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Digital technology dilemma: on unlocking 
the soil quality index conundrum
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Abstract 

Knowledge of the interactions between soil systems, management practices, and climatic extremes are critical for 
prescription-based sustainable practices that reduce environmental pollution/footprints, disruption of food supply 
chains, food contamination, and thus improve socio-economic wellbeing. Soil quality status and dynamics under 
climate change present both a hazard which may not be remedied by simply adding chemicals or improved by crop 
varieties, and an opportunity (e.g., by indicating impact of a shift in land use) although the specifics remain debatable. 
This entry not only revisits the science of soil quality determination but also explicates on intricacies of monitoring 
using big data generated continuously and integrated using the “internet of things.” Indeed, relaying credible soil qual-
ity information especially for heterogeneous soils at field scale is constrained by challenges ranging from data artifacts 
and acquisition timing differences, vague baselines, validation challenges, scarcity of robust standard algorithms, and 
decision support tools. With the advent of digital technology, modern communication networks, and advancement in 
variable rate technologies (VRT), a new era has dawned for developing automated scalable and synthesized soil qual-
ity metrics. However, before digital technology becomes the routine tool for soil quality sensing and monitoring, there 
is need to understand the issues and concerns. This contribution not only exemplifies a unique application of digital 
technology to detect residue cover but also deliberates on the following questions: (1) is digital agriculture the miss-
ing link for integrating, understanding the interconnectivity, and ascertaining the provenance between soil quality, 
agronomic production, environmental health, and climate dynamics? and (2) what are the technological gaps?
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Introduction
The manifold risks created by  pollution, landslides, 
drought, and pandemics (e.g., COVID-19 in which recov-
ery rates hypothetically correlate with  healthy diet and 
thus to soil quality, because soils with optimal nutrients, 
water and air produce healthy crops) are aggravated by 
the skyrocketing human population, lifestyle changes, 
and inapt technology use (Gleick and Palaniappan 2010; 
Landrigan et  al. 2018; Schiefer et  al. 2016; Venegas-Li 
et  al. 2019). This illustrates the pressing need for pro-
active and strategically targeted land management, for 
instance, to alleviate the undernourishment of over 

810 million people globally (Abbas et  al. 2013; de Paul 
Obade et al. 2014; Lal 2018, 2020; Lal et al. 2020; Land-
rigan et al. 2018; Paz-Ferreiro and Fu 2016). Despite the 
much-heralded technological revolution, framing scien-
tific knowledge for sustainable intensification defined as 
optimizing productivity per unit input of land, with less 
water, fertilizer, energy, labor, time, and smaller environ-
mental footprint, attainable through minimizing losses 
and increasing soil, water, and nutrient use efficiency, 
remains challenging (Arshad and Martin 2002; Bouma 
and McBratney 2013; de Paul Obade and Moore 2018; 
Lal 2009a, b; Power 2010; Stockmann et  al. 2013). This 
is attributable to (i) the absence of a standard soil qual-
ity baseline because the soil is a multifunctional medium 
that is spatially heterogeneous and varies temporally, and 
(ii) the absence of a universal soil quality metric, making 
soil quality monitoring challenging (de Paul Obade and 
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Lal 2016b; Ohlson 2014). Besides, the impact of exog-
enous factors, such as climate extremes on soil systems, 
remain vague (McBratney et  al. 2014; Stockmann et  al. 
2014). For brevity, climate entails averaging temperature, 
precipitation, humidity, wind velocity, radiation, and 
cloud cover over approximately 30 years to predict future 
patterns, yet weather represents these factors on a daily 
basis (Lal 2013). Climatic extremes impact societies neg-
atively and positively, though the negatives are of most 
concern. For instance, the climatic disasters in the United 
States of America (U.S.A) since 1980 have resulted in 
damages exceeding $ 1.8 trillion, with the 2012 drought 
alone accounting for agricultural losses of over $ 30 bil-
lion (Ndehedehe et  al. 2019; NOAA 2020). Notwith-
standing, 20% (i.e., ≥ 10 million people) of global fatalities 
are attributed to consequences of adverse climatic effects, 
such as flooding and related soil- and water-borne dis-
eases (Landrigan et  al. 2018). Figure  1 epitomizes the 
nexus between soil quality, socio-economics, environ-
mental costs, and digital technologies pertinent for (a) 
assessing regulatory compliance and restoration plans 
for destroyed properties and (b) formulating scientific 
knowledge to gauge socio-economic safety nets.

The technological implications of developments in the 
agricultural industry and related soil quality impacts 
need to be understood. Other than efficient engines and 

rural electrification, the tsunami of continuous integrated 
data and information sharing initiatives offered by digital 
technology, here-in referred to as the “internet of things,” 
collectively support zoning and monitoring of agricul-
tural fields to inform policy (Bentley et al. 2019; Dumont 
et al. 2018; Fleming et al. 2018; Schiefer et al. 2016; Weer-
sink et  al. 2018; Zeraatpisheh et  al. 2020). The “internet 
of things” involves data agglomeration captured using 
sensors, scaled and synthesized into information using 
machine learning software, and disseminated through the 
internet. Because soil quality spatially varies with depth, 
nutrient cycling dynamics, and leaching, yet impacts 
soil functions and ecosystem services (i.e., habitat provi-
sion, biological regulation, water quality, pest and disease 
control, pollution control, biomass production, etc.), a 
wholistic understanding of the soil system vis-à-vis envi-
ronmental health is critical to guide targeted scientific-
based policy. Whereas a top-down approach used by 
governmental agencies suffices for monitoring large spa-
tial extents (e.g., non-point pollution sources), the bot-
tom-up approach applied generally in local or small areal 
extents relies heavily on input from local stakeholders.

An overview of recent agricultural technology marvels 
include (i) autonomous robots which can be deployed 
to optimize output through precision agriculture rather 
than traditional uniform soil management, and for weed 

Fig. 1  The synergism between socio economic development, agroecosystems and environmental footprint. 2The more complicated the problem 
e.g., soil quality determination, the more data (big-data) required (Modified from Lal (2013), Wyckhuys et al. (2018))
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removal; (ii) multispectral cameras to gather information 
on soil and crop health which can be relayed instanta-
neously through cellular devices; and (iii) microsensors 
operating from unmanned aerial vehicles (UAVs) or 
drones to provide infra-red (IR) imagery useful for pin-
pointing unhealthy vegetation (Dash et al. 2017; Kyratzis 
et al. 2015; Rodriguez-Moreno et al. 2017). Although ver-
tical farms occupy less space, sometimes practical with-
out soil, their impediment is the exorbitant energy costs, 
because artificial light, specifically blue and red light to 
optimize photosynthesis is constantly required (Pig-
ford et  al. 2018). In vertical farms, sensors can be used 
to assay and replicate in-house climate, a technological 
development applicable in reducing CO2 emissions in 
the agricultural industry. Researchers have monitored 
the animal health dynamics vis-à-vis soil quality and by 
proxy vegetation health, through fitting smart collars 
on animals to assess weight and muscle developments 
(Li et  al. 2018; Saravanan and Saraniya 2018). Similarly, 
poultry movements have been tracked using 3-dimen-
sional (3D) cameras to analyze behavior and diagnose 
problems (Colles et  al. 2016; Mc Inerney et  al. 2011; 
Nakarmi et al. 2014). In aquaculture, artificial pond eco-
systems have been developed to reduce soil and water 
pollution (Toni et al. 2019; Watanabe et al. 2002). These 
ponds generate no waste because bacteria recycle nutri-
ents and even produce electric power. Other innovative 
yet prudent measures supporting healthy diets while 
maintaining environmental quality include reduced con-
sumption of heavily processed foods that generate wastes 
which become pollutants upon indiscriminate disposal 
(Dumont et al. 2018; Lal et al. 2020).

As pointed out in Fig. 1, mismanagement, for instance, 
broadcasting excessive fertilizer on soil surfaces hav-
ing high erosive or leaching potential, pollutes surface 
and groundwater (Andrews and Carroll 2001). Although 
sewage sludge increases soil organic matter (SOM), the 
heavy metals contained therein are toxic (Nortcliff 2002). 
Excessively tilled soils left bare are prone to erosion, acid-
ity, and degradation, yet mineral weathering and leach-
ing enhance soil acidity, thereby adversely impacting soil 
quality through (i) increased concentration of toxic ele-
ments (e.g., aluminium and manganese) and (ii) reduced 
availability in the root zone of buffering plant nutrients 
(e.g., Ca) (Arnold et  al. 2012; Lal 2013; Mattikalli and 
Richards 1996). Alternately, soil salinity lowers produc-
tivity and even damages infrastructure, because of accre-
tion of Na+, Cl−, Mg2+, and SO4 2− ions, an occurrence 
exacerbated in soils with poor drainage, or rising ground-
water table (Andrews et  al. 2003; Broders et  al. 2009; 
He et  al. 1993; Laurent and Ruelland 2011; Manand-
har and Odeh 2014; Ngo-Mbogba et  al. 2015; Yemefack 
et al. 2006). Fertile soils play a critical role in supporting 

ecosystem services, such as nutrient cycling, water puri-
fication, habitat/biodiversity conservation, biomass pro-
duction, and climate regulation (Bünemann et  al. 2018; 
de Paul Obade and Lal 2016b; Doran and Parkin 1994; 
Lal 2018; Taylor et  al. 2010); thus, ecosystem services 
may serve as proxy indicators of soil quality. In the same 
vein, the soil organic Carbon (SOC) is inextricably linked 
to soil quality because it supports ecosystem services 
(Batjes 2011; Ketterings and Bigham 2000; McBratney 
et al. 2014; Stockmann et al. 2013).

Soil quality is assayed (i) qualitatively, for instance, vis-
ually by using the Munsell color chart where darker soils 
with high organic matter are considered of superior qual-
ity or (ii) quantitatively by measuring the soil physical, 
chemical, and biological attributes (de Paul Obade and 
Lal 2013, 2014a, b; Staff 1951). For downstream scien-
tific applications, soil attributes can be synthesized into 
a Soil Quality Index (SQI) (Bünemann et al. 2018; de Paul 
Obade and Lal 2016a, b; Wienhold et al. 2004). Although 
site specific soil quality information is critical for under-
standing soil systems, or identifying key sustainable prac-
tices, a universal SQI model fitting all ecoregions remains 
elusive (de Paul Obade and Lal 2016a), partly because of 
assumptions  (e.g., forest soils are hypothetically consid-
ered to be of high quality compared with cultivated soils), 
introducing uncertainty and inconsistency. Further, a 
common problem in strategically managing soil quality 
issues is scarcity of up-to-date accurate soil quality infor-
mation relayed in real time. The novelty of this contribu-
tion, therefore, is that it exposits the potential of digital 
technology in assaying and rapidly disseminating infor-
mation on soil quality dynamics.

Analyzing soil quality using traditional “walk in the 
field”  survey and laboratory methods can be a daunt-
ing task, that is, labor, time, and cost intensive espe-
cially for data collected over a large areal extent (Guo 
and Gifford 2002; Venegas-Li et al. 2019; West and Post 
2002). Besides, the laboratory determination of SOC 
by chromate oxidation or “wet combustion” method 
not only releases toxic wastes but can generate  inaccu-
rate data  because of the incomplete oxidation of SOM, 
whereas the dry combustion method is expensive and 
slow. Alternately, loss-on-ignition method, though 
affordable, is unreliable because some unaccounted min-
eral fractions are also decomposed at high temperatures 
(Bai et al. 2018; Batjes 2011; Nelson and Sommers 1996).

Knowledge on agroecosystem productivity vis-à-vis 
soil quality dynamics are currently scattered, patchy, 
and largely inconsistent, making it challenging for end 
users to understand, prioritize strategies underpinning 
development, or even apply in policy formulation. Agro-
ecosystem monitoring requires accurate, verifiable base-
line information which dictate the methodology and 
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technical expertise equal to this task (Fig. 2). Thus, digital 
technologies provide the best practical option; however, 
for these technologies to take root, scientific break-
throughs supported by transformation in educational 
curricula are required (Schiefer et  al. 2016). In this era 
of online learning, innovative laboratory and field prac-
ticals should be incorporated in scientific and technical 
training programs to produce graduates with hands-on 
experience. That said, it is reasonable to suggest “wise 
technology use,” the creation and financing of innovation 
niches focusing on digital agriculture to generate high-
quality scientific research and produce “organic” rather 
than “academic” intellectuals. Organic intellectuals are 
critical thinkers who create new ideas, actualize inven-
tions that improve societal wellbeing, whereas academic 
intellectuals follow the status quo. Sustainable solutions 
should be all inclusive involving all stakeholders, that is, 
policymakers, scientist, and general public. Under the 
hypothesis that digital technology distinguishes managed 
from unmanaged agroecosystems, this paper exposits 
on digital technology tenets, opportunities, and limita-
tions for relaying synthesized soil quality information to 
enhance extension delivery and inform policy.

Opportunities for digital mapping technology
The increased accessibility to variable rate technologies 
(VRTs), geospatial data, and communication tools offers 
new opportunities to ask and answer new questions that 

were impossible to fathom in the past due to resource 
limitations and scattered initiatives (Grunwald 2009; 
Herrick et  al. 2017; Keskin and Grunwald 2018; Keskin 
et al. 2019; Khanal et al. 2018). Of relevance here is the 
innovation opportunities in digital technology for creat-
ing a credible universal digital SQI applicable in all ecore-
gions. Although digital technology is revolutionizing the 
agricultural sector by, for instance, generating yield maps 
in real time, the implications in soil quality determina-
tion, human health and disease monitoring (e.g., COVID-
19 which by proxy is correlated with soil quality which 
determines nutrient intake in the food chain and thus 
human health and antibodies), environmental conserva-
tion, harvest planning, cash-flow-budgeting or insurance 
benefits, and overall costs of this transformation remain 
fuzzy (Weersink et al. 2018).

The cornerstone of the digital technology concept is 
the integration of tools and information systems. For 
instance, the Geographical Information Systems (GIS) 
integrates and overlays datasets from diverse sources that 
are statistically analyzed to generate information on in-
field soil and crop-yield variability. Examples of databases 
with georeferenced soil information include SOTER and 
WISE (Batjes 2011; Minasny and Hartemink 2011). GIS 
applications can screen out, prioritize, and rank signifi-
cant model attributes or driving forces influencing soil 
quality dynamics (Grunwald 2009). An overview of these 
soil quality attributes, abbreviated as scorpan include (1) 

Fig. 2  A schematic illustration of the opportunities implementable by digital agriculture technologies (Modified from Lal (2013), de Paul Obade 
and Lal (2013))
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“s” representing soil attributes at a point; (2) “c” for cli-
matic properties at a point; (3) “o” for organisms; (4) “r” 
acronym for topography including terrain attributes and 
classes, such as slope, aspect, area, and direction; (5) 
p is the parent material, including lithology; (6) a is the 
age or time factor; and (7) n represents spatial or geo-
graphic position (McBratney et al. 2002). Apart from the 
requirement of skilled analysts, GIS is no panacea and 
produces unreliable results when data formats are incon-
sistent (Cohen et al. 2007; Diek et al. 2019; Nocita et al. 
2013). Further, GIS maps are usually generalized for clar-
ity; thus, some measurements may not reflect accurate 
ground position, for instance, spot heights (point fea-
tures) are magnified for display purposes.

Because detailed information can instantaneously be 
relayed digitally, the United Nations considers digital 
technologies to be viable in actualizing Agenda 2 of the 
sustainable development goal, which focusses on hun-
ger elimination (U.N. 2019). Besides, governance may be 
improved through rapid information dissemination and 
decisions on volatile issues, such as judicious water and 
fertilizer management (U.N. 2019; Weersink et al. 2018). 
Notwithstanding, management efficiency is boosted by 
the integrated systems (Herrick et  al. 2017; Wyckhuys 
et al. 2018).

As digital technology continues to take root, strate-
gies are required not only to tackle emerging challenges 
but also to minimize negative feedbacks and risks espe-
cially with regard to improved technological efficiency 
which may drive unemployment (U.N 2019; Weersink 
et  al. 2018). Concerns associated with the paradigm 
shift to digital technology include (i) controversies and 
fanaticism regarding data manipulation and security; 
(ii) exorbitant development and operational costs that 
can damage equipment when connecting different tech-
nological systems all of which are rapidly evolving; (iii) 
intentional or nonintentional accidents from spyware 
or malwares; (iv) transforming beliefs, attitudes, and 
training users; and (v) data ownership, privacy issues, 
and potential criminal data misuse (Bentley et  al. 2019; 
Wyckhuys et al. 2018).

Digital systems and machine learning
Dealing with the potential disconnect between policy 
and science to tackle agroecosystems challenges out-
lined in Fig.  1 calls for integration of multidisciplinary 
technologies. Traditionally, conventional “walk in the 
field” surveys and photogrammetry were utilized in map-
ping  which generated dated information. The advent of 
“internet of things” that integrates field, global naviga-
tional satellite system (GNSS) position data, remotely 
sensed data, and real-time information gleaned from the 
internet have generated renewed interest in real-time 

revision and dissemination of comprehensive, otherwise 
referred to as “wall to wall” georeferenced information. 
This section articulates overlapping scientific digital sys-
tems, data, and critical analysis for monitoring agroeco-
systems (Fig. 3).

Sampling and synthesis
In scenarios where a new model or technique is statisti-
cally proven to synthesize and precisely epitomize real-
istic scenarios, the conventional methods are replaced. 
Significant environmental attributes can be screened 
and ranked hinged on robust repeatable experimen-
tal designs. Theoretically, sampling predicts values of 
unsampled location based on a data subset, or obser-
vation that statistically estimates characteristics of the 
whole dataset (Goovaerts 1999). From a practical stand-
point, a versatile sampling framework minimizes costs 
and time for analyses, enhances precision and repeatabil-
ity of experiments. Commonly applied sampling designs 
include the simple random sampling, stratified random 
sampling, or systematic random sampling. The simple 
random sampling considered a reference method, ran-
domly selects calibration sites, irrespective of geoloca-
tions. Although simple random sampling is a relatively 
simple method, some parameters may be omitted or large 
data gaps appear in the sample. In contrast, stratified 
methods generate a set of homogenized sample groups 
precisely estimating the multidimensional distribution of 
chosen ancillary variables. For replicability in metrics, an 
unbiased estimate with the lowest errors is desirable.

Data mining and predictive analysis
Futuristic models to support decision making uti-
lize machine learning, data mining, and rule induction 
algorithms to decipher complex hierarchical relation-
ships between predictors and response variables. These 
include the non-parametric yet parsimonious methods, 
such as artificial neural networks (ANNs), support vec-
tor machines (SVMs), principal component analyses 
(PCA), partial least squares regression (PLSR), genetic 
algorithms (GAs), and decision tree techniques (de Paul 
Obade and Moore 2018; Liou et al. 2004; Mehmood et al. 
2012; Zeraatpisheh et  al. 2020). Among the commonly 
used are decision trees which (i) handle non-parametric 
data, (ii) are robust against non-linearity and insensitive 
to missing data or outliers, and (iii) can utilize numeri-
cal, ordinal, binary, and categorical data (de Paul Obade 
and Lal 2013; Heung et al. 2014). Decision trees consist 
of leaf nodes and branches with each node representing 
a conditional statement, compartmentalized under the 
classification and regression tree. The classification tree 
generates a categorical outcome, whereas regression tree 
provides a continuous numerical outcome (Breiman et al. 



Page 6 of 14Obade and Gaya ﻿Bioresour. Bioprocess.             (2021) 8:6 

1984). Random Forest (RF) is a modified ensemble of the 
Classification and Regression Tree algorithm (CART), 
incorporating “randomness” into its predictions through 
iterative bootstrap sampling, and is less susceptible to 
over-fitting (Heung et al. 2014; Zeraatpisheh et al. 2020). 
Comparatively, “bagging” aggregates the results of many 
trees, whereas boosting considers errors from previous 
classifier steps when sampling data for the next iteration 
(Breiman 2001).

Geostatistical analyses and visualization
Geostatistical methods predict unknown point locations 
using observations made at neighboring positions, based 
on Tobler’s law which states that proximal  observations 

or measurements are similar (Tobler 1970). Examples 
include local spatial averaging, Inverse Distance Weigh-
ing, and Kriging (Bilgili 2013; Goovaerts 1999). The local 
spatial average computes the value of unsampled loca-
tions from the mean of neighboring values; the problem 
being to define this local neighborhood. Comparatively, 
the Inverse Distance Weighting computes the values for 
unsampled locations as the weighted mean of neighbor-
ing values, with the weights decreasing linearly from 
the prediction location, the problem here being how to 
predict when distances are close to zero? In kriging, 
the linear model is fitted by ordinary least squares, and 
then a variogram is estimated for the residuals. On the 
other hand, co-kriging is a multivariate modification that 

Field Data: (i) Management History; (ii) Soil Physical, 

Chemical, Biological and Ecological properties, (iii) 

Weather Patterns, (iv) Geo-Referencing

+

Client applications of “internet of things”
e.g., soil quality3 map, spatial statistics, reports on strategies to tackle food, water, energy 

insecurity, environmental degradation, and impact of climate extremes 

yield (monitors), management, environmental 
quality, socio-economic, and climate information

Technical Dimensions (Model Development & Monitoring)
Integrated Soil Property Assessment, Spatial Interpolation & Mapping, Agroecosystem Modelling

technology (e.g., big-data, drones, artificial intelligence, decision support systems, internet, cellular wireless)

Pedotransfer Functions (PTFs), 

Hypothesis development 

& Sampling

Analysis 
1. Geostatistics

-Inverse Distance Weighting (IDW)
-Local Spatial Average
-Kriging

2. Decision Trees
3. Regression

Digital Soil Mapping and machine learning
1. Remote Sensing
2. Geographical Information Systems (GIS)
3. Global Navigation Satellite  Systems (GNSS)*

4. cloud computing/storage

Standards and protocols
Accuracy Assessment & Validation +

Fig. 3  Schematic of integrated digital technology system synonymous with “internet of things” for design of metric to estimate and predict soil 
quality to guide agroecosystem management. *Global Navigation Satellite Systems include the Global Positioning System (GPS), GLONASS, Galileo, 
Beidou and other systems. 3Soil quality determined by integrating physical, chemical, biological and ecological soil attributes
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combines a sparsely measured primary variable (or target 
variable) with a denser set of ancillary data considered as 
secondary variable (e.g., remote sensing data) to enhance 
accuracy (Odeh et al. 1995). Geostatistics methods sup-
port interpolation, spectral, spatial and temporal analysis 
useful for visualization and downstream scientific appli-
cations. However, issues remain, such as uncertainties 
arising from data gaps during scaling, and the require-
ment of dense point datasets (Davis 1987). Here, scaling 
refers to (i) the spatio-temporal resolution of phenom-
ena or (ii) dimensions of the earth’s surface represented 
on paper and calculated as the ratio of the distance on 
a map, to the equivalent distance on the ground. Scale 
determines the (i) level of geoinformation detail extract-
able from a map and (ii) framework to audit environ-
mental plans, which can either follow a “top-down” or 
“bottom-up” approach.

Remote sensing in digital agriculture
The increasing data availability, computing power, and 
technical advances in remote sensing offer a unique 
opportunity to systematically monitor within-field soil 
quality dynamics. Remote sensing technology provides 
spatially continuous data even for inaccessible locations 
and distinguishes objects based on unique energy differ-
ences in the reflected (e.g., visible and Near Infra-Red), 
emitted (e.g., brightness temperature at Thermal Infra-
Red), and backscattered (e.g., microwave) electromag-
netic waves (de Paul Obade and Lal 2013; Khanal et  al. 
2017). Because soil is a multifunctional medium that 
is spatially heterogeneous, soil quality data is sensed in 
the field and laboratory using proximal sensors, follow-
ing which information is gleaned and either upscaled or 
downscaled.

The visible (Vis) (400–780  nm), near-infrared reflec-
tance (NIR) (780–2500  nm), short wave infra-red 
(SWIR), and thermal wavebands are single-band spectra 
convertible into band ratios or indices, to enhance signal 
and minimize soil background noise and solar irradiance 
(Liu et  al. 2013). To extract information or develop soil 
quality diagnostic tools, indices can be integrated with 
laboratory measured soil properties (de Paul Obade and 
Lal 2013; Khanal et  al. 2018). Optical-based reflectance 
spectroscopy has been used to estimate cation exchange 
capacity (CEC), available water content (AWC), soil 
organic carbon (SOC), base saturation, pH, exchangeable 
bases, and extractable phosphorus, clay content, extract-
able Fe, total elements, such as Ca, Mg, Fe, Mn, K, and 
Cu, and soil and plant health (Chen et  al. 2019; Cohen 
et al. 2007; Minasny and Hartemink 2011; Sarkhot et al. 
2011). Electromagnetic induction instruments attached 
on vehicles provide spatially referenced electrical con-
ductivity estimates on soil mineralogy, salts, moisture, 

and texture. Dematte et al. (2007) found a high correla-
tion between Landsat spectral reflectance data and soil 
texture, OC, and CEC.

Although remote sensors are non-destructive, fast, pre-
cise and relatively inexpensive, for acquiring data over 
large spatial extents, they only measure surrogate vari-
ables, thus require data integration, analyses, and visual 
inspection to glean  information on the sensed data. 
Besides, optical remote sensors only acquire informa-
tion from the top few millimeters (mm) of soil surface 
and are distorted by noise, such as surface roughness and 
moisture. Sundry details on sensor specifications, digital 
processing, and geometric and radiometric corrections 
are orthogonal to this work but are accessible online or 
from the following references (Chang et al. 2015; de Paul 
Obade et al. 2013; Dematte et al. 2007; Haji Gholizadeh 
et al. 2016; Huang et al. 2018; Khanal et al. 2020; Ouma 
2016).

Generating accurate and reliable remote sensing prod-
ucts entails (i) fusion and mosaic to remove exposure dif-
ferences and allow scale flexibility, and (ii) classification 
algorithms to map homogeneous attributes, for example, 
unsupervised that produces maps entirely from algo-
rithms without prior knowledge or training datasets, or 
supervised classification based on training models using 
known sampled ground truth data. Other feature selec-
tion and separability algorithms, such as spectral mixture 
analysis (SMA), separate distinct objects. SMA decom-
poses spectra within pixels based on proportional cover 
of each pure class, or endmember, thereby enhancing 
clarity of map products. However, mapping soil charac-
teristics require sensor signals that penetrate obstacles 
(e.g., soil depth, vegetative cover, or paved surfaces), or 
algorithms that indirectly predict soil property. Yet, the 
spectral, spatial, and temporal properties for detailed 
soil mapping are difficult to ascertain. However, because 
of soil spatial heterogeneity, SMA holds the promise of 
producing soil quality maps without disturbing the soil or 
landscape.

Among the issues to contend with in remote sens-
ing applications include: (i) missing data in optical sen-
sors mounted on satellite platforms arising from cloud 
cover, (ii) mixed signals arising from adjacency effects, 
topography and sun angle variation, viewing angle, 
atmospheric scattering, and absorption, (iii) scarcity of 
long-term datasets, or time relevance of data (i.e., sam-
pling frequency and revisit time), and (iv) in the case of 
soil quality mapping, signal obstruction by buildings or 
vegetation, although changes in soil moisture or temper-
ature, vegetation type, and health can serve as proxy indi-
cators of soil quality (Huang et al. 2018; Kamilaris et al. 
2017). Time series analyses with satellite imagery, though 
useful for monitoring, similarly experiences challenges, 
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such as data gaps from cloud obscured pixels or shad-
owed pixels. These shortcomings can be minimized by 
using normalization algorithms, which screen out and 
merge the pseudo-invariant, i.e. temporally unchanged 
features on both the ground and imagery.

Table  1 outlines digital applications in soil quality 
assessment, with detailed review available in the follow-
ing references (Kamilaris et al. 2017; Kamilaris and Pre-
nafeta-Boldú 2018; Rossel et al. 2008; Rasouly et al. 2020). 
However, none of these used a single value SQI, although 
digital technology determined specific or individual soil 
properties (e.g., soil moisture, pH). Thus, the challenge 
remains interpolating a single value SQI developed by 
integrating qualitative data (e.g., management) with 
quantitative data (e.g., weather, vegetation, soil proper-
ties, and this information subsequently relayed instanta-
neously through cellular networks or internet).

Case study
Regional assessments of surface residue cover remains 
work in progress despite the fact that crop residues 
play a  principal role: (i) in replenishing soil  nutrients, 
(ii) as  alternative energy sources, (iii)  in soil and water 
conservation, (iv) in  sequestering C and regulating soil 
microclimate for biota to thrive. Traditional methods 
such as visual estimation and line transect are non-com-
prehensive over large areas due to gaps in measurements 
aggravated by time constraints. Advancements in com-
puting systems and remote sensing enable large swaths 
of land, including inaccessible locations to be mapped, 
especially for homogeneous terrain/features, because 
heterogeneous surfaces generate mixed signals. Mapping 
surface residue cover in agricultural fields remains chal-
lenging because of the difficulty in separating spectral 
signatures of crop residues from bare soil, or standing 
vegetation. Figure 4 exemplifies the unique interrelation-
ship between surface residue (corn (Zea mays L.) and 
soybean (Glycine max (L.) Merr.) cover on dry/wet soil 
vis-à-vis spectral reflectance based on a controlled exper-
iment using data from Aurora site (44˚ 18′ 29″ North and 
96˚ 40′ 13″ West), and Lennox site (43˚ 14′ 34″ North and 
96˚ 14′ 0.9″ West), South Dakota, USA (de Paul Obade 
2011).

To examine the influence of crop residue cover and 
soil wetness on spectral reflectance, 96 plots at Aurora 
site and 35 plots at Lennox site, each plot having a 2 m 
by 2 m dimension, were scanned under clear sky condi-
tions with a handheld Cropscan multispectral radiometer 
(Cropscan Inc., Rochester, Minnesota, USA). Spectral  % 
reflectance measurements were taken at nadir with the 
radiometer set at a height of 2 m above the soil surface 
to approximate a 1  m2 ground spatial resolution, and 
calibrated by taking five spectral radiance readings on 

a standard reflectance white polyester tarp, before and 
after whole field had been scanned. The surface residue 
cover was measured using the line transect method, and 
a global positioning system (GPS) was used to geolocate 
the sampled plots. The soil types at Aurora site are fine-
silty, mixed, frigid udic haploborolls (Munsell color chart 
reading of 10YR 4/2 and 10YR 5/3), whereas Lennox had 
fine-silty, mixed, mesic udic haplustolls (7.5YR 4/0 and 
7.5YR 6/0). Surface soil data were randomly sampled 
before planting to a depth of 10  cm, and the moisture 
content was determined in the lab gravimetrically (Topp 
and Ferre 2002). Alternately, the correlation between 
percent surface residue and soil moisture vis-à-vis, the 
Normalized Difference Vegetation Index (NDVI), and 
Normalized Difference Water Index (NDWI) computed 
from ratios of spectral reflectance (R) at specific wave-
length (nm) were determined, respectively:

According to Fig. 4, the sensitivity of individual bands 
and the  indices (i.e. NDVI and NDWI)  varied signifi-
cantly with %  residue cover at specific fields, suggest-
ing that  soil water content  impacts site specific spectral 
reflectance. However, these results should be interpreted 
with caution because decaying residue also contribute 
to variability in spectral reflectance. Proximal or ground 
based sensors (e.g., Cropscan) suffice for insitu acquisi-
tion of spectral signatures of heterogeneous features 
such as soil properties or % surface crop residue cover 
that are challenging to scan from high altitude. Ground 
based sensors generate data with higher signal to noise 
ratio (SNR) (i.e., less errors) attributed to less  atmos-
pheric attenuation of signals because signals travel over-
shorter atmospheric path length, compared with sensors 
on-board aerial or satellite platforms, whereby haze, 
cloud cover, and atmospheric scattering, attributed to the 
high altitude, generate substantial errors.

Pedotransfer functions (PTFs)
Although digital technology processes big data simul-
taneously, intensive acquisition of field data, laboratory 
testing, and analyses necessary for validation can be 
prohibitively expensive (de Paul Obade and Lal 2013). 
In  situations where data on specific soil properties are 
unavailable or expensive to measure, these properties 
may be predicted using pedotransfer functions (PTF) 
(Hartemink 2008; McBratney et  al. 2011; Tranter et  al. 
2009). Documentation exists on PTFs providing proxy 
values: (i) predicting Phosphorus (P) sorption and fixa-
tion; (ii) estimating bulk density, particle size, and SOC 
(Calhoun et  al. 2001); and (iii) estimating soil water 

(1)NDVI = (R830 − R660)/(R830 + R660),

(2)NDWI = (R830 − R1650/(R830 + R1650).
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retention for specific topography, geographic location, 
and class horizons (McBratney et  al. 2011; Rawls and 
Brakensiek 1982; Rawls et  al. 2003; Tranter et  al. 2009). 
The equations in Fig.  4 exemplify PTFs for estimating 
surface residue cover using remote sensing under wet 
and dry soil moisture conditions.

Multivariate models routinely used in PTFs include 
linear regression, generalized linear models (GLIM), 
generalized additive models (GAM), neural networks 
(NN), support vector machines (SVM), decision trees 
(i.e., classification, regression trees, and random forest). 
Otherwise,  linear regression though frequently used, is 
ineffective for synthesizing soil quality metrics because 
of multicollinearity issues related to soil heterogeneity, 
and non linear relationship between the numerous soil 
property response and predictor variables. In light of 
this, fewer parameters or “minimum dataset selection,” a 
feat attainable through data aggregation and/or reduction 
using nonlinear machine learning methods, such as NN, 
genetic algorithms, random forest, multivariate adaptive 
regression splines, and principal component analyses 
(PCA), suffice. PCA generates new significant variables 
or components from original datasets by projecting each 
data point onto a linear combination of the variables. 
However, PCA may be imprecise when the dataset con-
tains a high percentage of missing values, whereas NNs, 
which mimic interconnected biological nodes or neu-
rons, are complex black boxes, thus difficult to decipher 
the meaning of information. SVM constructs sets of 
hyperplanes in an infinite-dimensional space separated 
by linear, radial, sigmoid, or polynomial kernel functions 
(Khanal et al. 2018). Because PTFs are applicable in fill-
ing data gaps, they are a key solution for interpolating the 
spatio-temporal SQI variability (de Paul Obade 2019). 
However, models being imperfect operate under assump-
tions, thus should be interpreted with caution (de Paul 
Obade and Lal 2014a, b; Minasny and Hartemink 2011; 
Shepherd and Walsh 2002). Other considerations include 
ascertaining the credibility of SQI by validating with met-
rics  such as soil biota (e.g., respiration, earthworm den-
sity, microbial biomass, etc.) which are not only sensitive 
to environmental gradients but also play a central role in 
soil functioning.

Assessing information efficacy
A key challenge when interpreting information is quan-
tifying its currency, accuracy, and explanatory power. 
This is especially so regarding soil properties which are 
spatially heterogeneous. Any measurement is prone to 
errors, which harkens back to the debate on whether 
information from digital technology will be credible for 
effecting best management soil quality practices. Oth-
erwise, from a technical perspective, regression mod-
els evaluate the “goodness of fit” between predicted and 
actual values, with proportion of information in the data 
explained by the model quantified using correlation 
analysis or coefficient of determination (R2). Usually the 
data are split into calibration and validation sets, propor-
tionately for instance, in a ratio of 3:1, to statistical quan-
tify uncertainty. Model “fit” is quantified using R2, mean 
error (ME), and the root mean square error (RMSE) with 
a high R2, small RMSE, or ME suggesting higher corre-
lation between predictor and actual in  situ  data (Davis 
1987; Khanal et al. 2018). Similarly, the Pearson correla-
tion coefficient “r,” has values ranging from − 1 to + 1, 
with a positive “r” value indicating a positive association, 
with 1.0 as maximum, whereas 0 denotes no associa-
tion between variables. The accuracy of remotely sensed 
information is evaluated through the error matrix or con-
tingency table which compares the ratio of the correctly 
classified pixels (sum of diagonal number of pixels in the 
matrix) to the total number of classified pixels, whereas 
Kappa Index evaluates the probability of a chance classifi-
cation for a specific pixel (Congalton 1991).

Conclusion
This contribution is a synopsis of issues surrounding the 
adoption of digital technology as decision support tools 
for judiciously managing and optimizing agronomic 
input while reducing environmental footprints. Although 
an evolving science, digital technology creates opportu-
nities to pinpoint potential areas of concern, experiment, 
and develop new objective metrics that could not only 
offer scientific information for strategies geared towards 
enhancing net biome productivity, water, and nutrient 
use efficiencies but also a tracking mechanism for assess-
ing environmental compliance of land use practices. The 
challenge remains relaying credible scientific information 
instantaneously and, in a format, understandable to end-
users. For agricultural applications, the SQI information 

Fig. 4  The interrelationship between surface residue cover on soils with varying soil moisture on blue and red spectral reflectance wavelength 
bands (top), Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) (bottom). The data is from a study 
conducted at Aurora and Lennox site (South Dakota, USA). The soil moisture content approximately 8% for dry soil, and 20% for wet soil respectively. 
The 95% confidence interval for the regression equation is shown (Source: de Paul Obade (2011))

(See figure on next page.)
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Wet Soil
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Both (2nd order): y = -0.3 + 0.006 x - 0.00004 x2, r2 = 0.67*
Both (1st order): y = -0.3 + 0.002 x, r2 = 0.55*
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should be comprehensive yet clear with minimal abstrac-
tion. However, because of absence of universal SQI, the 
SQI metrics should be interpreted cautiously with local 
tacit and expert knowledge to avoid making false assump-
tions or conclusions. Other research prospects related to 
SQIs include (i) quantifying environmental footprint vis-
à-vis climate change trends on agricultural systems; (ii) 
assessing the threshold of natural habitats to sustain eco-
system services; and (iii) quantifying the value addition of 
investment on digital technologies for SQI mapping.
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