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Abstract

Although rational genetic engineering is nowadays the favored method for microbial strain improvement, random
mutagenesis is still in many cases the only option. Atmospheric and room-temperature plasma (ARTP) is a newly
developed whole-cell mutagenesis tool based on radio-frequency atmospheric-pressure glow discharge plasma
which features higher mutation rates than UV radiation or chemical mutagens while maintaining low treatment tem-
peratures. It has been successfully applied on at least 24 bacterial and 14 fungal species, but also on plants, dinoflagel-
lates, and other microbial communities for the improvement of tolerance to medium components, to increase cellular

breeding, Industrial application

growth and production of cellular biomass, to enhance enzyme activity, and to increase the production of various
chemicals. Achievements like 385.7% of acetic acid production enhancement in Acetobacter pasteurianus give this
new mutagenesis tool a promising future. However, certain questions remain regarding optimal operational condi-
tions, the effects at subcellular levels, and standard operation procedures, which need to be addressed to facilitate
applications of ARTP in microbial breeding and other fields such as evolution of enzymes.
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Introduction

Genetic enhancement of whole-cell systems is of great
interest in microbial biotechnology. Rational design in
genetic engineering has become during the last decades the
preferred method of choice with the CRISPR/Cas9 system
being the most recent advance (Barrangou and Horvath
2017). However, random mutagenesis is still in many cases
the only feasible approach, for instance, if the correspond-
ing genomic locus to the desired phenotype is unknown
or if a complex genetic regulation is underlying. Random
mutagenesis is also superior from a commercial standpoint
as altered strains are classified as genetically unmodified
which requires no attention to legal regulations. Besides,
products labeled as “GMO free” are currently much better
accepted by the public (Twardowski and Malyska 2015).
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and indicate if changes were made.

Although random mutagenesis can be done biologically
using methods like proofreading-deficient polymerase
(Kim et al. 2013), it is typically achieved by application of
chemical mutagens like alkylating agents (Lackmann and
Bandow 2014) or azides (Yolmeh and Khomeiri 2017) and
physical mutagens like conventional radiations (Yolmeh
and Khomeiri 2017) or heavy particle beams (Lackmann
and Bandow 2014). The induced DNA damages are sub-
sequently repaired by the SOS system leading to DNA
alterations (Bridges 2001). However, almost all tools for
random mutagenesis are to a certain extent risky to handle.
Whereas chemical mutagens expose the user to high (e.g.,
ethyl methanesulfonate and methylnitronitrosoguanidine)
or very high toxicity (e.g., ethidium bromide and sodium
azide), radiation (e.g., X-ray and y-ray) exposes the user
to a permanent danger which requires additional control
measures such as radiation badges and radiation barriers.
In addition, the generation of radiation requires often bulky
and expensive equipment, specialized knowledge for oper-
ation and additional security measures to restrict access.
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Physical plasmas are fully or partially ionized gases
which are consisting of neutral and charged particles.
They are generally classified into high- and low-tempera-
ture plasmas with variations in working gas (e.g., helium,
argon, nitrogen, and oxygen), pressure (0.1 Pa up to
atmospheric pressure), electromagnetic field, discharge
configuration, and temporal behaviors (Bogaerts et al.
2002). Radio-frequency atmospheric-pressure glow dis-
charge plasma (RF APGD) is one of the cold atmospheric
plasmas of increased interest which can be produced
in between two electrodes driven by a radio-frequency
power supply at atmospheric pressure (Tendero et al.
2006). Room-temperature plasma received first attention
in applied research for its possible use as a sterilization
method for heat-sensitive surfaces (Kramer et al. 2015).
However, the sub-lethal treatment suggested also a pos-
sible application in the field of mutagenesis. In a quan-
titative approach using flow cytometry analysis based
on the umu test, the ARTP system showed greater DNA
damage with higher mutation rates than UV radiation
or the application of two selected chemical mutagens
(Zhang et al. 2015c¢). After initial studies proved the suc-
cessful application of RF APGD plasma jets in microbial
breeding (Wang et al. 2010), an atmospheric and room-
temperature plasma mutation system (ARTP) was con-
structed and made commercially available. The ARTP
system requires helium (>99.99%) as a working gas and
a typical electric socket as a power source. With a weight
of 100 kg and a size of 33 ¢cm x 33 cm x 33 cm, it is of
manageable dimensions, requires minimal training, and
produces no hazardous radiation, toxic chemicals, or any
environmentally harmful waste.

Here, we summarize the progress of ARTP-induced
mutagenesis with focus on the most recent reports since
the last review (Zhang et al. 2014) and the progress in
understanding the underlying mechanisms. In the first
parts, we elucidate the technical and physico-chemical
background in a comprehensive manner. Following this,
we focus in the second part on the description and exten-
sive review of the technical parameters and the combi-
nation of the ARTP with other mutagenesis methods to
enable ARTP operators to understand and optimize the
process. Subsequently, a summary of the biotechnologi-
cal applications is given in the third part. Finally, we close
with the concluding remarks to reveal knowledge gaps
and future prospects.

Technical and physico-chemical background

of ARTP

The ARTP mutagenesis system was initially invented
by the Department of Chemical Engineering of Tsin-
ghua University and commercialized by Si Qing Yuan
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Biotechnology (now Tmax Tree Co., Ltd.) with a verti-
cally mounted RF APGD plasma jet generator as the core
component (Fig. 1a) (Zhang et al. 2014). It is currently
the only commercially available system and its distribu-
tion has been mainly restricted to its origin China. Inside
the ARTP apparatus, helium is ionized by a radio-fre-
quency electric field and blown through a nozzle onto a
microbial sample on a metal plate fixed to an adjustable
platform. The use of atmospheric-pressure plasma in
this setup removes the necessity of an expensive vacuum
system. Due to the low breakdown voltage, the plasma
maintains discharge uniformity, generates little amounts
of UV radiation, and assures, in combination with the
cooling of the cathode, a biologically compatible gas
temperature. A continuous gas flow ensures little mixing
with the surrounding air which minimizes the generation
of germicidal ozone.

The exact cause of mutagenesis by physical plasma has
not yet been fully clarified, but various experiments were
carried out on isolated DNA and on DNA in vivo. Besides
UV radiation, the generation of reactive chemical species
was identified as the most probable cause (Li et al. 2008).
Experiments on isolated plasmid DNA showed a fast
degradation after RF APGD helium plasma treatment
with damage severity depending on the plasma-generat-
ing conditions (Li et al. 2008). However, DNA in vivo is
also protected by other biomolecules shielding the DNA
from damages caused by oxidative stress. Systems like the
SOS repair system in prokaryotes are aiding the damaged
DNA to maintain its integrity while possibly introduc-
ing mutations. In this manner, genes involved in the SOS
DNA repair system and genes that are known to respond
to oxidative stress were found to be activated in response
to physical plasma (Winter et al. 2013). Besides those
direct interactions between reactive chemical species
and DNA, also indirect reactions with other biomole-
cules and reactive chemical species leading to mutagenic
products were suggested as possible causes for DNA
base alterations and the induction of single- or double-
strand breaks (Arjunan et al. 2015). While the impact
of plasma on DNA is straightforward, the influence of
plasma composition and the resulting critical treatment
severity is more complex. The amount of UV radiation
and the composition of the generated reactive chemical
species depends mainly on the employed gases. While
noble gases like argon or helium are generating less UV
radiation, the addition of nitrogen or oxygen to noble
gases increases the amount of reactive chemical spe-
cies. Hydroxyl radicals (-OH), atomic oxygen (O), ozone
(O,), and superoxide anions (O;") are the most frequently
produced reactive chemical species. Furthermore, espe-
cially in contact with aqueous solutions, nitrous acid
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(HNO,), nitric acid (HNOs;), hydroxide anions (OH"),
and hydrogen peroxide (H,O,) are produced (Lackmann
and Bandow 2014). When using helium as a working gas,
helium metastables (He', He,), helium ions (He", He,"),
and nitrogen molecular ions (N,*) were additionally
identified (Wang et al. 2012). Maintaining microbial cell
functionality and integrity is required to pass on ran-
dom mutations to the next generation. However, a high
plasma treatment severity can cause irreparable damages
to DNA, proteins, and the whole cell, therefore, requir-
ing careful adjustment of the plasma-generating param-
eters. Enzyme inactivation was suggested to be mainly
caused by a degradation of chemical groups, oxidation of
catalytic centers, and the overall destruction of the sec-
ondary structure (Misra et al. 2016). Direct exposure to
room-temperature plasma resulted also in the removal
of extracellular matrix followed by etching of whole cells
as shown by scanning electron microscopy (Lackmann
et al. 2013). Cell etching was monitored in another study
by atomic force microscopy. Extended plasma treatment
eventually led to a rupture of the cell wall. In both stud-
ies, UV treatment alone did not lead to an extended dam-
age of the cell wall (Pompl et al. 2009) which only left
reactive chemical species as the primary cause.

Technical parameters

Experimental workflow

The ARTP system was designed to allow easy adapta-
tion to different microorganisms. Therefore, a large
range of parameter combinations are possible. However,
not all possible parameter combinations lead to biologi-
cally compatible plasma treatment conditions. The typi-
cal workflow (Fig. 1b) starts with the preparation of a
defined suspension of microorganisms followed by the
ARTP treatment. Subsequently, the treated microorgan-
isms are re-suspended, adequately diluted, and streaked
out on agar plates to yield single colonies. The colonies
are then screened according to the targeted pheno-
types (e.g., photometric test). However, due to the mul-
titude of parameter combinations, it can be challenging
to identify optimal plasma mutation conditions lead-
ing to single, isolated colonies under maximal usage of
the agar surface. Overall, the following three categories
are of importance. First, there are the intrinsic but vari-
able parameters of the ARTP system such as the helium
gas flow rate (standard liter per minute, SLPM), the gap
space between nozzle and sample plate (millimeter, mm),
the energy input (Watt, W), and the treatment time
(seconds, s). Second, the sample itself causes variations
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through the kind of microorganism to be manipulated,
the cell/spore concentration, the used suspension liquid,
and its volume. Third, the subsequent post-treatment of
the sample after plasma treatment including the resus-
pension liquid and time, the subsequent dilution, and the
volume used for spreading on agar.

ARTP system variables

For the mutagenesis of biological samples, the ARTP
manufacturer suggests standard values for each adjust-
able parameter to achieve biologically compatible con-
ditions and the generation of reactive chemical species.
In compliance with the suggested conditions, a high
density of electrons and metastable helium (He*, He,*),
He™, He,™ and N," are generated (Zhang et al. 2014). A
helium gas flow rate of 10 SLPM or higher is suggested to
avoid interference between the plasma jet and surround-
ing air as this leads to the formation of germicidal ozone.
However, in a prior study, a positive correlation between
gas flow rate and the reactive chemical species concen-
tration was shown by the increased damage after treat-
ment of isolated plasmid DNA with plasma generated
at flow rates between 5 and 30 SLPM. A 2 mm distance
between sample and nozzle is recommended. Larger dis-
tances were shown to decrease the concentration of reac-
tive chemical species as shown by the decreased damage
severity with distances between 2 and 10 mm. An energy
input of around 120 W is suggested to be used. The
energy input was found to be positively correlated with
the generation of reactive chemical species as proven
earlier by damage severity of plasmid DNA treated with
plasma between 10 and 120 W (Li et al. 2008). However,
increased energy input leads also to a rise in tempera-
ture which is especially of significance for the survival
of the whole cells. Within an energy input of 40-200 W,
temperature was found to be within a biologically com-
patible range between 36 and 57 °C (Zhang et al. 2014).
The last intrinsic parameter of the ARTP system and the
most important parameter for each experimental setup is
the treatment time. It is primarily used to determine the
dose of the reactive chemical species to the microorgan-
ism under selected conditions. Direct treatment of iso-
lated DNA under identical plasma-generating conditions
with time variations between 0.5 to 10 min was shown
to increase DNA damages (Li et al. 2008). However, it
can be assumed that due to the high complexity and the
presence of more sensitive molecules, the effective treat-
ment time for whole cells is situated at a shorter exposure
time. Summarizing the applied values of the operational
parameters in the literature, a high variety from the sug-
gested standard values is present. However, as some stud-
ies do not report their parameter values, a representative
distribution cannot be derived. A wide variation of the

Page 4 of 14

helium gas flow rate can be found. While many studies
selected the suggested helium gas flow rate of 10 SLPM,
an equal number of studies reported a helium gas flow
rate of 15 SLPM. Single studies went as low as 2 SLPM
(Zong et al. 2012; Ren et al. 2017). The suggested distance
between sample and nozzle of 2 mm was used in almost
all reports. Single cases reported a further distance of
1 cm (Zong et al. 2012; Li et al. 2014). The energy input is
a critical parameter due to its ability of heating the sample
to undesirable temperatures. In the reviewed studies, the
energy input was, as suggested, typically at 100 or 120 W.
One single study chose a low-energy input of 40 W which
might explain the extended required treatment time (Li
et al. 2014). Three studies applied 180 W either for spores
or filamentous fungi which are expectably less affected
by higher temperatures due to their higher resistance
(Xu et al. 2011, 2012; Wang et al. 2016a). Treatment time
is used as the main parameter to adjust the exposure of
the sample to plasma while keeping all other parameters
constant. Therefore, the treatment time in the reviewed
studies is mainly dependent on the other parameters pre-
set. When other parameters were chosen to generate less
reactive chemical species, this resulted in the require-
ment to select a longer treatment time. However, the
exact impact of a single parameter cannot be estimated
as in most studies multiple parameters were significantly
changed and no systematic approaches were applied.

Sample-related variables

The kind of microorganism (e.g., species, Gram-positive/
Gram-negative) and its current developmental stage (e.g.,
viable cell or spore) were shown to be of significance
in case of plasma sterilization. For the ARTDP, the treat-
ment time under otherwise constant operation param-
eters should be evaluated for each strain by establishing
a death rate curve. The suggested range for the death rate
curve for bacteria is in general estimated to be effective in
arange between 15 and 120 s, for Actinomycetes between
30 and 180 s, for fungi between 60 and 360 s, for yeasts
between 30 and 240 s, and for microalgae between 5 and
150 s. However, as no research involving the systematic
sub-lethal, helium-based plasma treatment of microor-
ganisms via ARTP has been conducted yet, only the cur-
rent findings regarding plasma sterilization combined
with the time suggestions mentioned above can give a
general indication for ARTP mutagenesis. Sterilization
studies for different species involving Gram-positive
and Gram-negative microorganisms either concluded a
greater resistance of Gram-positive microorganisms or
no difference at all. A study investigated the survival after
plasma treatment of the Gram-negative Escherichia coli,
the Gram-positive Staphylococcus aureus, the yeast Sac-
charomyces cerevisiae, and Bacillus subtilis spores using
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helium/oxygen as a working gas. While D values for E.
coli and S. aureus were similar to 18 and 19 s, respectively,
S. cerevisiae showed with 115 s and B. subtilis spores with
840 s, a much higher resistance to the plasma treatment
(Lee et al. 2006). In another sterilization study with argon
plasma involving 11 different bacterial strains, suscep-
tibility of Gram-negative species was demonstrated to
be generally greater than that of Gram-positive species.
However, the susceptibility of Gram-positive species was
determined to be strain specific (Ermolaeva et al. 2011).
On contrary, two E. coli strains and one Listeria mono-
cytogenes strain were exposed to dielectric barrier dis-
charge atmospheric cold plasma with a variety of working
gas mixtures containing O,, N, and CO,. The Gram-pos-
itive L. monocytogenes was inactivated more rapidly than
the Gram-negative E. coli strains and a difference in inac-
tivation time between the E. coli strains was found (Lu
et al. 2014). These inconclusive findings can be reasoned
by variations in plasma generation, but might also elabo-
rate a strain specificity rather than the Gram classifica-
tion. However, while fungi exhibited a greater resistance
than bacteria, spores have clearly the greatest resistance
against plasma treatment. For the preparation of appro-
priate cell concentrations for the ARTP treatment, it is
suggested to harvest cells or spores from a culture dur-
ing the logarithmic phase and wash 2-3 times with ster-
ile solution. Subsequently, the resulting OD, should be
adjusted to 0.6—-0.8 or to 10°-10° cells x ml™. It must
be emphasized that the optical density can only give a
rough indication of the cell concentration and is heavily
dependent on strain, cell type, and growth media. A cell
count would be only possible in case of non-motile cells.
Therefore, it would be instead advisable to use a constant,
appropriate, and high optical density under consideration
of the subsequent dilution steps with the aim to obtain
single colonies on the final agar plate. The suspension
liquid itself is only recommended to be sterile while the
volume transferred to the sample plate should be in the
range of 10-20 pl. In case of extended treatment times
or small volumes, an addition of 5% glycerol to the sus-
pension liquid is suggested to minimize sample evapo-
ration. One study investigated the impact of suspension
composition on the severity of the plasma treatment.
DNA samples were suspended after plasma treatment in
water, phosphate-buffered saline (PBS), and media which
consisted of carbonate buffer, salts, amino acids, phenol
indicator, and vitamins. While water did not protect the
sample, a minimal protection through PBS was observed.
In contrast, the media protected the DNA sample to a
large extent (Leduc et al. 2009). A later study detected a
similar degree of DNA damage in PBS and aqueous solu-
tion; however, the formation of strand breaks in super-
coiled DNA was slower in PBS than in water. In contrast,
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a tris—EDTA buffer prevented DNA damages greatly
(O’Connell et al. 2011). These findings can be attributed
to the buffer itself and to additional compounds within
the buffer acting as radical scavengers. Furthermore, the
effects of certain parameters interacting with each other
should not be neglected. Besides the already mentioned
energy input which leads to a temperature rise and sub-
sequently to reduced cell viability, especially the energy
input and the helium gas flow rate but also the chosen
suspension liquid leads to an increased evaporation. This
results in a change of the initial conditions like buffer and
cell concentration and changes the overall experimental
setup. For sample-related variables, only limited conclu-
sions from the available studies can be drawn as most
factors are estimated to exhibit weaker effects than the
earlier mentioned ARTP system variables. The microor-
ganism and its current state of development were found
to have a strong impact. Fungal species tend to be more
resilient than bacterial species and dormant bodies
such as spores exhibited the highest resistance to ARTP
plasma treatment. However, no conclusions about differ-
ences between Gram-positive and Gram-negative spe-
cies or even amongst strains of the same species can be
drawn. For most studies, cell concentration was adjusted
to the suggested ODg,, of 1 and 1.5 (Sun et al. 2015) or
even 2 (Lu et al. 2011). As suspension liquid, a physi-
ological saline was mainly employed followed by 50 mM
PBS buffer at pH 6 or 7. In a single study 10%, glycerol
was used (Wang et al. 2016¢). Mostly, the suggestion of
applying a volume of 10 or 20 pl suspension liquid was
implemented, while very few employed volumes as high
as 50 pl (Hua et al. 2010; Lu et al. 2011) and even up to
100 pl (Zhang et al. 2016). High volumes seemed to have
been used especially to counteract evaporation processed
as they were used mostly together with long treatment
times above 1 min and at high gas flow rates. In contrast,
some cases reported the pre-drying of the sample on the
sample plate prior to plasma treatment (Liu et al. 2013; Li
et al. 2014; Wang et al. 2014a, b).

Post-treatment variables

After the ARTP treatment, the sample plates are sub-
merged in resuspension liquid. A resuspension volume of
1 ml and a vortexing time of at least 1 min are recom-
mended to ensure complete resuspension. The resus-
pension liquid acts as a radical scavenger equally to the
suspension liquid during the ARTP treatment. Further-
more, the ratio between the treated volume and the re-
suspending media was found to be of importance. Cell
samples treated with a dielectric barrier discharge plasma
were affected more at lower than at higher dilutions indi-
cating that the concentration of reactive chemical species
and the length of the exposure are relevant (Kalghatgi
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et al. 2011). However, there are no reports on the influ-
ence of the vortexing time or intensity on the survival
of plasma-treated cells. The subsequent dilution range
before spreading the sample on agar is dependent on the
plasma treatment severity and the initial cell concentra-
tion. In general, a consistent post-treatment procedure
and especially homogeneous cell dilutions needs to be
ensured to obtain isolated colonies in high reliability.
Data describing the post-treatment are limited. Overall,
the used resuspension liquids were the same as the sus-
pension liquid used for the plasma treatment. The vol-
ume was set between 0.8 and 2 ml, while in one case,
even 5 ml was used (Li et al. 2014). This determines the
ratio, as discussed earlier, which is possibly important to
stop further exposure of the sample to reactive chemical
species. More information about post-treatment details
such as vortex intensity, dilution range, or spread volume
were rarely given.

Combined usage of the ARTP system with other methods
Most studies reported a single ARTP treatment to yield
the desired target. However, some studies reported an
iterative ARTP treatment. While an iterative treatment
for eight times (Jiang et al. 2017) led to a steady increase
of the desired phenotype, 30 repetitions were only used
to produce a larger pool of possible mutants (Luo et al.
2017b). ARTP treatment was also combined together
with other treatments such as chemical mutagenesis with
diethyl sulfate (Li et al. 2015), nitrosoguanidine (Zhang
et al. 2016) or radiation mutagenesis with UV and UV-
NaNO, (Wang et al. 2017). However, due to the lack of
comparative studies, it cannot be concluded if an itera-
tive ARTP treatment or a combination of ARTP with
traditional mutagenesis tools is superior over a single
ARTP treatment. Apart from applying ARTP in straight-
forward mutagenesis approaches, ARTP was also suc-
cessfully used as a tool for the construction of libraries
for genome shuffling (Xu et al. 2012; Zhang et al. 2015b;
Gu et al. 2017).

Biotechnological applications

The core component of ARTP, the RF APGD plasma jet
generator, was first used with helium as working gas in a
proof of concept study for the generation of Streptomy-
ces avermitilis mutants in 2010 (Wang et al. 2010). Since
then, a multitude of case studies were published in Chi-
nese and international journals with the majority of more
than 80% published after 2014 (Fig. 2).

Microorganisms

Between 2010 and 2018, a total of 42 different microbial
species in 73 case studies can be found in international
literature (Table 1) which include Gram-negative bacteria
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(9 species/17 studies), Gram-positive bacteria (15 spe-
cies/26 studies), filamentous fungi (6 species/8 studies),
yeast (8 species/15 studies), species not belonging to the
classes mentioned above (3 species/6 studies) and even a
whole microbial community. Together with studies pub-
lished in Chinese language, more than 300 ARTP case
studies are estimated to be currently available. Almost
all species are classified as Biosafety Level 1 strains, and
most are used in biotechnological research and industry
like E. coli and B. subtilis.

Mutagenesis targets

Overall, mutagenesis targets can be classified into six
groups, namely, (i) increase of microbial tolerance to cer-
tain growth conditions and media compounds, (ii) growth
increase and optimization of biomass-related param-
eters, (iii) enzyme activity increase, (iv) butanol produc-
tion increase, (v) production increase of organic acids
and their derivates, and (vi) production increase of spe-
cialty chemicals mainly used in pharmaceutical products.
As there are numerous positive achievements reported,
only selected outstanding examples can be outlined in
detail. In a study comprising three publications involv-
ing the yeast Rhodosporidium toruloides, three mutants
were isolated which were resistant to the growth inhibi-
tors vanillin, furfural, and acetic acid and, therefore, could
grow in sugar cane bagasse hydrolysate (Kitahara et al.
2014). Subsequently, the mutant with the highest toler-
ance towards inhibitors was identified (Qi et al. 2014)
and further investigated using a mixed transcriptome/
proteome approach. Thirty-nine genes were identified
with a larger than fivefold increased transcription level
belonging to the cluster of nucleotide excision repair, gly-
colysis, spliceosome assembly, and MAPK signalling (Qi
et al. 2017). In another study, a B. subtilis mutant showed
a 37.9% increase in extracellular protein concentration
which resulted in an overall higher recombinant protein
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== Filamentous Fungi
mmm Gram-positive Bacteria
mmm Gram-negative Bacteria

Publications in International Journals

2010 2011 2012 2013 2014 2015 2016 2017
Year
Fig. 2 International publications from 2009 to 2018 involving the
ARTP split into Gram-positive/Gram-negative bacteria, fungi and
other organisms
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secretion (Ma et al. 2015). The increase in butanol pro-
duction by ARTP was shown several times such as in a
mutant which exhibited a 33% higher ABE solvents pro-
duction and a 25% higher butanol production (12.53 g 1}
total ABE solvents, 4.9 g 17! acetone, 13.71 g 1! butanol,
and 0.19 g ™! ethanol) when compared to its wild type
(Kong et al. 2016). The enzymes of the cellulase complex
in Trichoderma viridae were investigated individually
after ARTP treatment. A 2.38-fold increase of filter paper
activity, 2.61-fold increase of carboxymethyl cellulase
activity, 2.18-fold increase in B-glucosidase activity (EC
3.1.2.21), and a 2.27-fold increase in cellobiohydrolase (EC
3.2.1.91) activity was reported (Xu et al. 2011). The organic
acid l-lactic acid produced by an ARTP mutant of Bacil-
lus coagulans reached a titer of 90.2 g 1! from 100 g 17!
xylose, while 23.49 g 17! from corn stover with a yield of
83.09% was achieved (Zheng et al. 2014). The carotenoid
lycopene, a specialty chemical used as a pigment and anti-
oxidant, showed a 55% concentration increase to 19.3 g 1™
in Blakeslea trispora mutants (Qiang et al. 2014).

Concluding remarks

ARTP has been proven to be a reliable and effective micro-
bial breeding system leading to high frequency of random
mutations induced by reactive chemical species which are
produced by the helium-based atmospheric and room-
temperature plasma. Its application has been reported to
be successful in various studies involving diverse bacterial
and fungal species for improving strain properties such
as tolerance to medium components and growth condi-
tions and increasing production of valuable products like
cellular biomass, enzymes, bulk, and specialty chemicals.
However, there are still theoretical and technical questions
open for clarification, whose absence might delay the wide-
spread use of the ARTP mutagenesis system including:

1. The factors involved in the operation of the system,
their interactions, and the severity of their impact on
the resulting mutagenic effects. Developing an auto-
matic and quantifiable parameter setup for effective
plasma treatment would be an essential prerequi-
site for wider applications of the ARTP mutagenesis
breeding system.

2. The systematic clarification of the susceptibility of dif-
ferent microorganisms and their growth stages to the
ARTP treatment are required for the development of
Standard Operation Protocols. Unfortunately, many
case studies did not indicate precisely the status of all
operational parameters making it difficult for a suscep-
tibility estimation of different microorganisms to the
sub-lethal plasma treatment.

3. More omics studies are needed to gain a deeper scien-
tific insight of the mutagenic impact of ARTP to widen
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the applications of ARTP-induced gene mutations not
only in cellular breeding but also in other fields such as
directed evolution of enzymes. The combined use of
ARTP with other mutation methods such as y-ray or
with rational mutations such as CRISPR/Cas9 might
give additional advantages in improving microbes,
which is worth investigating.
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