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Abstract 

Background:  Benzofuran and its derivatives contain central pharmacophores and are important structures in 
medicinal chemistry. Chemical synthesis of benzofuran rings often requires expensive catalysts and stringent opera-
tional conditions. Biosynthesis is recognized as a promising way to save energy and produce valuable compounds. 
Dioxin biodegradation pathways can form several benzofuran derivatives, and these pathways may be a better choice 
for further synthesis of important biological compounds. 2-Hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic 
acid (HOBB), a benzofuran derivative, can be biosynthesized from dibenzofuran (DBF) through co-metabolic degrada-
tion in a lateral dioxygenation pathway.

Results:  Efficient biosynthesis of HOBB was observed using whole cells of Pseudomonas putida strain B6-2. After cul-
tivation in LB medium containing biphenyl, the cells were suspended to an OD600 of 5 to conduct biosynthesis in the 
presence of 0.5-mM DBF at pH 7 for 8 h. The bacterial cells were used twice to degrade approximately 0.70-mM DBF, 
and in batch process, accumulated about 0.29-mM HOBB. HOBB could be easily purified from the reaction with ethyl 
acetate using the neutral-acid extraction method, and 13.58 ± 0.31 mg of HOBB was obtained from 22.49 ± 0.74-mg 
DBF with an overall production yield of 60.4% (w/w). The product HOBB, which is a yellow powder, could be detected 
and identified by LC–MS, GC–MS, and NMR.

Conclusions:  In this study, a new biological route was developed to produce HOBB from DBF using whole cells of P. 
putida B6-2 (DSM 28064). The biosynthesis of HOBB may contribute to studies of the DBF lateral pathway and provide 
a new green route for synthesizing benzofuran derivatives with pharmacological activities. 
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Background
Many natural products with biological activities are ben-
zofuran heterocycles (Nevagi et  al. 2015; Yeung 2012). 
Benzofuran and its derivatives are central pharmacoph-
ores and important structures in medicinal chemistry 

(Fig. 1a) because of their broad spectra of pharmacologi-
cal activities (Khanam and Shamsuzzaman 2015). These 
products contain mono and fused benzofuran rings in 
conjunction with other heterocycle compounds (Nevagi 
et  al. 2015). For example, 4-hydroxy-3-methyl-6-phe-
nylbenzofuran-2-carboxylic acid ethyl ester was reported 
as an anti-tumor agent (Hayakawa et  al. 2004a, b), a 
series of imidazopyridinylbenzofurans have been identi-
fied as potent, non-peptide antagonists of angiotensin 
II (Judd et  al. 1994), and other benzofuran derivatives 
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are used as antimicrobial, antiviral, anti-inflammation, 
and anti-hyperlipidemic agents (Aswathanarayanappa 
et al. 2013; Khanam and Shamsuzzaman 2015; Ma et al. 
2016; Nevagi et  al. 2015). In many studies, benzofuran 
derivatives are first synthesized from a benzofuran ring 
(Aswathanarayanappa et al. 2013; Salih et al. 2007), and 
then, biological agents are further chemically synthesized 
from the benzofuran derivatives (El-Zahar et  al. 2011; 
Galal et al. 2009; Ma et al. 2016). Chemical synthesis of 
benzofuran rings is expensive, because transition metals 
are used, and the operational conditions are stricter than 
those used for biosynthesis (Cacchi et al. 2002; Oppenhe-
imer et al. 2007; Trost and Mcclory 2007). Using biocata-
lysts for the industrial synthesis has been recognized as 
an environmental-friendly synthetic method (Ishige et al. 
2005).

Dioxins, which are typically formed as undesired by-
products of industrial and municipal activities (Jaiswal 
et al. 2011), are toxic, carcinogenic, mutagenic, and per-
sistent environmental pollutants (Hiraishi 2003; Ritchie 
2000). Their removal from the environment is very 
challenging. Many physicochemical techniques such as 
thermal remediation and photo-degradation have been 
used to remove dioxins; however, these methods are not 

suitable for treating large areas of dioxin-contaminated 
soil and sediments (Hiraishi 2003). Bioremediation tech-
niques using specific microorganisms or microbial con-
sortia are more effective and relatively inexpensive, and 
have gained increasing attention since the 1970s (Mat-
sumura and Benezet 1973; Ward and Matsumura 1978; 
Wilkes et  al. 1996; Wittich 1998). Dibenzofuran (DBF) 
has been studied as a model dioxin-like compound, and 
the initial steps of its biodegradation can be categorized 
into two main pathways: angular dioxygenation and lat-
eral dioxygenation. Numerous bacteria that use DBF as 
their sole carbon source via angular dioxygenation have 
been isolated (Hong et  al. 2004; Nojiri et  al. 2002; Wit-
tich et  al. 1992). Other microorganisms can conduct 
co-metabolic degradation of DBF via lateral dioxygena-
tion when cultivated with biphenyl (BP) or naphthalene 
(Becher et  al. 2000; Kaiya et  al. 2012; Li et  al. 2009; Shi 
et al. 2014; Stope et al. 2002). A few studies have shown 
that several bacteria can degrade DBF via both path-
ways (Jaiswal et  al. 2011; Le et  al. 2014; Yamazoe et  al. 
2004). Bacteria using the angular dioxygenation pathway 
can easily degrade DBF channeled into the tricarboxylic 
acid (TCA) cycle (Xu et  al. 2006; Additional file  1: Fig-
ure S1), while bacteria co-metabolizing DBF via lateral 

Fig. 1  Benzofuran derivatives that are pharmacological agents and products of the DBF biodegradation pathway. a Compounds with biological 
activities used in pharmacology. (1) 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester showed selective and potent 
cytotoxicity against tumors (Hayakawa et al. 2004a, b). (2) Compound 2 was found to be the most potent anti-inflammatory agent (Ma et al. 2016). 
(3) RO-09-4609 is a basic antifungal agent (Nevagi et al. 2015). (4) Hit compound 4 has a high therapeutic index in HIV inhibition (Khanam and 
Shamsuzzaman 2015). b HOBB (a benzofuran derivative) is the main product of DBF catalysis by BphA, BphB, and BphC in the lateral degradation 
pathway of Pseudomonas putida strain B6-2
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dioxygenation are thought to be unable to degrade DBF 
completely, because lateral oxidation often leads to dead-
end products (Hiraishi 2003). Biotechnologies such as 
gene and transcriptome sequencing can be useful in 
elucidating the genes directly involved in angular dioxy-
genation pathway (Miller et  al. 2010; Nojiri et  al. 2002), 
but the metabolites and enzymes of lateral dioxygenation 
are more difficult to identify. Studies have shown that 
enzymes involved in the BP and naphthalene catabolic 
pathways are likely involved in the co-metabolism of DBF 
(Mohammadi and Sylvestre 2005; Resnick and Gibson 
1996; Seeger et al. 2001; Wesche et al. 2005).

Pseudomonas putida strain B6-2 was isolated and found 
to transform DBF via a lateral dioxygenation pathway dur-
ing cultivation with BP (Li et  al. 2009; Tang et  al. 2011; 
Yao et al. 2017). First, DBF is mainly attacked at the 1,2-C 
position by BP-dioxygenase (BphA); then, it is dehydro-
genated by BP-dihydrodiol dehydrogenase (BphB) and 
dioxygenolytically cleaved by dihydroxybiphenyl dioxy-
genase (BphC) to produce 2-hydroxy-4-(3′-oxo-3′H-
benzofuran-2′-yliden)but-2-enoic acid (HOBB) (Fig.  1b), 
which is a major metabolite in the biodegradation path-
way (Becher et al. 2000; Hammer et al. 1998; Kaiya et al. 
2012; Li et al. 2009; Stope et al. 2002). Some new down-
stream metabolites of HOBB have been reported (Li et al. 
2009; Shi et al. 2013), but the entire pathway and enzymes 
involved as well as how the resulting metabolites are fur-
ther degraded remain unclear. Preparation of pure HOBB 
through biosynthesis and its use as a substrate for screen-
ing would provide insight into the lateral dioxygenation 
pathway. In addition, HOBB, which is a singular hetero-
cycle, may be useful for synthesizing complex benzofuran 
derivatives with biological activities. If its accumulation 
could be increased, it would be easier and more conveni-
ent to synthesize these bioactive products through subse-
quent substitution and synthetic reactions.

The use of whole-cell microbial biocatalysts is a prom-
ising technique for industrial production (Schmid et  al. 
2001). Whole-cell biocatalysts provide energy and recy-
cle cofactors in redox reactions (Schmid et  al. 2001; 
Zhao and van der Donk 2003), and have the prospect of 
becoming powerful tools in organic synthesis (Schrewe 
et al. 2013). Many studies have attempted to use micro-
organisms to synthesize valuable compounds (Hsieh et al. 
2017; Kadisch et al. 2017; Nikel et al. 2016; Nuland et al. 
2017; Wang et al. 2005, 2015; Yu et al. 2014, 2017).

Herein, we describe the development of an environ-
mental-friendly method for biosynthesizing HOBB 
from DBF using whole cells of P. putida strain B6-2. 
First, different cultivation media were compared to test 
the biosynthesis. Then, different biosynthesis condi-
tions including pH, optical density at 600  nm (OD600), 
the initial DBF concentrations, and different extraction 

conditions were evaluated to achieve the maximum 
HOBB yield. Finally, batch and fed-batch processes were 
compared to determine which process makes full use of 
the bacteria and increases the yield of HOBB.

Methods
Chemicals
Dibenzofuran (98%) was purchased from J & K Chemi-
cals (Beijing, China). HPLC grade formic acid, HPLC 
grade methanol, and GC grade N,N-dimethylforma-
mide (DMF) were obtained from Aladdin (Italy). N,O-
bis-(trimethylsilyl)trifluoroacetamide (BSTFA) for GC 
derivatization was obtained from Sigma-Aldrich (USA). 
All other reagents and analytical grade chemicals were 
purchased from Sinopharm Chemical Reagent Co., Ltd 
(Shanghai, China).

Bacteria and culture conditions
Pseudomonas putida strain B6-2 was isolated from soil 
and characterized to cometabolize DBF by growing with 
BP as the sole carbon source as previously described 
(Li et  al. 2009). The strain was deposited at Deutsche 
Sammlung von Mikroorganismen und Zellkulturen in 
Gottingen (Germany) under DSM No. 28064. The bac-
teria were cultivated in lysogeny broth (LB) or mineral 
salts medium (MSM) (pH 7) containing (per liter distilled 
water) 5.2-g K2HPO4, 3.7-g KH2PO4, 0.1-g MgSO4, 1-g 
Na2SO4, 2-g NH4Cl, and 1-mL trace metal solution (Li 
et al. 2006). The phosphate buffer (PBS) used to suspend 
the bacteria was prepared with 1.42-g Na2HPO4, 0.27-g 
KH2PO4, 8-g NaCl, and 0.2-g KCl per liter distilled water, 
and the pH was adjusted with 1-M HCl or 1-M NaOH 
according to experimental requirements. BP and DBF 
were separately dissolved in DMF to prepare a mother 
liquid with a concentration of 100 mM.

Flask cultivation was conducted in 2-L flasks containing 
1 L of broth at pH 7, 30 °C, and 200 rpm. Growth curves 
of strain B6-2 were determined in three different media, 
including LB medium, LB medium containing 2-mM BP, 
and MSM containing 10-mM BP, and the ability of B6-2 
cells to degrade DBF in each medium was also evaluated.

Preparation for biosynthesis
Strain B6-2 was cultivated in growth medium overnight, 
harvested at the mid-exponential phase by centrifug-
ing at 6000g for 20  min at 4  °C, and then washed three 
times with PBS. These cells were suspended in PBS to the 
proper OD600 for biosynthesis.

Extraction and analytic methods
Suspended cells (10  mL) and DBF were added into a 
50-mL flask to conduct a reaction with shaking (200 rpm) 
at 30  °C. After the pH was adjusted to 2, ethyl acetate 
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(5 mL) was added. The metabolites were extracted into the 
organic phase by shaking and separated by centrifuging 
and partitioning. Then, the organic phase supernatant was 
removed, passed through a 0.22-μm filter, and analyzed 
with high-performance liquid chromatography (HPLC) 
(Agilent 1200 series, Agilent Technologies Inc., USA).

Different DBF concentrations (0.3, 0.5, 0.8, and 1.0 mM), 
pH values (5, 7, 8, and 9) and OD600 values (2, 5, and 10) were 
studied to identify the best reaction conditions of all trials. 
The extraction efficiencies of different extractants including 
cyclohexane, dichloromethane, trichloromethane, butanol, 
and ethyl acetate were also tested. In addition, two different 
extraction methods for preparing HOBB were also com-
pared. For the acid–alkali-acid method, the pH was adjusted 
to 2, and the solution was first extracted with equivoluminal 
organic solvent, then the organic phase was extracted with 
1/2 volume water (pH 10), and finally, after pH was adjusted 
to 2, the aqueous phase was extracted again with equivo-
luminal organic solvent. For the neutral-acid extraction 
method, the reaction liquid was directly extracted with an 
organic extractant, then the pH was adjusted to 2, and the 
reaction liquid was extracted again. The final organic phase 
was used for the detection and preparation of HOBB.

The HPLC system was equipped with a ZORBAX-C18 
column (150  mm × 4.6  mm, 5  μm, Agilent Technolo-
gies Inc., USA) and a diode-array detector (DAD). DBF 
was detected at a wavelength of 280 nm, and HOBB was 
detected at 405 nm. To obtain quantitative data, a volume 
of 5 μL was injected into the system and eluted with a mix-
ture of methanol and water (1‰ HCOOH) over 56 min. 
The initial percentages of methanol and water were 30 
and 70% (v/v), respectively, with a flow rate 0.5 mL/min. 
The methanol gradient then increased to 50% over 5 min, 
increased to 90% over the next 30 min, was maintained at 
90% for 10 min, and, finally, decreased to 30% over 1 min. 
The column was then balanced for another 9 min.

LC–MS/TOF accurate mass analysis (Agilent 6230, 
USA) was performed using a similar elution procedure 
with a flow rate of 0.4  mL/min. The MS was equipped 
with a standard ESI in the negative ion mode, and N2 was 
used as a sheath gas (40 psi).

Purified HOBB was dissolved in DMSO and then deri-
vatized with BSTFA at 70 °C for 45 min (Jaiswal et al. 2011). 
After derivatization, GC–MS was conducted using condi-
tions similar to those previously described (Li et al. 2009). 
NMR spectra were obtained for solutions in DMSO-d6 on 
an Avance 600 spectrometer (Bruker) operated at 600 MHz 
for 1H and at 150 MHz for 13C. H–H COSY, HMBC, and 
HSQC spectra of silylated HOBB were recorded.

Biosynthesis and preparation of HOBB
Biosynthesis was conducted with 200  mL of the bac-
terial culture in a 1-L flask under the best conditions 

determined from all trials. Two strategies were used 
for biosynthesis. After the DBF biodegradation rate 
decreased, cells were harvested by centrifugation and 
recycled into a fresh batch reaction. This was repeated a 
second time for a total of three recycled batch processes 
with the same biocatalysts. For the fed-batch process, 
DBF was supplemented with the same concentrations as 
the batch group at the same time.

After the reaction was complete, cells were harvested 
by centrifugation and the supernatant was extracted with 
the best extraction method of all trials. After the organic 
phase was collected and condensed, crude HOBB was 
obtained. Further purification was conducted by washing 
the sediment several times with a small amount of ethyl 
acetate, and the sample was dried with nitrogen blow-
ing and then freeze-dried to a constant weight. Purified 
HOBB was dissolved in DMF and diluted with ethyl ace-
tate to generate a standard curve for HPLC, LC–MS, and 
GC–MS analysis.

Statistical analysis
All experiments were conducted for three replicates. 
Data were analyzed using Microsoft Excel and Origin 8.0 
for Windows. Results are reported as the mean ± SD.

Results
Preparation for biosynthesis
Strain B6-2 was cultured in three different media, includ-
ing LB medium, LB medium containing 2  mM BP, and 
MSM containing 10  mM BP. Cells were harvested, 
washed, and suspended in PBS (pH 7.5) to an OD600 of 5. 
Growth, degradation of DBF, and accumulation of HOBB 
in the three media were compared. The growth rate and 
biomass of strain B6-2 cultivated in LB medium and LB 
medium containing BP were higher than those of the 
strain cultivated in MSM medium containing BP (Fig. 2a). 
The fastest rates of DBF degradation and HOBB accumu-
lation were observed in whole cells prepared from LB 
medium containing BP, followed by cells prepared from 
MSM containing BP and LB medium (Fig. 2b). Therefore, 
strain B6-2 was cultured in LB medium containing BP in 
subsequent experiments.

Reaction conditions for biosynthesis
The effect of the initial substrate concentration on HOBB 
synthesis was evaluated next (Fig. 3a). Strain B6-2 culti-
vated in LB medium containing 2 mM BP was harvested 
and suspended in PBS (pH 7.5) to an OD600 of 5. When 
0.3  mM DBF was added, it was completely degraded 
in 4  h, and the highest amount of HOBB obtained was 
approximately 0.14  mM. When the starting concentra-
tion was 0.5 mM, DBF was almost completely degraded 
and a large amount of HOBB (~ 0.26 mM) was produced 
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by 8  h. With starting concentrations of 0.8  mM and 
1.0 mM, DBF was not completely degraded; only approxi-
mately 0.5  mM DBF was degraded after 22  h. Though 
the amount of HOBB was the highest at 12 and 16 h for 
starting concentrations of 0.8-mM and 1.0-mM DBF, 
respectively, the highest amount of HOBB obtained from 
the both groups were lower than the highest amount 
obtained with a starting concentration of 0.5 mM. Based 
on the results shown in Fig.  3a, the initial rates of DBF 
degradation during the first 4  h were 0.072  mM  h−1 
(Cinitial = 0.3-mM  DBF), 0.074  mM  h−1 (Cinitial = 0.5-
mM  DBF), 0.067  mM  h−1 (Cinitial = 0.8-mM  DBF) and 
0.044 mM h−1 (Cinitial = 1.0-mM DBF). Almost the same 
rates of DBF degradation were observed when the start-
ing concentrations were 0.3 mM and 0.5 mM. However, 
the rate of DBF degradation decreased as the starting 
DBF concentration increased from 0.5  to 0.8  mM and 
from 0.8 to 1.0 mM. Therefore, it can be concluded that 
high concentrations of DBF (i.e., starting concentrations 
of 0.8 and 1.0 mM) slow down the rate of DBF degrada-
tion and HOBB accumulation (Fig.  3a). Furthermore, 
with starting concentrations of 0.8- and 1.0-mM DBF 
under the conditions of OD600 5, pH 7.5, strain B6-2 was 
only able to degrade about 0.5-mM DBF (Fig. 3a). There-
fore, 0.5  mM was chosen as the best concentration for 
HOBB biosynthesis.

To increase the production of HOBB, biosynthesis at 
different pH values (Fig.  3b) and cell densities (Fig.  3c) 
was evaluated. After cultivation in LB medium contain-
ing 2-mM BP, strain B6-2 was suspended in PBS of dif-
ferent pH values to an OD600 of 5, and 0.5-mM DBF was 
added. Although strain B6-2 can tolerate pH 5, only a 

small amount of DBF was degraded, and there was barely 
any HOBB accumulation. In addition, the biosynthesis 
system did not have the orange color that is characteristic 
of HOBB in a neutral or alkaline environment. The high-
est concentration of HOBB was obtained after approxi-
mately 8  h at pH 7 (Fig.  3b). When pH increased from 
7 to 9, the rate of HOBB accumulation decreased along 
with the rate of DBF degradation. In terms of cell den-
sity, an OD600 of 5 clearly led to higher HOBB production 
than an OD600 of 2 in PBS (pH 7.5), and DBF degradation 
and HOBB accumulation were only minimally different 
from that observed at an OD600 of 10 (Fig. 3c). For groups 
with an OD600 of 5 and 10, 0.5-mM DBF was almost com-
pletely degraded after 8 h.

When strain B6-2 was incubated at LB medium con-
taining 2-mM BP and conducted biosynthesis under the 
best conditions (CDBF = 0.5  mM, OD600 of 5, and pH 7) 
determined from all trials in a volume of 10  mL, DBF 
was rapidly degraded and HOBB (0.26 ± 0.007 mM) was 
accumulated by 8 h (Fig. 3d).

Conditions for extraction
Different extractants were applied after biosynthesis 
and centrifugation. Cyclohexane, dichloromethane, and 
trichloromethane extracted very little HOBB from the 
reaction liquid. Better HOBB extraction was obtained with 
butanol and ethyl acetate (Additional file 1: Table S1). The 
extraction efficiency of ethyl acetate (0.135 ± 0.003  mM 
HOBB) was much higher than that of butanol 
(0.077 ± 0.003 mM HOBB) as determined by HPLC.

The extraction efficiencies of ethyl acetate using two 
different extraction methods (acid–alkali-acid method 

Fig. 2  Preparation of biocatalyst using different media. a Growth curves of strain B6-2 in three different media: LB medium (closed square), LB 
medium with 2-mM BP (open circle), and MSM with 10-mM BP (open triangle). b DBF degradation (dotted line) in LB medium (open square), LB 
medium with 2-mM BP (open circle) and MSM with 10-mM BP (open triangle), and HOBB accumulation (solid line) in LB medium (closed square), 
and LB medium with 2-mM BP (closed circle) and MSM with 10-mM BP (closed triangle) after cultivation of strain B6-2
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and neutral-acid method) were determined by HPLC. 
Both methods removed residual DBF and upstream 
products of HOBB biosynthesis (Fig.  1b). Approxi-
mately 0.072 ± 0.0001-mM HOBB was obtained with 
the acid–alkali-acid method, and compared to direct 
extraction (0.135 ± 0.003  mM HOBB), the extraction 
efficiency was 53.1%. The neutral-acid method yielded 
0.096 ± 0.002 mM HOBB with an extraction efficiency of 
70.8%. Therefore, extraction with ethyl acetate using the 
neutral-acid method is a better extraction method.

Detection and verification of HOBB and DBF
DBF was easily identified by HPLC at 280  nm using 
standards. HOBB was first separated and identified using 
LC–MS (Fig.  4a). A molecular ion peak (M−) at m/z 

231.0295 (RT 18.337  min, λ = 405  nm) corresponded to 
C12H8O5 (theoretical: 231.0299), and possessed exactly 
the same UV–vis spectra as HOBB in the acid mobile 
phase (Stope et  al. 2002). HOBB cannot be detected 
on GC–MS unless it is derived, so HOBB was silylated 
before analysis. One major peak at RT 18.1 min (Fig. 4b) 
had a molecular weight of 376 and main ion peaks at m/z 
376, 259, 147 and 73, which indicated that HOBB was 
successfully silylated on hydroxyl and carboxylic acid 
groups. NMR spectra of 1H and 13C (Table  1) suggest 
the structure shown in Fig.  4c, and are consistent with 
those previously reported by Stope et  al. (2002). Taken 
together, these results confirmed that the purified metab-
olite was HOBB. 

Fig. 3  Trials of biosynthesis conditions. DBF degradation (dotted line) and HOBB accumulation (solid line) were evaluated under different 
conditions. a Initial DBF concentration. DBF degradation: 0.3-mM DBF (open square), 0.5-mM DBF (open circle), 0.8-mM DBF (open triangle), 1.0-mM 
DBF (open diamond); HOBB accumulation: 0.3-mM DBF (closed square), 0.5-mM DBF (closed circle), 0.8-mM DBF (closed triangle), and 1.0-mM DBF 
(closed diamond). b Different pH values. DBF degradation: pH 5 (open square), pH 7 (open circle), pH 8 (open triangle), pH 9 (open diamond); HOBB 
accumulation: pH 5 (closed square), pH 7 (closed circle), pH 8 (closed triangle), pH 9 (closed diamond). c Cells density. DBF degradation: OD600 2 
(open square), OD600 5 (open circle), OD600 10 (open triangle); HOBB accumulation: OD600 2 (closed square), OD600 5 (closed circle), and OD600 10 
(closed triangle). d DBF degradation (open square) and HOBB accumulation (closed square) under the best conditions among all trials: OD600 5, pH 
7, and CDBF = 0.5 mM in a 10-mL system
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Fig. 4  Preparation and identification of HOBB by mass spectra and NMR analysis. a HPLC detection revealed a peak at RT 18.377 min (λ = 405 nm) 
with UV–Vis spectra in the acid mobile phase, and mass spectra verification revealed a molecular ion peak (M−) at m/z 231.0299 (C12H8O5) 
consistent with HOBB. b GC–MS detection of silylated HOBB (derived with BSTFA) with one major peak at RT 18.1 min, showing main ion peaks at 
m/z 376, 259, 147 and 73. c When preparing HOBB, the sediment was purified by washing with a small amount of ethyl acetate. Purified HOBB was 
a yellow powder (1). This powder turned yellow–green in color when dissolved in ethyl acetate (2) and dark-orange in color when dissolved in DMF 
(3). The structure of silylated HOBB was determined by NMR analysis (derived with BSTFA) (4)
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Biosynthesis and preparation of HOBB
After cultivation in LB medium containing 2-mM BP, 
strain B6-2 was used for biosynthesis under the best con-
ditions determined from the trials (OD600 of 5 and pH 
7). To improve yield, batch and fed-batch processes were 
performed in 1-L bottles containing 200-mL reaction 
liquid.

For the batch process, the biocatalyst was recycled and 
used in three sequential batch reactions (Fig.  5a). The 
initial concentration of DBF was 0.5  mM. When about 
0.45-mM DBF was degraded (~ 8.5 h) in the first batch, 
cells were harvested by centrifugation and reused to 
convert 0.4-mM DBF in another batch reaction. When 
approximately 0.25-mM DBF was degraded and almost 

no HOBB was further accumulated (~ 18  h) in the sec-
ond batch, cells were reused again to convert a new batch 
reaction of 0.3-mM DBF. In addition, almost no DBF was 
degraded in the third batch (Fig. 5a). The yields of HOBB 
obtained from conversion of DBF in the first two batch 
steps were 0.21 ± 0.01 mM (48.3%) and 0.079 ± 0.003 mM 
(34.4%), respectively.

For the fed-batch process, DBF was added into the 
same bio-reaction system for three times and HOBB 
remained in the bioreactor until the end of the run. To 
make a contrast with batch process, 0.5-mM DBF was 
used as the initial concentration, 0.4-mM DBF was added 
into the reaction system at 8.5 h, and 0.3-mM DBF was 
supplemented at 26.5 h (Fig. 5b).

The rate of DBF degradation and HOBB accumula-
tion in the batch and fed-batch processes slowed down 
after adding 0.4-mM DBF. Compared with a single step, 
in which about 0.5-mM DBF was degraded (Fig. 3a), the 
use of batch biosynthesis, in which bacteria were utilized 
twice, increased the amount of DBF degraded to about 
0.7  mM. The highest concentration of HOBB obtained 
in the fed-batch group was 0.24 ± 0.006  mM at 21  h 
(Fig. 5b), which was lower than the yield of the batch bio-
synthesis (0.29 ± 0.003 mM).

The supernatant of the first two batch groups was col-
lected to prepare HOBB, and the crude product contain-
ing a mixture of red–brown and yellow compounds was 
obtained after extraction. After washing with a small 
amount of ethyl acetate, the supernatant was brown, 
while the sediment was yellow (Fig.  4c). Pure HOBB, 
which is a yellow powder, was then obtained (Fig.  4c-
1). About 13.58 ± 0.31  mg of HOBB was obtained from 

Table 1  1H NMR (600 MHz) and 13C NMR (150 MHz) results 
for silylated HOBB in DMSO-d6

δ (ppm) Proton 
assignment

J (Hz) δ (ppm) Carbon 
assignment

6.468 H-9, d 3J = 12.2 106.32 C-10

6.698 H-10, d 3J = 12.2 112.26 C-9

7.065 H-4, t 3J = 7.4 113.91 C-2

7.231 H-2, d 3J = 8.2 122.32 C-6

7.518 H-3, t 3J = 7.4 124.81 C-4

7.543 H-5, d 3J = 7.3 125.07 C-3

138.54 C-5

147.69 C-8

148.76 C-11

163.92 C-12

165.82 C-1

183.42 C-7

Fig. 5  Biosyntheses of HOBB in batch and fed-batch processes. DBF degradation (open square) and HOBB accumulation (closed square) were 
evaluated in the two groups. a For the batch group, the biocatalysts were recycled twice, so that there were three sequential batch processes. The 
initial DBF concentration was 0.5 mM. After DBF was almost completely degraded at 8.5 h, bacteria were recycled by centrifugation and reused for 
another batch biosynthesis with 0.4-mM DBF. When almost no DBF was degraded, bacteria were reused again for another batch biosynthesis with 
0.3-mM DBF. b For the fed-batch group, the same concentrations of DBF were added directly into the reaction systems at the same time as batch 
group
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22.49 ± 0.74  mg DBF with a high overall production 
yield of 60.4% (w/w). This powder became yellow–green 
in color when dissolved in ethyl acetate (Fig.  4c-2), and 
presented dark-orange in color when dissolved in DMF 
(Fig.  4c-3). The powder was more easily dissolved in 
DMF than in ethyl acetate. The purified HOBB was used 
as the standard to quantify yield.

Discussion
Compounds with a benzofuran nucleus have a wide range 
of therapeutic effects (Khanam and Shamsuzzaman 
2015), acting as potent anti-tumor, antimicrobial, and 
antiviral agents. The synthesis of these compounds from 
benzofuran derivatives has been widely studied (El-Zahar 
et  al. 2011; Galal et  al. 2009; Ma et  al. 2016). To obtain 
these products, benzofuran rings must be chemically 
synthesized; however, some of these syntheses require 
expensive catalysts, such as the noble metals Pd (Oppen-
heimer et al. 2007; Trost and Mcclory 2007) and Rh (Cac-
chi et al. 2002), and require strict operational conditions. 
This study reveals an easier and more convenient strat-
egy to synthesize the benzofuran derivative HOBB using 
whole cells of a P. putida strain.

DBF can be catabolized by P. putida B6-2 via two 
pathways (Fig.  1b), with the major pathway leading to 
the accumulation of HOBB (Li et  al. 2009). According 
to accumulation curves (Fig.  3), the amount of HOBB 
increased rapidly reaching a maximum level and then 
slightly decreased in a short period of time. Thus, strain 
B6-2 is a good choice for HOBB biosynthesis. It can also 
be inferred that the level of HOBB accumulation is deter-
mined by the balance between production and degrada-
tion. The color of the reaction system rapidly turned from 
white to orange, stayed orange for a period of time, and 
finally deepened in color, suggesting that HOBB might be 
transformed into other metabolites. Consistent with this 
color change, HPLC analysis also revealed a decrease in 
HOBB concentration.

Cultivation media affect how much DBF is degraded 
and how much HOBB accumulates (Fig.  2b). This is 
likely because some enzymes involved in DBF degrada-
tion such as BphA, BphB, and BphC are not induced in 
LB medium, thus decreasing the rate of DBF degradation. 
Adding BP to the LB medium can overcome this prob-
lem, because it activates degradation-related genes when 
bacteria grow rapidly.

Higher concentrations of DBF (0.8  and 1.0  mM) can 
slow the HOBB biosynthesis reaction (Fig.  3a). In addi-
tion, during the batch synthesis, the degradation activity 
of strain B6-2 declined dramatically after adding 0.4-mM 
DBF (Fig. 5a). This might be due to the fact that DBF and 
its metabolites are toxic and can inhibit degradation. 
Therefore, using a proper DBF concentration matters a 

lot in achieving efficient degradation. In addition, the pH 
of the solution impacts the efficiency of DBF degradation. 
A pH of 5 was tested, because our lab previously showed 
that strain B6-2 can tolerate this condition. Based on the 
low yield of HOBB at this pH and compared with the high 
yield at other pH values (7, 8 and 9) (Fig. 3b), it can be 
inferred that a neutral or slightly alkaline medium facili-
tates DBF degradation and HOBB accumulation. How-
ever, as pH increased from 7 to 9, the highest production 
of HOBB decreased (Fig.  3b). This may be because an 
alkaline environment makes HOBB unstable due to its 
unsaturated structure. Therefore, pH 7 is preferred over 
other pH values. After the best culturing conditions of 
trials for HOBB production were established, the effi-
ciencies of different extractants were tested. Similar 
substances can dissolve each other; therefore, different 
extractants have different extraction efficiencies. Ethyl 
acetate has a polarity similar to that of HOBB, which 
increases its extraction efficiency compared with that of 
butanol.

After purification of HOBB, HPLC analysis was done 
to assess purity. Except for the solvent peak, only single 
peaks were observed at 210, 235, 254, 280, 300, 350, and 
405  nm (reference = 600  nm) (Additional file  1: Figure 
S2). The peak areas corresponding to HOBB in HPLC 
and GC–MS chromatograms were greater than 95%, and 
thus, the product was recognized to be pure and could 
be quantified. As HOBB shows a keto-enol tautomerism 
(Stope et al. 2002), it is difficult to directly determine its 
structure by GC–MS and NMR. Therefore, we elucidated 
the molecular structure through NMR analysis of a deri-
vatized form, silylated HOBB (Fig. 4c-4).

Equimolar conversion of DBF to HOBB could not be 
achieved (Figs. 2 and 3). There are a few possible expla-
nations for this. First, although the pathway leading to 
HOBB accumulation is the major pathway, DBF can be 
also consumed by a minor pathway to produce another 
product called 4-(2-hydroxy-3-benzofuranyl)-2-oxo-3-
butenoic acid (Fig. 1b). Second, strain B6-2 can degrade 
HOBB during the whole process of biosynthesis. Third, 
the properties of HOBB and DBF differ: DBF possesses 
a weaker polarity, is harder to dissolve in water, and 
is easier to dissolve in the organic phase than HOBB. 
Therefore, extraction efficiencies of DBF and HOBB are 
different. Furthermore, the accuracy of HPLC detection 
may also differ. Unlike DBF, HOBB, even under acidic 
mobile phase conditions, has obvious tailed-peaks at low 
concentrations (such as below 0.1 mM), which will affect 
the integrated results.

Very different results were observed when biosyntheses 
were performed using the batch and fed-batch processes. 
The same amount of bacteria transformed more DBF and 
synthesized more HOBB in the batch group than in the 
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fed-batch group (Fig.  5). After adding 0.3-mM DBF at 
26.5 h, the bacteria in the fed-batch process almost com-
pletely lost the ability to degrade DBF, and the concentra-
tion of HOBB decreased. It can be inferred that if HOBB 
is present in the reaction system for a long time, it will 
become unstable and will be transformed into other by-
products. HOBB may also cause the product inhibition. 
Therefore, centrifuging the supernatant and resuspend-
ing in new media prior to conducting a new round of bio-
synthesis will help to increase the accumulation of HOBB 
and make the full use of the bacteria.

Conclusions
In summary, a pharmacological value-added compound 
HOBB was biosynthesized from DBF using whole cells 
of P. putida B6-2 via the lateral dioxygenation pathway, 
and a high overall production yield (60.4%, w/w) was 
obtained. The biosynthesis of HOBB may provide a new 
green route for synthesizing benzofuran derivatives with 
pharmacological activities.
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