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Abstract 

Terpenoids are a group of largest natural products with important biological functions, and their efficient biosynthesis 
is of particular importance to both academia and industry. As the building blocks for terpenoid biosynthesis, a suit-
able supply of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) is extremely crucial for efficient 
terpenoid biosynthesis. With this focus, we first introduce biosynthetic pathways of IPP and DMAPP, and then sum-
marize the current strategies adopted for manipulating IPP and DMAPP supply. At last, how to further manage IPP and 
DMAPP supply to improve terpenoid biosynthesis is also proposed.
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Introduction
Terpenoids are a class of natural products with diverse 
structures and essential biological functions (Schrader 
and Bohlmann 2015; Tarkowska and Strnad 2018). For 
example, animal-derived terpenoids (e.g., cholesterol, 
dolichol, ubiquinone) are involved in cell membranes 
formation, glycoproteins biosynthesis and intracellular 
electron transport (Goldstein and Brown 1990). Plant-
derived terpenoids (e.g., tocopherol, brassinolide, and 
gibberellin) are responsible for the regulation of cell 
growth and defense (Piironen et  al. 2000; Tholl 2015). 
In addition, many commercially useful compounds (e.g., 
pharmaceuticals, flavorings, biofuel) belong to terpenoid 
(Ajikumar et  al. 2008; Immethun et  al. 2013; Tippmann 
et al. 2013). Therefore, efficient biosynthesis of terpenoid 
is receiving great interests from researchers (Bian et  al. 
2017).

According to the number of C5 units involved dur-
ing their synthesis, terpenoids are classified as hemit-
erpenoid (C5), monoterpenoid (C10), diterpenoid 

(C20), triterpenoid (C30), tetraterpenoid (C40), and 
polyterpenoid (> C40) (Connolly and Hill 1991). For-
mation of terpenoid usually undergoes a continuous 
head-to-tail addition of its building blocks, which are 
isoprene diphosphate (IPP) and its isomer dimethylal-
lyl diphosphate (DMAPP) (Karine et al. 2012; Laskovics 
and Poulter 1981). First, a head-to-tail condensation of 
IPP and DMAPP produces geranyl diphosphate (GPP), 
the precursor of monoterpenoid. Then, the successive 
addition of IPP results in the formation of precursors 
of sesquiterpenoid and diterpenoid, which are farnesyl 
diphosphate (FPP) and geranylgeranyl diphosphate 
(GGPP), respectively. On this basis, two molecules of FPP 
and GGPP are, respectively, head-to-head condensed to 
form squalene and phytoene, the precursors of triterpe-
noid and tetraterpenoid. These linearized precursors are 
further subjected to cyclization and post modifications 
(e.g., oxidation, acetylation) to form various terpenoids 
(Luthra et al. 1999; Mcgarvey and Croteau 1995).

Although IPP and DMAPP are the crucial requisite 
to efficient terpenoid biosynthesis, their accumulation 
is harmful to cell growth and can affect terpenoid pro-
duction in turn (George et  al. 2018; Martin et  al. 2003; 
Sivy et al. 2011). As a result, a suitable supply of IPP and 
DMAPP is of great importance to efficient terpenoid bio-
synthesis. Other than providing a comprehensive view 
of achieving efficient terpenoid biosynthesis based on 
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one individual enzyme (Liao et  al. 2014) or a particular 
biosynthetic pathway (Liao et al. 2016), we focus on sum-
marizing the strategies of manipulating IPP and DMAPP 
supply in this review, including important and recent 
works which can reflect the latest progress. We also 
propose several strategies for further improving terpe-
noid biosynthesis regarding managing IPP and DMAPP 
supply.

Biosynthesis of IPP and DMAPP
IPP and DMAPP are mainly synthesized via two path-
ways: the mevalonate (MVA) pathway (Liao et  al. 2016) 
and the non-mevalonate pathway, which is also known as 
the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway 
(Rohmer 1999). The MVA pathway mainly exists in the 
cytoplasm and peroxisome of eukaryotes, while the MEP 
pathway exists in most bacteria (Boucher and Doolittle 
2000; Lange et  al. 2000). In addition, plants harbor the 
MVA pathway in the cytoplasm to form sesquiterpe-
noid and triterpenoid, and the MEP pathway in plastid 
to form monoterpenoid, diterpenoid and tetraterpenoid, 
respectively (Henry et  al. 2015; Lichtenthaler 1999; 
Lichtenthaler et al. 1997).

In the 1950s, the MVA pathway was recognized as 
the dominant pathway for terpenoid biosynthesis (Lit-
tle and Bloch 1950). In this pathway, two molecules of 
acetyl-CoA are condensed to acetoacetyl CoA by acetyl-
CoA acetyltransferase (AACT). Acetoacetyl CoA and 
another molecule of acetyl-CoA are then condensed by 
hydroxymethylglutaryl-CoA synthase (HMGS) to form 
3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), which 
is further reduced by 3-hydroxy-3-methylglutaryl-CoA 
reductase (HMGR) to produce mevalonate. After a two-
step phosphorylation and decarboxylation catalyzed by 
mevalonate kinase (MK), phosphomevalonate kinase 
(PMK), and diphosphomevalonate decarboxylase (MVD), 
mevalonate is converted into IPP (Bochar et  al. 1999), 
and then, IPP is isomerized to DMAPP by isopentenyl 
diphosphate isomerase (IDI) (Fig. 1) (Kaneda et al. 2001).

Most archaea were characterized to harbor enzymes of 
the MVA pathway (Nishimura et  al. 2013), and a modi-
fied MVA pathway may exist in some archaea lacking 
PMK and MVD (Vinokur et  al. 2014). Initially, Gro-
chowski et al. identified an isopentenyl phosphate kinase 
(IPK) from Methanocaldococcus jannaschii capable of 
phosphorylating isopentenyl phosphate (IP) to gener-
ate IPP (Grochowski et  al. 2006). Later, the phospho-
mevalonate decarboxylase (MPD) activity has been 
identified in Chloroflexi bacterium Roseiflexus casten-
holzii (Dellas et  al. 2013) and archaeal extremophile 
Haloferax volcanii (Vannice et al. 2014). Based on these 
discoveries, researchers proposed an alternative route 
to produce IPP (Henry et  al. 2015): after formation of 

5-phosphomevalonate (MVP), the MPD catalyzes the 
decarboxylation of MVP to IP, and IPK catalyze the phos-
phorylation of IP to IPP (Fig. 1).

After the 1950s, a growing number of investigations 
indicated that IPP might not be synthesized merely from 
the MVA pathway. In one study, the 14C-labeled meva-
lonate was rarely incorporated into the isoprenoids (e.g., 
carotene) produced in the plastid of maize seedlings, 
while the cytoplasmic sterols were quickly incorporated 
(Goodwin 1958). Similar phenomena were also reported 
in carrot, tomato and oat (Braithwaite and Good-
win 1960a, b; Lichtenthaler et  al. 1982). Moreover, the 
14C-labeled pyruvate and CO2 were rapidly incorporated 
into plastid-produced isoprenoid in Sinapis alba (Lutke-
Brinkhaus and Kleinig 1987). Using gas chromatogra-
phy–mass spectrometry, a series of follow-up studies 
revealed a mevalonate-independent pathway, the MEP 
pathway, for IPP biosynthesis (Rodriguez-Concepcion 
and Boronat 2002; Rohmer 1999; Rohmer et  al. 1993; 
Schwender et al. 1996).

In MEP pathway, pyruvate and glyceraldehyde 3-phos-
phate (G3P) are condensed by thiamin diphosphate-
dependent enzyme 1-deoxy-d-xylulose-5-phosphate 
synthase (DXS) to form 1-deoxy-d-xylulose 5-phosphate 
(DXP). DXP was reduced by 1-deoxy-d-xylulose-5-phos-
phate reductoisomerase (DXR) to form MEP (Kuzuyama 
et  al. 1998), which is catalyzed by 2-C-methyl-d-eryth-
ritol 4-phosphate cytidylyltransferase (MCT) to gener-
ate 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol 
(CD-ME). After phosphorylation, cyclization and ring 
opening, CD-ME is converted into 1-hydroxy-2-methyl-
2-butenyl 4-diphosphate (HMBPP) under the catalysis 
of 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase 
(CMK), 2-C-methyl-d-erythritol 2,4-cyclodiphosphate 
synthase (MDS) and 4-hydroxy-3-methylbut-2-enyl-
diphosphate synthase (HDS), respectively (Herz et  al. 
2000) (Fig. 1). Different from the MVA pathway, in which 
the DMAPP is synthesized via IPP isomerization, the IPP 
and DMAPP derived from the MEP pathway are directly 
generated from HMBPP by 4-hydroxy-3-methylbut-2-
enyl diphosphate reductase (HDR) (Felix et al. 2002).

In 2012, an MEP shunt pathway (5-methylthioadenine 
(MTA)-isoprene pathway) was characterized to gener-
ate IPP and DMAPP in Rhodospirillum rubrum (Erb 
et  al. 2012) (Fig.  1). First, MTA is catalyzed by MTA 
phosphorylase (MtnP) to form 5-methylthio-d-ribose-
1-phosphate (MTR-1P), followed by an isomerization to 
generate 5-methylthio-d-ribulose-1-phosphate (MTRu-
1P) by MTR-1P isomerase (MtnA). Then, MTRu-1P 
is converted into a mixture of 1-methylthio-ribulose-
5-phosphate (MTRu-5P) and 1-methylthio-xylulose-
5-phosphate (MTXu-5P) by MTRu-1P dehydratase, 
which is a ribulose-1,5-bisphosphate carboxylase/
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oxygenase (RubisCO)-like protein (RLP) (Imker et  al. 
2008). After that, MTXu-5P is converted into DXP 
by cupin-type MTXu-5P sulfating enzyme-mediated 
catalysis, which simultaneously produces mercaptan as 
a sulfur source for cell growth. The rlp and cupin gene 
are usually physically close in a cluster. The MEP shunt 
pathway has been demonstrated to play an important 
role in generating DXP in R. rubrum. In addition to 
R. rubrum, organisms carrying the rlp–cupin cluster 
were predicted to have the MEP shunt pathway, such as 

Rhodopseudomonas, Rhodomicrobium, and Nitrosococ-
cus. As confirmed in a recent study, the MEP shunt path-
way has been detected in Rhodopseudomonas palustris 
under aerobic cultivation (Miller et al. 2018).

Manipulating the supply of IPP and DMAPP 
to enhance terpenoid biosynthesis
A sufficient supply of IPP and DMAPP is the basic prem-
ise for terpenoids biosynthesis (Formighieri and Melis 
2014). However, an excessive level of IPP and DMAPP 
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may cause impaired cell growth and accordingly limit ter-
penoid production (George et al. 2018; Sivy et al. 2011). 
Thus, manipulating the supply of IPP and DMAPP is of 
particular importance for terpenoid biosynthesis. To 
achieve it, strategies including rewiring the central meta-
bolic pathway, overcoming the rate-limiting step, intro-
ducing heterologous pathway, enhancing interaction 
between different biosynthetic pathways, alleviation of 
the toxicity of IPP and DMAPP, as well as discovering or 
engineering downstream enzymes by exploration of the 
toxicity of IPP and DMAPP will be thoroughly discussed 
in this part.

Rewiring the central metabolic pathway
The initial substrates for IPP and DMAPP biosynthesis, 
including acetyl-CoA, G3P and pyruvate, are generated 
via the central metabolic pathway. Rewiring central car-
bon flux towards these substrates allows increased pro-
duction of IPP, DMAPP and downstream terpenoids. 
To block the formation of acetic acid from acetyl-CoA 
and direct more carbon flux into IPP synthesis, the gene 
cluster ackA-pta was disrupted in Escherichia coli. As 
expected, the acetate production was greatly reduced in 
the resultant mutant and the lycopene production was 
45% higher than the original strain (Vadali et  al. 2005). 
As compared to the glycolytic pathway, the generation 
of acetyl-CoA from the pyruvate dehydrogenase bypass 
pathway is more efficient (Pronk et al. 1996). Overexpres-
sion of pyruvate dehydrogenase, acetaldehyde dehydro-
genase, and acetyl-CoA synthetase encoding genes led to 
increased production of mevalonate, IPP, and amorpha-
diene (Shiba et al. 2007) (Fig. 2a).

Supplying equal molar of G3P and pyruvate is 
required for DMAPP and IPP generation via the MEP 
pathway. At the end of glycolysis, conversion of G3P 
into phosphoenolpyruvate (PEP) is achieved by phos-
phoglycerate mutase (PGM) and enolase (ENO), fol-
lowed by formation of pyruvate by pyruvate kinase 
(PK) (Romano and Conway 1996). Moreover, produc-
tion of PEP can also be achieved by conversion of either 
oxaloacetate, an intermediate of TCA cycle, by PEP car-
boxykinase (PCK) (Clark 1989) or pyruvate by PEP syn-
thase (PPS) (Geerse et  al. 1989; Ramseier et  al. 1993). 
On the other hand, the opposite reaction from PEP to 
pyruvate is catalyzed by the enzymes PykF and PykA 
(Boiteux et al. 1983; Waygood et al. 1976). As a result, 
overexpression of PCK and PPS led to the accumulation 
of PEP, while deletion of PykF and PykA further pre-
vented the conversion of PEP into pyruvate. These met-
abolic engineering efforts maintained an equal balance 
between pyruvate and G3P, and successfully improved 
production of IPP and its downstream product lyco-
pene in E. coli (Farmer and Liao 2001) (Fig.  2b). In a 
more recent work, five MEP feeding modules derived 
from four glycolytic pathways in E. coli, which are Emb-
den–Meyerhof pathway (EMP), Entner–Doudoroff 
pathway (EDP), pentose phosphate pathway (PPP) and 
Dahms pathway, respectively, were tested for terpenoid 
production. With simultaneous generation of G3P and 
pyruvate, the EDP-containing module exhibited signifi-
cantly higher isoprene titer and yield than that of the 
EMP-containing module, which provides a new direc-
tion to rewire the central metabolism for MEP-depend-
ent terpenoid biosynthesis (Liu et al. 2013).

Fig. 2  Rewiring the central metabolic pathway by a increasing the supply of acetyl-CoA and b balancing the supply of glyceraldehyde 
3-phosphate and pyruvate. The bold red arrows indicate overexpression of corresponding enzymes (pathways) and red forks indicate disruption of 
corresponding enzymes
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Overcoming the rate‑limiting step
Except for providing sufficient initial substrates, over-
coming the rate-limiting steps of IPP and DMAPP 
biosynthesis is not new but an effective approach for 
increasing their production. In the late 1980s, HMGR 
was first identified as a rate-limiting enzyme in the MVA 
pathway (Bach 1986). In that study, the phytosterol con-
tents decreased significantly when their producing hosts 
were treated with specific competitive inhibitors of 
HMGR (Bach 1986; Stermer and Bostock 1987), indicat-
ing that HMGR activity greatly affected terpenoid bio-
synthesis. After that, there is increasing evidence to show 
that HMGR plays a key role in increasing terpenoid yield 
in plants, yeast and bacteria (Bach 1986; Chappell et  al. 
1995; Enfissi et al. 2005; Kim et al. 2013; Ma et al. 2011; 
Stermer et al. 1994; Tsuruta et al. 2009). Overexpression 
of hamster HMGR in tobacco driven by the cauliflower 
mosaic virus 35S promoter resulted in an over 100-fold 
increase in cycloartenol (a sterol biosynthetic intermedi-
ate) and a 2-fold increase in total sterols (Chappell et al. 
1995). Two isoenzymes of HMGR, Hmg1p and Hmg2p, 
were identified in yeast. Although degradation of these 
Hmg proteins was observed with increased level of inter-
mediates in MVA pathway, Hmg1p was more stable than 
Hmg2p (Chun et  al. 1990; Hampton and Rine 1994). 
Since numerous studies indicated that overexpression of 
Hmg1p enhanced the MVA pathway, it is still subjected 
to feedback inhibition under high level of sterol (Hamp-
ton and Rine 1994). To overcome this limitation, the 
N-terminal domain-truncated Hmg1p (t-HMGR) was 
constructed. As a result, overexpression of t-HMGR led 
to nearly five times higher production of amorphadiene 
in Saccharomyces cerevisiae (Ro et  al. 2006). This strat-
egy also increased sterol, sitosterol, stigmasterol and 
artemisinic acid-12-β-diglucoside production in tobacco, 
Lavandula latifolia, and Nicotiana benthamiana, 
respectively (Holmberg et  al. 2003; Munoz-Bertomeu 
et al. 2007; van Herpen et al. 2010). On the other hand, 
increasing the terpenoid production was also achieved 
by protein engineering of Hmg2p. For example, a sta-
ble variant Hmg2p (K6R) was constructed to counteract 
cellular ubiquitination, and improved the production of 
monoterpenoid and sesquiterpenoid (Ignea et al. 2011).

Besides, HMGS manipulation is also considered as 
an effective engineering strategy for MVA-derived ter-
penoid production (Liao et  al. 2014). A HMGS mutant 
from Brassica juncea BjHMGS1 (S359A), with tenfold 
increased specific activity (Nagegowda et  al. 2004), was 
overexpressed in Solanum lycopersium, which improved 
the production of MVA-derived squalene and phytoster-
ols (Liao et al. 2018). In addition, IPK plays a significant 
role in the alternative MVA pathway, because it regu-
lates the ratios of IP–IPP and 4-dimethylaminopyridine 

(DMAP)–DMAPP (Henry et al. 2015). The IPK homologs 
have been found in plant genomes (Dellas et  al. 2013). 
Henry et  al. confirmed that Arabidopsis thaliana IPK, 
phosphorylates IP and DMAP (Henry et  al. 2015). The 
contents of campesterol, sitosterol and β-caryophyllene 
were reduced in ipk knockdown or knockout A. thali-
ana (Henry et  al. 2015). This may be due to a decrease 
in the content of important precursors, IPP and DMAPP. 
Later, overexpression of Arabidopsis-derived IPK in 
tobacco led to increased production of cholesterol, stig-
masterol, sitosterol and campesterol (Henry et al. 2015). 
In a more recent study, overexpression of MPD from 
Roseiflexus castenholzii in tobacco enabled producing IP 
from scratch, which introduced another branch of the 
MVA pathway to increase the metabolic flux towards 
downstream terpenoids. As a result, a 3.1- and a 6.4-fold 
increase of monoterpene and sesquiterpene was achieved 
in this plant, respectively (Henry et al. 2018).

DXS is proved as the first rate-limiting step in MEP 
pathway (Estevez et al. 2001; Kim et al. 2006; Zhao et al. 
2011), whose kcat/KM value is substantially lower than 
other enzymes in this pathway (Kuzuyama et  al. 2000). 
Increasing DXS activity is recognized as the most effec-
tive strategy for terpenoid biosynthesis in many spe-
cies, such as Synechococcus leopoliensis (Bach and 
Lichtenthaler 2010; Schwender et al. 1996), Lycopersicon 
esculentum (Rohmer 1999) and Streptomyces (Kuzuy-
ama et  al. 1998). For example, heterologous expression 
of DXS from Bacillus subtilis improved IPP, DMAPP and 
β-carotene production in E. coli (Leonard et  al. 2010). 
To improve enzymatic activity of DXS, site-directed 
mutagenesis of the recombinant poplar DXS was con-
ducted by alleviating the feedback inhibition from IPP 
and DMAPP (Banerjee et al. 2016). In addition to DXS, 
the IDI catalyzes a critical step by converting IPP into 
its isomer DMAPP, which is important for balancing 
the available precursors IPP and DMAPP to produce 
desired terpenoids (Hahn et  al. 1999; Yoon et  al. 2007). 
Heterologous overexpression of IDI from Haematococ-
cus pluvialis enabled carotenoid accumulation in E. coli 
(Sun et al. 1998). Later, the idi gene isolated from Lycium 
chinense was characterized and overexpressed in E. coli. 
The β-carotene of the IDI-overexpressed strain was about 
twofold higher than of the control strain (Li et al. 2016).

In addition to simple overexpression of rate-limiting 
enzymes, which may cause metabolic imbalance and 
suboptimal production of terpenoids, a combinatorial 
strategy, which included directed co-evolution of key 
enzymes DXS, DXR and IDI, and promoter modifica-
tion, was developed to significantly improve isoprene 
production (Lv et  al. 2016). The authors also attributed 
this success to the establishment of a lycopene-indicated 
high-throughput screening method.
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Introducing heterologous pathway
To overcome the limitation and circumvent the natural 
cryptic regulation of the MEP pathway, introducing the 
heterologous MVA pathway is a commonly adopted alter-
native to increase IPP and DMAPP in E. coli (Alonso-
Gutierrez et  al. 2013; Carter et  al. 2003; Martin et  al. 
2003; Vadali et al. 2005; Yoon et al. 2009; Zurbriggen et al. 
2012). For example, expression of MVA pathway from 
Saccharomyces cerevisiae in E. coli increased the produc-
tion of IPP, DMAPP and the sesquiterpenoid amorpha-
diene (Martin et  al. 2003). On this basis, replacing the 
HMGR from S. cerevisiae with a more soluble homolog 
from Staphylococcus aureus (Hedl et  al. 2004) resulted 
in further increase of amorphadiene in E. coli (Newman 
et  al. 2006). Similarly, the MVA pathway from Strepto-
myces sp was reconstituted in E. coli to produce 11.8-
fold higher lycopene than that of original E. coli strain 
(Harada and Misawa 2012). In addition, MVA pathway 
genes from Streptococcus pneumoniae, Streptococcus 
pyogenes, S. aureus, Enterococcus faecalis and S. cerevi-
siae were co-expressed in E. coli to achieve a high yield 
of β-carotene (Yoon et  al. 2009). Introduction of heter-
ologous MVA pathway and optimization of the endoge-
nous MEP pathway resulted in production of 122.4 mg/L 
β-carotene in the engineered E. coli strain, which was 
113- and 1.7-fold higher than that of strain harboring the 
native MEP pathway alone and strain harboring the MVA 
pathway and native MEP pathway, respectively (Yang and 
Guo 2014). Further, simultaneous or independent over-
expression of MEP and MVA pathway was performed 
in E. coli to investigate whether there exists a synergy 
between the two pathways. According to the 13C labeling 
result, the MEP pathway flux in strain with overexpres-
sion of the dual pathways was 4.8-fold higher than that 
of the strain with overexpression of MEP pathway alone, 
and the MVA pathway flux in the dual pathway overex-
pressing strain was 1.5-fold greater than that of the strain 
with overexpression of MVA pathway alone. Finally, the 
resultant strain harboring dual pathways produced 24 g/L 
isoprene in fed-batch fermentation (Yang et al. 2016).

Compared to the MVA pathway, the MEP pathway is 
superior in stoichiometry and accumulates less byprod-
uct (Dugar and Stephanopoulos 2011). Researchers tried 
to reconstitute MEP pathway of E. coli in S. cerevisiae, 
which only harbors the MVA pathway to produce terpe-
noid, but failed to get functional expression of 4-hydroxy-
3-methylbut-2-enyl-diphosphate synthase (IspG) and 
4-hydroxy-3-methylbut-2-enyl diphosphate reductase 
(IspH) (Carlsen et  al. 2013; Partow et  al. 2012). In the 
MEP pathway, IspG and IspH are iron–sulfur cluster pro-
teins, which require functional assembly of the [4Fe–4S] 
iron–sulfur cluster (ISC) (Seemann and Rohmer 2007) 
and electron transfer by flavodoxin (Fld) and ferredoxin 

(flavodoxin) NADP+ reductase (FNR) (Grawert et  al. 
2004; Xiao et al. 2009; Zepeck et al. 2005). Co-expression 
of IspG from Bacillus thuringiensis, IspH from E. coli, Fld 
from Bacillus subtilis, FNR from Arabidopsis and ISC 
from E. coli successfully reconstituted MEP pathway in S. 
cerevisiae (Kirby et al. 2016).

Enhancing the interaction between the MVA 
and MEP pathway
As mentioned above, plants naturally harbor the MVA 
and MEP pathway in cytoplasm and plastid, respec-
tively. Single blocking the MVA or MEP pathway cannot 
completely block terpenoid biosynthesis in cytoplasm 
or plastid, indicating that the common precursor of 
these two pathways (e.g., IPP, GPP, FPP, and GGPP) can 
be freely transported into different subcellular regions 
(Aharoni et  al. 2004; Asaph et  al. 2003; Bick and Lange 
2003; Bouvier et  al. 2000; Hemmerlin et  al. 2003; Kasa-
hara et al. 2002; Laule et al. 2003; Gutensohn et al. 2013). 
Therefore, enhancing such interaction helps to promote 
terpenoid biosynthesis (Fig.  3a). In spiked lavender, IPP 
and DMAPP are mainly produced from the MEP path-
way. However, terpenoids 1,8-eucalyptol and camphor 
increased in the HMGR overexpressed plants (Men-
doza-Poudereux et al. 2015). Similarly, overexpression of 
HMGR in S. miltiorrhiza hairy roots can also enhance the 
production of diterpenoid tanshinones, which is believed 
to be produced from the MEP pathway (Kai et al. 2011; 
Shi et al. 2014). A possible explanation is that more IPP 
synthesized in the cell cytoplasm is transported into the 
plastid to serve as the precursor of the MEP pathway. 
In another study, overexpression of HDR in Artemisia 
annua L. increased the production of artemisinin and 
other sesquiterpenes. Green florescence protein fusion 
and confocal microscopy analysis indicated that HDR 
was localized in the chloroplast, and transport of IPP 
from chloroplast to cell cytoplasm was observed in the 
13C labeling experiment, suggesting that more IPP was 
available for terpenoid production from the MVA path-
way (Ma et al. 2017). In one specific exception, the plas-
tid-localized MEP pathway was the only active pathway 
for supporting the biosynthesis of plastidial monoterpe-
noid and cytosolic sesquiterpenoid in snapdragon flow-
ers (Dudareva et al. 2005).

In addition to manipulation of endogenous path-
ways, exogenous stimuli can also affect the interac-
tion between the MVA and the MEP pathway. One is 
sugar (Fig. 3b). Sucrose induced the activity of sucrose 
non-fermenting 1-related protein kinase 1 (SnRK1), 
which reduced HMGR activity by phosphorylation 
(Polge and Thomas 2007; Sugden et  al. 1999), and 
accordingly increased substrates for the MEP pathway. 
As a result, chlorophyll production was increased in 
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intact Arabidopsis seedlings grown in medium sup-
plemented with sucrose (Laby et al. 2000). Another is 
light (Fig. 3c). Light down-regulates the expression of 
MVA pathway genes (Enjuto et al. 1994; Learned 1996; 
Rodríguez-Concepción 2006; Stermer et al. 1994), but 
up-regulates the expression of MEP pathway genes, 
including DXS, DXR and HDR (Botella-Pavia et  al. 
2004; Carretero-Paulet et al. 2002; Cordoba et al. 2009; 
Hans et  al. 2004; Hsieh and Goodman 2005; Rod-
ríguez-Concepción 2006). In addition, photo-triggered 
metabolism results in the increased production of sub-
strates (e.g., G3P from the Calvin cycle) for the MEP 
pathway, which helps to increase IPP and DMAPP 

production in chloroplasts and leads to an increase in 
MEP-derived terpenoids.

Attenuation of the toxicity of IPP and DMAPP
As indicated in many investigations, accumulation of IPP, 
DMAPP, and other intermediates may affect cell growth 
and terpenoid biosynthesis in various species (Anthony 
et  al. 2009; Martin et  al. 2003; Pitera et  al. 2007; Sivy 
et  al. 2011). On one hand, overexpression of the down-
stream enzyme could effectively attenuate their toxic-
ity. To improve sesquiterpene β-farnesene production, 
genes encoding farnesyl diphosphate synthase (ispA) and 
β-farnesene synthase (fg) were expressed in E. coli, but 
the yield of β-farnesene was very low due to the inhib-
ited cell growth caused by IPP accumulation. To solve 

Fig. 3  Enhancing the interaction between the MVA and MEP pathway. a Overexpression of the MVA (MEP) pathway enhances the MEP (MVA) 
pathway. b Addition of sugar down-regulates the MVA pathway (in blue) and provides sufficient precursors for the MEP pathway. c Light 
down-regulates the MVA pathway (in blue) and up-regulates the MEP pathway (in red)
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this problem, overexpression of IDI and IspA success-
fully reduced the IPP content. The engineered strain 
produced 800-times higher β-farnesene than that of the 
control strain (You et al. 2017). Except for direct overex-
pression of enzymes, modification of key elements [e.g., 
promoter, ribosome binding site (RBS), etc.] is also cru-
cial for regulating the enzyme activity. In one study, a 
series of FPP-responsive promoters were constructed to 
dynamically regulate ADS expression to maintain FPP at 
a non-toxic level. The terpenoid production of the engi-
neered strain was doubled as compared to the control 
strain using a traditional inducible promoter to drive the 
expression of ADS (Dahl et  al. 2013). In another study, 
different strengths of RBS were selected for improving 
the translation efficiency of MVA pathway enzymes. As 
a result, using the medium-strength RBS for translation 
of MK, PMK, MVD, and ADS reduced the accumulation 
and excessive consumption of FPP in E. coli, and improv-
ing the production of amorphadiene by about fivefold 
(Nowroozi et al. 2014).

On the other hand, construction of a shunt pathway 
is also adopted as an alternative to alleviate the toxicity 
of IPP and DMAPP. To rescue the impaired cell growth 
caused by the accumulated IPP in E. coli, overexpression 
of MPD from S. cerevisiae was accordingly performed 
to dephosphorylate IPP to IP (Kang et  al. 2016). Except 
for MPD, enzymes belong to the nudix hydrolase super-
family can also dephosphorylate IPP and DMAPP (Dunn 
et al. 1999; Mildvan et al. 2005). The IPP content was sig-
nificantly reduced after overexpression of nudB in E. coli 
(George et al. 2014), and growth inhibition was relieved. 
Further, George et  al. optimized the Shine-Dalgarno 
sequence of nudB to construct a more efficient NUDB 
to reduce IPP (George et al. 2015). In a recent study, the 
effects of IPP accumulation in E. coli were comprehen-
sively assessed, which provided more novel targets for 
alleviating IPP toxicity (George et al. 2018).

Utilization of the toxicity of IPP and DMAPP 
to discover or engineer downstream enzymes
Relying on the reduced cell growth caused by IPP toxicity, 
attractive methods were developed to discover or engi-
neer downstream enzymes for terpenoid biosynthesis. 
These toxicity-based screening methods are wide appli-
cable regardless of host cells. In one example, the Bacillus 
genomic DNA library was introduced into an engineered 
E. coli strain capable of producing excessive levels of IPP 
and DMAPP, to screen mutants with restored cell growth 
and discover potential downstream enzymes for hemit-
erpenoid production. As a result, two genes (yhfR and 
nudF) were discovered as prenyl phosphatases, which 
could catalyze IPP and DMAPP to form isopentenol 
(Withers et al. 2007). In another example, similar method 

was adopted for directed evolution of isoprene synthase 
(ISPS) with enhanced catalytic activity on DMAPP. Com-
bined with protein engineering and metabolic engineer-
ing strategies, the engineered S. cerevisiae strain was able 
to produce 3.7 g/L isoprene (Wang et al. 2017).

Conclusions
Providing a suitable supply of IPP and DMAPP is cru-
cial for efficient terpenoid biosynthesis. Most efforts 
in manipulating IPP and DMAPP supply focused on 
rewiring the central metabolic pathway, overcoming the 
rate-limiting step, introducing heterologous pathway, 
enhancing the interaction between different pathways, 
toxicity attenuation and utilization of the toxicity to dis-
cover or engineer downstream enzymes, which greatly 
improved bioproduction of corresponding terpenoids. 
For all organisms that contain a native pathway to pro-
duce terpenoid, strategies including rewiring central 
metabolic pathway, overcoming the rate-limiting step 
and toxicity attenuation have excellent potential to gen-
eralize. To overcome the natural regulation from the 
host, introducing heterologous pathway is the method 
of choice, while enhancing the interaction may harness 
the advantages of different pathways to support terpe-
noid biosynthesis. The impaired cell growth caused by 
the toxicity of IPP and DMAPP allows establishment of 
a cell growth-based high-throughput screening method 
to optimize the downstream pathway for higher terpe-
noid bioproduction. Since addition of exogenous stim-
uli could regulate the biosynthetic pathways of IPP and 
DMAPP, and significantly change the terpenoids produc-
tion profile, it could be more meaningful to construct a 
combination pathway to produce different terpenoids by 
exploration of the exogenous stimuli for industrial pro-
duction. In the future, with the aid of multi-level omics 
studies (Alcalde and Fraser 2018; Martinez-Esteso et  al. 
2015; Vickery et  al. 2016) and various genome editing 
tools (e.g., CRISPR-Cas9), multiple metabolic engineer-
ing endeavors can be performed in parallel to test poten-
tial combinatorial effects of above-mentioned strategies 
in a highly efficient manner. In addition to targeting path-
way genes, fine-tuning host regulation also plays vital 
role for supplying IPP and DMAPP (Fitzpatrick et  al. 
2011; Hemmerlin et  al. 2004, 2012; Leivar et  al. 2011), 
which could be considered as a promising alternative for 
further improving terpenoid biosynthesis.
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