biofuels 4:27

Kumar D, Murthy GS (2013) Stochastic molecular model of enzymatic hydroly-
sis of cellulose for ethanol production. Biotechnol Biofuels 6:63

Levine SE, Fox JM, Blanch HW, Clark DS (2010) A mechanistic model of the 
enzymatic hydrolysis of cellulose. Biotechnol Bioeng 107:37–51

Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose 
utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 
66:506–577

Marchal L, Zondervan J, Bergsma J, Beeftink H, Tramper J (2001) Monte Carlo 
simulation of the α-amylolysis of amylopectin potato starch. Bioprocess 
Biosyst Eng 24:163–170

Marchal L, Ulijn R, Gooijer CD, Franke G, Tramper J (2003) Monte Carlo simula-
tion of the α-amylolysis of amylopectin potato starch. 2. α-amylolysis of 
amylopectin. Bioprocess Biosyst Eng 26:123–132

Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally 
equidistributed uniform pseudo-random number generator. ACM Trans 
Model Comput Simul 8:3–30

Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cel-
lulose by cellobiohydrolase I and endoglucanase II from Trichoderma ree-
sei: adsorption, sugar production pattern, and synergism of the enzymes. 
Biotechnol Bioeng 59:621–634

Merino S, Cherry J (2007) Progress and challenges in enzyme development for 
biomass utilization. Biofuels 108:95–120

Mosier N, Hall P, Ladisch C, Ladisch M (1999) Reaction kinetics, molecular 
action, and mechanisms of cellulolytic proteins. Recent Progress Biocon-
version Lignocellul 65:23–40

Murthy GS, Johnston DB, Rausch KD, Tumbleson M, Singh V (2011) Starch 
hydrolysis modeling: application to fuel ethanol production. Bioprocess 
Biosyst Eng 34:879–890

Sangseethong K, Penner MH (1998) p-Aminophenyl β-cellobioside as an affin-
ity ligand for exo-type cellulases. Carbohydr Res 314:245–250

Srisodsuk M, Kleman-Leyer K, Keränen S, Kirk TK, Teeri TT (1998) Modes of 
action on cotton and bacterial cellulose of a homologous endoglu-
canase–exoglucanase pair from Trichoderma reesei. Eur J Biochem 
251:885–892

Teugjas H, Väljamäe P (2013) Product inhibition of cellulases studied with 
14C-labeled cellulose substrates. Biotechnol Biofuels 6:104

Väljamäe P, Sild V, Nutt A, Pettersson G, Johansson G (1999) Acid hydrolysis of 
bacterial cellulose reveals different modes of synergistic action between 
cellobiohydrolase I and endoglucanase I. Eur J Biochem 266:327–334

Wang M, Li Z, Fang X, Wang L, Qu Y (2012) Cellulolytic enzyme production and 
enzymatic hydrolysis for second-generation bioethanol production. Adv 
Biochem Eng Biotechnol. 128:1–24. https://doi.org/10.1007/10_2011_131

Wojciechowski PM, Koziol A, Noworyta A (2001) Iteration model of starch 
hydrolysis by amylolytic enzymes. Biotechnol Bioeng 75:530–539

Wood T (1974) Properties and mode of action of cellulases. In: Biotechnology 
and bioengineering symposium, vol 5, pp 111–133

Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic 
hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol 
Bioeng 88:797–824

Zhang YHP, Lynd LR (2006) A functionally based model for hydrolysis of cel-
lulose by fungal cellulase. Biotechnol Bioeng 94:888–898

Zhou W, Hao Z, Xu Y, Schüttler HB (2009) Cellulose hydrolysis in evolving sub-
strate morphologies II: numerical results and analysis. Biotechnol Bioeng 
104:275–289

Zhou W, Xu Y, Schüttler HB (2010) Cellulose hydrolysis in evolving substrate 
morphologies III: time-scale analysis. Biotechnol Bioeng 107:224–234

https://doi.org/10.1007/10_2011_131

	Development and validation of a stochastic molecular model of cellulose hydrolysis by action of multiple cellulase enzymes
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Materials
	Model development
	Stochastic hydrolysis model
	Modifications in the model

	Model implementation and simulations
	Model validation
	Validation with experimental data
	Enzyme purification
	Enzymatic hydrolysis


	Results and discussion
	Validation with literature data
	Validation with experimental data from current study
	Hydrolysis of filter paper by CBH I and CBH II
	Effect of beta-glucosidase addition (exo-BG synergism)
	Effect of structural properties of cellulose

	Other model simulations
	Enzymatic hydrolysis of cellulose by individual enzymes
	Endo–exo synergism


	Conclusions
	Authors’ contributions
	References




