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Biotechnological applications 
of S-adenosyl-methionine-dependent 
methyltransferases for natural products 
biosynthesis and diversification
Congqiang Zhang, Stella Amelia Sultan, Rehka T and Xixian Chen*  

Abstract 

In the biosynthesis of natural products, methylation is a common and essential transformation to alter molecules’ bio-
availability and bioactivity. The main methylation reaction is performed by S-adenosylmethionine (SAM)-dependent 
methyltransferases (MTs). With advancements in genomic and chemical profiling technologies, novel MTs have been 
discovered to accept complex substrates and synthesize industrially valuable natural products. However, to achieve a 
high yield of small molecules in microbial hosts, many methyltransferase activities have been reported to be insuf-
ficient. Moreover, inadequate co-factor supplies and feedback inhibition of the by-product, S-adenosylhomocysteine 
(SAH), further limit MTs’ activities. Here, we review recent advances in SAM-dependent MTs to produce and diversify 
natural products. First, we surveyed recently identified novel methyltransferases in natural product biosynthesis. 
Second, we summarized enzyme engineering strategies to improve methyltransferase activity, with a particular 
focus on high-throughput assay design and application. Finally, we reviewed innovations in co-factor regeneration 
and diversification, both in vitro and in vivo. Noteworthily, many MTs are able to accept multiple structurally similar 
substrates. Such promiscuous methyltransferases are versatile and can be tailored to design de novo pathways to 
produce molecules whose biosynthetic pathway is unknown or non-existent in nature, thus broadening the scope of 
biosynthesized functional molecules.

Keywords: SAM-dependent methyltransferase, SAM-dependent cyclase, Promiscuous methyltransferase, SAM 
co-factor recycle, SAH inhibition, Methyltransferase assay
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Introduction
Methylation plays multiple critical roles, such as diver-
sifying natural products, increasing bioavailability and 
stability of small molecules, altering the potency and 
cytotoxicity of natural products, and regulating biologi-
cal processes, such as epigenetics and initiation of meta-
morphosis in insects (Shinoda and Itoyama 2003; Niwa 
et al. 2008; Liscombe et al. 2012; Mo et al. 2017; Li et al. 

2018). In nature, the major methyl donor is S-adenosyl-
methionine (SAM), the second most used co-factor that 
is present in all living organisms to modify a variety of 
biomolecules from small metabolites to biopolymers 
(Luo et  al. 2019). The major enzyme that depends on 
SAM is methyltransferase (EC 2.1.1.). The positive charge 
of the sulfonium atom makes a SAM-dependent reaction 
mainly an  SN2 type nucleophilic substitution reaction. 
SAM-dependent methyltransferases donate the methyl 
group to a variety of electron-rich chemical groups, such 
as hydroxyl, alkene or amine groups, and have been clas-
sified based on the methyl-accepting group: C-, O-, N- or 
S-methyltransferases (Struck et  al. 2012). To date, there 
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are nearly 400 methyltransferase reactions reported in 
BRENDA. They are mainly divided in DNA/RNA, pro-
tein and small molecule methyltransferases. Approxi-
mately half of the methyltransferases catalyse on small 
molecules. Many small molecules are natural products 
or secondary metabolites (e.g., terpenoids, alkaloids, 
flavonoids) which can be used as antibiotics (e.g., noca-
mycin), flavour and fragrance (e.g., vanillin), energy and 
fuels (e.g., fatty acid methyl ester) etc. (Katz and Baltz 
2016; Kunjapur et  al. 2016; Mo et  al. 2017; Chen et  al. 
2019b; Yunus et al. 2020). In this review, we mainly focus 
on natural product methyltransferases (NPMTs). SAM-
dependent methyltransferases are mainly divided into 
five classes based on their structural folds (Kozbial and 
Mushegian 2005; Sun et al. 2021). The majority of natu-
ral product MTs (NPMTs) belong to class I methyltrans-
ferases which have a Rossmann-like superfold (Liscombe 
et  al. 2012). Despite the shared structural folds among 
the class I methyltransferases, their activities and specifi-
cities are very divergent from each other; some catalyse 
cyclization in addition to methylation reactions (Kim 
et al. 2011, p. 2; Grocholski et al. 2015; Sun et al. 2021). In 
some cases, a network of methyltransferases will be able 
to methylate the same substrate but at different sites of 
methylation (Mo et al. 2017; Li et al. 2018). The specific-
ity is also contrasted by their ability to accept structurally 
similar molecules. This permissiveness allows enzyme 

engineers to modify and improve methyltransferases to 
methylate related products and design alternative path-
ways. In this review, we will cover recent advances in 
biotechnological applications of SAM-dependent meth-
yltransferases for natural product biosynthesis and diver-
sification. It generally involves three important aspects: 
first, to identify the desired methyltransferases in natural 
product biosynthetic pathway; second, to engineer higher 
methyltransferase activities through enzyme engineering 
and high-throughput screening; finally, to improve co-
factor regeneration. We will discuss all three aspects in 
the following sections.

Main text
Identifying the desired methyltransferase activity
Biosynthesis of small molecules in heterologous hosts 
through metabolic engineering and synthetic biology has 
been significantly developed (Cravens et  al. 2019; Chen 
et al. 2019b; Yang et al. 2020). One important prerequi-
site is to delineate the biosynthetic pathway and identify 
the enzymes to produce the desired natural product. 
Predominantly, gene discovery from the native hosts 
is commonly used, especially with the advancement in 
genome sequencing, genome modification and bioinfor-
matics (Katz and Baltz 2016) (Fig. 1a). This method usu-
ally requires access to the native hosts, and performing 
genome sequencing and metabolite profiling (Katz and 

Fig. 1 Illustrations of methods to identify the desired methyltransferases activities. a Genomic and chemical screening methods are used to identify 
the novel methyltransferases from native microbial hosts. First, genome sequencing is carried out to obtain the genetic information. Second, in 
silico tools are used to identify the putative methyltransferase gene. For natural product biosynthesis, such methyltransferases are often found 
in a biosynthetic gene cluster in microbial hosts. Third, mutant strains with knock-out (KO) or knock-in (KI) to delete or overexpress the putative 
methyltransferases gene, respectively, are constructed. Finally, chemical screening is then carried out to profile the non-methylated intermediates or 
elevated methylated products from these mutant strains as compared to wildtype (WT) strain. Some illustrations were created with BioRender.com. 
b Promiscuous methyltransferases are used to catalyze structurally similar substrates to achieve the desired methylation reaction. The 3D model is 
caffeate O-methyltransferase from Homo sapiens (PDB: 3BWY). The bound SAH is shown in green
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Baltz 2016). The other method is to employ promiscu-
ous enzymes that catalyse structurally similar substrates 
to perform the desired biotransformation (Lin et al. 2019; 
Huffman et al. 2019) (Fig. 1b). It relies on existing knowl-
edge of identified natural enzymes and expands the sub-
strate scope of natural enzymes (Li et  al. 2020). In this 
section, we will cover the recent discovery of novel meth-
yltransferases and the application of promiscuous meth-
yltransferases for natural product biosynthesis (Table 1).

Discovery of novel methyltransferases from native hosts
Based on our survey of recent literature, the majority of 
novel methyltransferases characterized have been discov-
ered from microbes and are located in biosynthetic gene 
clusters (Chavali and Rhee 2017; Soldatou et  al. 2019) 
(Table  1). Thus, we will mainly focus on novel methyl-
transferases discovered from microorganisms. To eluci-
date the functions of methyltransferase genes, genomic 
and chemical screening are commonly used. In general, 
the methyltransferase gene is disrupted in the native 
microbial host, and the metabolite profiles between the 
wild-type and mutant strain will be compared to identify 
the accumulated intermediates via accurate mass analysis 
(Fig. 1a). Using this strategy, Mo et  al. (2017)have iden-
tified the carboxylate O-methyltransferase (NcmP) from 
Saccharothrix syringae NRRL B-16468, which methylates 
nocamycin E to produce nocamycin I, a potent antibiotic 
molecule  (Fig. 2a). The authors hypothesized that noca-
mycin II, which is structurally similar to nocamycin I, 
was also formed by the action of NcmP. In another study, 
genomic and chemical profiling have elucidated a novel 
two-component cyclopropanase system to synthesize 
antibiotic CC1065 from Shewanella woodyi ATCC 51908 
(Jin et  al. 2018). The cyclopropanase system comprises 
C10P, a radical-SAM enzyme and C10Q, a bifunctional 
methylase and cyclase (Wu et al. 2017; Jin et al. 2018). By 
deleting either C10P or C10Q, the mutant strain failed to 
produce the antibiotic CC1065. Labelling experiments 
suggested that C10P generated SAM methylene radi-
cal and formed SAM-substrate covalent adduct which 
was biotransformed by C10Q to cyclopropane moiety 
(Fig.  2b). Cyclopropane moiety is challenging for syn-
thetic chemists and often presents in clinical drugs (Jin 
et  al. 2018). Discovering or engineering cyclopropane-
forming enzymes may thus provide alternative synthe-
sis routes for pharmaceutical applications. In another 
study, Kong and co-authors elucidated the functions of 
three methyltransferases (XanM1-3) in the polyketide 
compound, xanthones, biosynthetic cluster from Strep-
tomyces flavogriseus (Fig.  2c). However, when XanM1 
was deleted, neither the product nor intermediate was 
detected, leading the authors to hypothesize that XanM1 
catalysed an intermediate that was possibly still tethered 

to the acyl carrier protein of polyketide complex. Inter-
estingly, purified XanM1 is able to methylate the 
substrates of XanM2 and XanM3, and the three methyl-
transferases share minor overlapping methylation activi-
ties towards several intermediates along the xantholipin 
pathway (Kong et al. 2020). This led the authors to iden-
tify a common ancestor for the three methyltransferases 
and postulated that XanM1-3 have been evolved through 
gene duplication. As shown in Fig. 2, many of the natu-
ral products and intermediates have complex chemical 
structures, thus they may not be readily available com-
mercially. Isolating these compounds from mutant strains 
is necessary to confirm the function of the methyltrans-
ferase enzyme. In a recent work by Li et  al. (2018), the 
intermediates along the gentamicin C biosynthetic path-
way were purified from Micromonospora echinospora 
mutant strains to probe the function of a complex meth-
yltransferase network (Fig. 2d). In addition to metabolite 
profiling of methyltransferase-deleted strains, the author 
overexpressed individual methyltransferase (genN, genD1 
and genK) in M. echinospora with gentamicin biosyn-
thetic cluster deleted. The isolated pathway intermediates 
were then added separately into the culture media of the 
strain overexpressing each of the methyltransferase genes 
to identify the methylated product. With this approach, 
Li and colleagues provided strong evidence that these 
methyltransferases display strong selectivity towards 
the site of methylation but readily accept several analo-
gous pathway intermediates. Unexpectedly, the authors 
have also discovered an N-methyltransferase (GenL) that 
catalyses the essential last-step 6′-N-methylation, which 
is not clustered together with the other three MTs on the 
genome (Fig. 2d). Even though GenL is active to convert 
gentamicin C1a and C2 to C2b and C1, respectively, the 
question of the primary function of GenL remains open.

All the previous examples of methyltransferases dis-
covery started with genome mining and biosynthetic 
gene cluster identification (Table  1). Predicting the bio-
synthetic gene cluster of natural products has been 
greatly facilitated by the advancement in in silico pre-
diction tools (Medema et  al. 2011; Chavali and Rhee 
2017; Soldatou et  al. 2019). Duell et  al. (2019) applied 
antiSMASH and ClusterFinder to find the sodorifen bio-
synthetic gene clusters in Serratia plymuthica WS3236 
(Medema et  al. 2011; Cimermancic et  al. 2014). Sodor-
ifen is synthesized from farnesyl pyrophosphate (FPP) by 
a bifunctional methyltransferase and cyclase (SodC) and 
a terpene cyclase (SodD) (Reuss et  al. 2018; Duell et  al. 
2019) (Fig. 3a). The enzymatic activities were verified by 
overexpressing SodC and SodD genes in Escherichia coli 
with an elevated amount of FPP, and directly analysing 
the products formed (Duell et al. 2019). In another study, 
Drummond et  al. (2019) used geranyl pyrophosphate 
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(GPP) methyltransferase from Streptomyces coelicolor 
as a query to BLAST search for natural variants in bac-
teria and identified an IPP methyltransferase (IPPMT) 
from Streptomyces monomycini (Fig.  3a). Noteworthy, 
the native host does not produce any methylated terpe-
noid compounds. In such case, the previous method of 
gene knockout and intermediate identification will not 
be able to verify the function of the gene. To circumvent 
this, the biosynthetic gene cluster can be overexpressed 
in a related species with low or no secondary metabo-
lite production, and screen for the products formed with 
the additional genes (Ahmed et  al. 2020) (Fig.  1a). For 
example, Awakawa et al. (2014) overexpressed the indole 
alkaloid, teleocidin B, biosynthetic pathway, from Strep-
tomyces mediocidicus, in Streptomyces lividans TK21 
which does not produce teleocidin B. This led the authors 
to discover a bifunctional methyltransferase and cyclase, 
TleD, that could methylate and cyclize the terpene moi-
ety of teleocidin B (Yu et al. 2016) (Fig. 3b).

Such discovery of novel methyltransferases which 
modify complex secondary metabolites continues to 
expand our biocatalysts toolbox to biosynthesize more 

diverse natural products. Most of the methyltransferases 
possess promiscuous activities, which potentially can be 
applied to accept new substrates, broadening the biocata-
lytic diversity.

Applications of promiscuous methyltransferases
Promiscuous methyltransferases can be applied to accept 
similar but non-native substrates to produce desired 
methylated products (Fig.  1b). De novo pathway could 
be designed with promiscuous enzymes to biosynthe-
size compounds whose pathways are unknown (Lin et al. 
2019; Li et  al. 2020). One such important promiscuous 
methyltransferase is caffeic acid O-methyltransferase 
(COMT). Promiscuous COMT from Homo sapiens (Hs.
COMT) was able to perform a key 4-O-methylation 
reaction in the vanillin biosynthesis pathway (Kunjapur 
et  al. 2016; Chen et  al. 2017). Chen et  al. (2017) has 
demonstrated that Hs.COMT methylate the alternative 
substrate 3,4-dihydroxybenzyl alcohol (3,4-DDBA) at 
a reasonable efficiency and produce ~ 500  mg/L vanil-
lyl alcohol by whole-cell biotransformation (Fig.  4a). 
3,4-DDBA is a smaller substrate as compared to caffeic 

Fig. 2 Reactions of recently discovered novel methyltransferases. These enzymes are mainly discovered through genomic and chemical screening 
(Table 1). a Methylation of nocamycin E by NcmP to produce nocamycin I. The structure of Nocamycin II is shown. b Novel radical-SAM mediated 
cyclopropanase system to produce the antibiotic CC1065. c Network of methyltransferases involved in xantholipin biosynthesis. d Network of 
methyltransferases involved in gentamicin C biosynthesis. The starting compound is 3-dehydro-3-oxo-gentamicin A2 (DAA2)
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acid, and hence, it is conceivable that the binding pocket 
of Hs.COMT can accept 3,4-DDBA, although the bind-
ing affinity is not strong (Km = 0.52  mM) (Chen et  al. 
2017). Interestingly, COMT’s active site can accommo-
date bigger substrates. Heo et  al. (2017) have identified 
such COMT from Arabidopsis thaliana (At.COMT) to 
bind resveratrol (Km = 44.9  µM) with equivalent affinity 
as caffeic acid (Km = 40.5 µM) (Fig. 4a). With At.COMT, 
the authors established a de novo pathway to produce 
~ 33  mg/L di-methylated resveratrol, pterostilbene, in 
Escherichia coli (E. coli). The mono-methylated resvera-
trol, pinostilbene, was accumulated, indicating further 
optimization of At.COMT activity is required.

Fatty acid methyl ester (FAME) is a renewable, biode-
gradable, and environmentally friendly biofuel. However, 
toxic methanol is used to chemically convert fatty acid to 
FAME. Yunus et al. (2020) employed a juvenile hormone 
acid O-methyltransferase from Drosophila melanogaster 
(DmJHAMT) and developed a methanol-free biosyn-
thesis route to produce FAME (Fig.  4b). DmJHAMT is 
a key regulatory enzyme for insect metamorphosis and 
displays a broad substrate spectrum ranging from C12 
to C16 fatty acids (Shinoda and Itoyama 2003; Sherkh-
anov et  al. 2016). By fusing DmJHAMT downstream of 
a strong promoter and increasing intracellular SAM con-
centration, > 95% lauric acid was converted to methyl 

laurate (Yunus et al. 2020). This biotransformation strat-
egy is promising to replace the toxic chemical process. 
Even though high conversion yield was achieved, the 
DmJHAMT is still one of the main limiting factors that 
requires further optimization.

Engineering of promiscuous enzymes is required to 
increase their specificity and activity towards desired 
substrates, and enzyme engineering strategies such as 
structural guided mutagenesis are often used (Chen et al. 
2019a; Chen and Arnold 2020; Li et  al. 2020). Moreo-
ver, high-throughput methyltransferase assays will sig-
nificantly improve the rate of identifying the beneficial 
mutants, which will be discussed in the next section.

Engineering methyltransferase activity
To identify beneficial mutations from the astronomi-
cal size of protein sequences, computer-aided structural 
analysis can provide insights and guide rational mutant 
designs. For example, to improve the activity of bergaptol 
O-methyltransferase (BMT), Zhao et al. determined the 
crystal structure of BMT from Peucedanum praerupto-
rum (Pp.BMT) and rationally designed 14 single mutants 
by selecting low mutation energies calculated by Discov-
ery Studio 4.1 (Zhao et  al. 2020). One of the mutants, 
V320I, improved the enzymatic activity by > eightfold. 
When a crystal structure is not available, homology 

Fig. 3 Reactions of recently discovered novel methyltransferases. In silico tools have been used to discover these enzymes (Table 1). a 
Methyltransferase reactions that modify terpenoid precursors. IPP, isopentenyl pyrophosphate; GPP, geranyl pyrophosphate; FPP, farnesyl 
pyrophosphate. b Bifunctional methyltransferase and cyclase involved in teleocidin biosynthesis
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models are constructed based on sequence similarity. 
Ignea and colleagues constructed a homology model for 
GPP methyltransferase from Pseudanabaena limnet-
ica (Pl.GPPMT) and designed 44 mutants (Ignea et  al. 
2018). Among them, two single substitutions, V250A 
and F226H, improved C11 terpenoid production by 
two- and threefold, respectively (Fig. 3a). Although com-
puter-aided enzyme design has advanced significantly, it 
is still a resource intensive process to screen just a frac-
tion  (105–106) of protein sequence space computation-
ally (Wu et al. 2019). Often, in silico method is combined 
with robust and sensitive high-throughput screening 
(HTS) assay to speed up the engineering process. In this 
section, we will summarize HTS assays developed for 
small molecule methyltransferases (Table  2). DNA or 
protein methyltransferase assays have been reviewed in 
previous reports, although some assays can be applied 
for NPMT screening too (Luo 2012; Li et al. 2017; Zhang 
et al. 2021).

In vitro high‑throughput assay
Most methyltransferase assays are designed to quan-
tify the by-product, SAH. Coupled-enzyme reaction is 
frequently applied to convert SAH into chromogenic or 
fluorescent molecules (Table  2). The advantage of such 
design is that it removes any SAH inhibition to meth-
yltransferases. Usually, the enzymes in the methionine 
cycle are utilized. For example, SAH nucleosidase (mtn) 
and S-ribosylhomocysteine lyase (LuxS) readily con-
vert SAH to homocysteine, which contains a free thiol 
group. Ellman’s reagent (5,5′-dithiobis-2-nitrobenzoic 
acid) has been applied to quantify the concentration 
of thiol groups, and hence, it is used to quantify homo-
cysteine concentration. The resulting yellow solution has 
an absorbance at 412  nm, which increases linearly with 
increasing SAH concentration (Hendricks et  al. 2004; 
Biastoff et  al. 2006). Similarly, a thiol-activated fluores-
cent reporter molecule, fluorescein–cystamine–methyl 
red (FL–S–S–MR), has been synthesized to quantify 

Fig. 4 Reactions of promiscuous methyltransferases for small molecule production. a Caffeate O-methyltransferases (COMT) readily 
accept structurally similar compounds, such as caffeate, 3,4-dihydroxybenzyl alcohol (3,4-DDBA) and resveratrol. b Juvenile hormone acid 
O-methyltransferase (JHAMT) can methylate C12–C16 fatty acid. Refer to Table 1 for more information on the enzymes
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homocysteine concentration (Wang et  al. 2005). How-
ever, it is to note that these assays are sensitive to the 
presence of reducing agents such as dithiothreitol 
(DTT) or cysteine residues present in enzymes, lead-
ing to high background readings. These assays are thus 
mainly applied to characterize purified methyltrans-
ferases. Another moiety of SAH is the nucleobase ade-
nine. When adenine is deaminated by adenine deaminase 
to hypoxanthin, a decrease in UV absorbance at 265 nm 
is observed. The change in absorbance at 265 nm is vis-
ible at as low as 10 µM adenine (Dorgan et al. 2006). In 
fact, when SAH is deaminated by deaminase TM0936 
to form S-inosylhomocysteine (SIH), a discernible drop 
in absorbance at 263 nm is observed, reducing the num-
ber of additional enzymes required to convert SAH into 
chromogenic substrate (Burgos et al. 2017). The decrease 
in 263  nm absorbance can be monitored continuously. 
The assay has been applied to detect and characterize 
glycine N-methyltransferase activity in rat liver extracts, 
and the lowest activity detected was 2 μM/h. To improve 
the assay sensitivity and avoid the inference from bio-
molecules whose absorbance is around 260–280 nm, the 
study developed another fluorescence-based assay using 
a SAM analogue, 8-aza-SAM. However, the availability of 

this analogue may prohibit its usage (Burgos et al. 2017). 
Moreover, adenine can be converted to dihydroxyadenine 
by xanthin oxidase (XOD). Hydrogene peroxide  (H2O2) 
is generated during the reaction and subsequently uti-
lized by horseradish peroxidase to oxidize amplex red 
to a fluorescent molecule, resorufin (Akhtar et al. 2018). 
The assay has been commercialized (Cayman Chemical 
#700150), although the XOD activity is insufficient and 
results in slow channelling of SAH to dihydroxyadenine 
(Burgos et al. 2017). All the assays have been developed 
to characterize purified methyltransferases. The sensi-
tivity might be significantly reduced when applying the 
assays to semi-purified methyltransferases because of the 
presence of interfering substances. To our knowledge, 
none of the assays have been applied to screen for meth-
yltransferase variants, since the throughput may be com-
promised if enzyme purification is required.

In vivo high‑throughput assay
To increase the throughput, clarified cell lysate or in vivo 
assays are preferred. Luo et  al. (2019) have designed 
a growth-coupled in  vivo methyltransferase assay by 
linking essential cysteine biosynthesis to the meth-
ylation byproduct SAH (Fig.  5a). The assay can screen 

Fig. 5 Illustrations of in vivo high-throughput methyltransferases assays. a Growth-coupled methyltransferase assay, where the essential amino 
acid cysteine (Cys) biosynthesis is linked to SAH biosynthesis. SAH concentration is dependent on methyltransferase activity. If methyltransferase 
activity is present, Cys will be produced and there is rapid microbial growth. If methyltransferase activity is absent, Cys will not be produced, and no 
microbial growth is observed. b SAH riboswitch-based biosensor which will bind to 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) in the 
presence of SAH and produce fluorescence signal. c MetJ-MetO system as a biosensor to quantify intracellular SAM concentration in S. cerevisiae. 
MetJ is fused with an activating domain (AD). In the presence of SAM, metJ will bind to metO and AD will activate the downstream reporter protein 
expression. d VanR-VanO system as a biosensor to quantify vanillate concentration. In the absence of vanillate, VanR binds to VanO and blocks 
transcription. In the presence of vanillate, VanR will not be able to bind to VanO, and downstream reporter gene transcription will proceed. Please 
refer to Table 2 for more information
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 107 mutants at one time, significantly increasing the 
throughput. With the growth-coupled assay, the authors 
successfully identified a single mutation (F214L) in phe-
nylethanolamine N-methyltransrease (PNMT) which 
improved the PNMT’s activity against a non-natural 
substrate octopamine by twofold. Moreover, the study 
showed that the in vivo assay can be applied to optimize 
a heterologous pathway in E. coli involving methylation. 
One drawback of the assay is the potentially high false 
positives, as the study identified that SAM-dependent 
cfa from E. coli, instead of PNMT, was improved in non-
growth-coupled isolates. Moreover, growth rate enhance-
ment is a complex and non-specific trait that may not 
have high dynamic range (Lin et  al. 2017). Recently, 
biosensors have advanced to enable high-throughput 
measurement of target molecule in  vivo. Natural SAH 
riboswitches have been reported which can distinguish 
SAH from SAM by > 1000-fold (Wang et  al. 2008). Su 
et al. (2016) screened 58 RNA riboswitches for SAH and 
identified two promising biosensors (Nmo1-4 from Nit-
rococcus mobilis, Mpe1-5 from Methylibium petroleiphi-
lum) to quantify SAH concentration both in  vitro and 
in  vivo (Fig.  5b). The biosensors have a dynamic range 
from nanomolar to micromolar concentration of SAH, 
which nicely captures intracellular SAH concentration 
(~ 1.3  µM). The study showed that when SAH nucleo-
sidase (mtn) activity was inhibited in E. coli BL21, the 
biosensor Nmo1-4 gave rise to fluorescence signals 
that were directly proportional to the concentration of 
mtn inhibitors, implying that the biosensor could esti-
mate SAH concentration in  vivo. In addition to RNA 
aptamer, proteins or transcription factors that respond to 
small molecules are also used as biosensors to quantify 
methyltransferase activity. MetJ-MetO system, which is 
described in the subsequent section, has been developed 
in S. cerevisiae to sense intracellular SAM concentration 
(Umeyama et al. 2013; Dong et al. 2021) (Fig. 5c). Another 
example is the vanillate biosensor that has been opti-
mized to assay O-methyltransferase activity for vanillate 
production (Fig.  5d). It is based on a natural Caulobac-
ter crescentus VanR-VanO system and achieved 14-fold 
dynamic range (Meyer et al. 2019; Kunjapur and Prather 
2019). With the biosensor, the author screened 16 natu-
ral O-methyltransferase variants from bacterial, fungal 
and archaeal sources and identified three novel O-meth-
yltransferases that are more active than commonly used 
Hs.COMT. These biosensors are promising biotechno-
logical tools to be applied to evolve methyltransferases 
in a high-throughput manner, which awaits to be dem-
onstrated, although one important pre-requisite is that 
the methyltransferase substrate must be uptaken into 
the cell. Unfortunately, product-specific biosensors lack 
universal application to probe other NPMTs. In addition, 

optimizing the small-molecule-responsive biosensor 
requires significant engineering efforts. In comparison, 
detecting the by-product SAH might be more applicable 
to measure most methyltransferase activities, although it 
will fail to quantify non-methylating methyltransferase 
activities (Fage et al. 2015; Ohashi et al. 2017).

Co‑factor regeneration and diversification
In addition to improving methyltransferase activities, 
SAM recycling is another crucial aspect for biotechno-
logical applications of methyltransferases; it removes 
SAH inhibition, regenerates otherwise unstable SAM and 
reduces costs (Mordhorst and Andexer 2020; Popadić 
et al. 2021). The native SAM recycling pathway involves 
multiple enzymatic reactions (Fig.  6a). One of the reac-
tions involves complex co-factors, namely, methyl-tet-
rahydrofolate and vitamin B12 (cobalamin), rendering 
recycling SAM difficult extracellularly. As a result, in vivo 
SAM regeneration may be more viable or economical 
for SAM-dependent natural product biosynthesis (Ben-
nett et al. 2017). In this section, recent advances in SAM 
regeneration, both in  vitro and in  vivo, are discussed. 
Finally, we will highlight the use of synthetic SAM ana-
logues to transfer alternative chemical groups to diversi-
fying natural products.

Increase SAM concentration
To develop a SAM recycling system in  vitro, Popadic 
et  al. systematically optimized a bicyclic regeneration 
system (Fig.  6a): one cycle employs adenosine kinase 
(ADK) and polyphosphate kinases (PPK2-I/II) to regen-
erate ATP from adenosine and the other cycle employs 
betaine-l-homocysteine S-methyltransferase (BHMT) 
to regenerate l-methionine (Met) from l-homocysteine 
(Hcy) and betaine (Popadić et  al. 2021). The in  vitro 
system requires seven enzymatic steps, which are chal-
lenging to be efficiently implemented (Mordhorst and 
Andexer 2020). Recently, Liao and Seebeck (2019) 
employed a reversible halide methyltransferase (HMT) 
from Chloracidobacterium thermophilum to produce 
SAM from SAH and methyl halide (Fig. 6a), demonstrat-
ing the first possible method to directly synthesize SAM 
from SAH in  vitro. The co-factor recycling system has 
been successfully applied to multiple methyltransferases 
reactions in  vitro, allowing > 90% conversion with cata-
lytic amount of SAH. However, a high concentration of 
methyl halide is required, which poses as a safety hazard. 
Less hazardous methyl donor needs to be explored before 
implementing the SAM/SAH recycling system in a larger 
scale.

Instead of in  vitro, in  vivo SAM regeneration is 
often used. In the exponentially growing E. coli strain 
MG1655, SAM concentration was determined to be 
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0.4  mM (Parveen and Cornell 2011). To increase the 
intracellular SAM concentration in a heterologous 
host, l-methionine feeding with overexpression of 
S-adenosylmethionine synthetase (metK from E. coli 
or SAM2 from S. cerevisiae) has been applied (Hu et al. 
2012; Han et  al. 2016; Heo et  al. 2017; Xu et  al. 2019; 
Liu et al. 2019). To save the cost of production, Liu et al. 
(2019) engineered an industrial yeast strain to covert 
d-methionine to l-methionine by disrupting d-amino 
acid-N-acetyltransferase (HPA3), and overexpressing 
d-amino acid oxidase (DAAO) from Trigonopsis vari-
abilis and l-phenylalanine dehydrogenase (l-PheDH) 
from Rhodococcus jostii. Thus, cheaper racemic dl-
methionine can be supplemented in media and con-
verted to SAM by overexpressed SAM2 enzyme. With 
genetic modifications to reduce SAM degradation, 
10.3  g/L SAM was successfully produced by the engi-
neered yeast strain in 10 L bioreactor with 16 g/L dl-
methionine feeding.

SAM metabolism is highly regulated and subjected to 
feedback inhibition in E. coli (Cress et  al. 2017). When 
SAM accumulates, it binds to the repressor metJ and 
transcriptionally represses genes that are responsible for 
SAM biosynthesis (Smith and Greene 1984). To improve 
the O-methylated anthocyanin production in E. coli, 
Cress et  al. (2017) silenced metJ via CRISPRi-mediated 
deregulation. The strategy effectively increased O-meth-
ylated anthocyanin production by twofold, indicating 
SAM availability limits O-methyltransferase activity in E. 
coli (Cress et  al. 2017). Similarly, deleting metJ together 
with overexpressing methionine biosynthetic pathway 
genes increased SAM concentration and improved vanil-
lin production in E. coli by 33% (Kunjapur et al. 2016).

By applying the feedback regulation of SAM and metJ-
metO system, Umeyama et  al. (2013) constructed a 
genetic circuit in S. cerevisiae to report intracellular SAM 
concentration (Fig. 5c). The authors fused metJ with tran-
scriptional activator domain (AD) B42 and incorporated 

Fig. 6 Co-factors for methyltransferase reaction. a Illustration of SAM regeneration reactions. b Illustration of SAM analogues. c Ki of SAH and 
the Km of SAM for small molecule methyltransferases display a high correlation with spearman coefficient of 0.86 (refer to Table 3 for detailed 
information). The abbreviations are as follows. SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; Met, l-methionine; Hcy, hmocysteine; 
SRH, S-(5-deoxy-d-ribos-5-yl)-l-homocysteine; THF, Tetrahydrofolate; THPG, tetrahydropteroyltri-l-glutamate; H3C-THF, 5-methyltetrahydrofolate; 
H3C-THPG, 5-methyltetrahydropteroyltri-l-glutamate; SAE,S-adenosyl-l-ethionine; SAA, S-allyl-l-homocysteine; SAP, S-propyl-l-homocysteine; l-tMet, 
tetrazole-l-methionine; 7dzATP, 7-deaza-ATP; Pi, phosphate; PPi, pyrophosphate; MT, methyltransferase; HMT, halide methyltransferase; SAHH, SAH 
hydroxylase; Mtn, SAH nucleosidase; LuxS, S-ribosylhomocysteine lyase; metH, cobalamin (or viatamin B12)-dependent methionine synthase; metE, 
cobalamin (or viatamin B12)-independent methionine synthase; BHMT, Betaine–homocysteine S-methyltransferase 1; BHMT2, S-methylmethionine–
homocysteine S-methyltransferase; ADK, adenosine kinase; PPK2-I/II, polyphosphate kinase; metK, S-adenosylmethionine synthase
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a reporter gene downstream of methionine operator 
metO. In the presence of SAM, the SAM-metJ-B42 com-
plex binds to metO, and B42 will activate the expression 
of downstream reporter gene. The authors have dem-
onstrated the circuit was able to detect as low as 5  µM 
SAM. With this gene circuit as a high-throughput screen 
for SAM production, the study has identified that over-
expressing GAL11 could improve SAM concentration 
by 3.3-fold. The same screening method was applied 
by Dong et  al. (2021). The authors have established 
a MAGIC (multi-functional genome-wide CRISPR) 
method to simultaneously activate and interfere tran-
scription, and delete genes. By multiple rounds of trans-
forming guide RNA libraries (size >  106) into the SAM 
sensing yeast strain, the authors identified novel targets, 
namely, the upregulation of SNZ3, RFC4 and RPS18B 
enhanced SAM accumulation by 2.2- and 1.6-fold in lab-
oratory and industrial yeast strains, respectively.

Reduce SAH inhibition
While increasing SAM availability improves methyltrans-
ferase activity, alleviating the by-product SAH inhibition 
is another effective strategy (Dorgan et  al. 2006). SAH 
has been reported to be a potent inhibitor of many meth-
yltransferases; SAH binds to some methyltransferases 
stronger than SAM, and the Ki value of SAH reported 
could be as low as sub-micromolar range (Table 3) (Petro-
nikolou and Nair 2015). Accumulation of SAH in vivo is 
toxic (Christopher et al. 2002; James et al. 2002). In some 
microorganisms, sophisticated regulatory system has 
been evolved to sense and prevent accumulation of SAH 
intracellularly. For example, an RNA riboswitch has been 
identified in Pseudomonas syringae upstream of SAH 
degradation pathway enzymes (Wang et  al. 2008). The 
riboswitch forms a 3D structure that conceals or exposes 
the translation initiation site in the absence or presence 
of SAH, respectively, thus effectively maintaining intra-
cellular concentration of SAH below micromolar range. 
Similar regulatory elements have been identified in pro-
teobacteria, actinobacteria and others. Such riboswitches 
have been modified and utilized as biosensors to monitor 
methyltransferase activity in vivo (Su et al. 2016).

To our knowledge, directed enzyme engineering meth-
ods to mutate methyltransferases and alleviate SAH 
inhibition have not been investigated. In general, SAH 
shares the same binding pocket as SAM, and hence, SAH 
is often used to co-crystalize with methyltransferases to 
probe the co-factor binding site (Liscombe et  al. 2012). 
Mutating residues interacting with SAH will invariably 
affect the binding affinity of SAM. This is evident from 
the linear correlation between the Km of SAM and the Ki 
values of SAH, with Spearman coefficient of 0.86 (Fig. 6c 
and Table 3). A more common strategy is to co-express 

enzymes in the methionine cycle, SAH nucleosidase 
(mtn) or SAH hydrolase (SAHH), to remove SAH. Kun-
japur and co-authors applied the strategy to increase 
vanillin production in E. coli (Kunjapur et al. 2016). Inter-
estingly, vanillin titer was only improved when mtn and 
LuxS from E. coli were co-expressed, indicating that SAH 
removal enhanced methyltransferase activity. Surpris-
ingly, when SAHH from S. cerevisiae was co-expressed, 
vanillin titer was reduced. The unexpected detrimental 
effect of overexpressing SAHH on vanillin titer was possi-
bly because of the poor expression of SAHH from eukar-
yotic origin. Screening of SAHH activities from bacterial 
origin could be tested. Coupling SAH degradation to 
SAM generation will be ideal to increase co-factor sup-
ply and reduce feedback inhibition to methyltransferases. 
Optimizing enzymatic activities along the methionine 
cycle may be beneficial to maximize SAM and minimize 
SAH concentration.

Diversification with SAM analogues
The versatility of methyltransferases has led to crea-
tive applications, such as transferring more complex 
moiety to biomolecules, and SAM analogues have been 
developed in recent years (Dalhoff et  al. 2006; Singh 
et  al. 2014). Singh et  al. (2014) screened five methio-
nine adenosyltransferases (MATs) and identified human 
MAT II could synthetize 29 non-native SAM analogues 
from L-methionine analogues and ATP. By coupling 
MAT II with rebeccamycin methyltransferase (RebM), 
differentially alkylated indolocarbazoles were produced 
in appreciable yields (≥ 40%). Moreover, extending the 
application of halide methyltransferase (HMT), Tang 
et  al. (2021) mutated an HMT from Arabidopsis thalia 
to transfer ethyl-, propyl- and allyl-moieties to SAH and 
produce corresponding SAM analogues with high effi-
ciency (Fig.  6b). Recently, a naturally occurring SAM 
analogue biosynthesis pathway, the carboxy-S-adenosyl-
methionine (cxSAM) pathway, was discovered; CmoA 
catalyses the transfer of carboxylic group from prephen-
ate to the methyl group in SAM, producing cxSAM (Kim 
et al. 2013; Herbert et al. 2020) (Fig. 6b). This opens up 
the possibility to generate diverse carboxymethylated 
products both in  vitro and in  vivo. One caveat is that 
carboxymethylation is an extremely rare reaction in 
nature and wild type methyltransferases may not read-
ily accept cxSAM as the co-factor. CmoA was discovered 
to work in tandem with a tRNA carboxymethyltrans-
ferase (CmoB) which exhibits 500-fold higher affinity 
towards cxSAM over SAM (Herbert et al. 2020). By care-
fully examining the co-factor binding residues from the 
X-ray crystal structure of CmoB, Herbert and colleagues 
have identified key residues to mutate in a catechol-O-
methyltransferase (COMT) from Rattus norvegicus and 
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Table 3 Summary of Km,SAM and Ki,SAH of all the small molecule methyltransferase in BRENDA

EC number Name Organism Km (µM SAM) Ki (µM SAH) Refs.

2.1.1.6 Catechol O-methyltransferase Homo sapiens 3.1 1 Rivett and Roth (1982)

2.1.1.6 Catechol O-methyltransferase Candida tropicalis 6.2 6.9 Veser (1987)

2.1.1.15 Fatty-acid O-methyltransferase Mycobacterium marinum 33.6a 0.7a Petronikolou and Nair (2015)

2.1.1.20 Glycine N-methyltransferase Oryctolagus cuniculus 200 30 Kloor et al. (2004)

2.1.1.79 Cyclopropane-fatty-acyl-phos-
pholipid synthase

Escherichia coli 90 220 Taylor and Cronan (1979)

2.1.1.95 Tocopherol C-methyltransferase Arabidopsis thaliana 5.2 4uMb Koch et al. (2003)

2.1.1.106 Tryptophan 2-C-methyltrans-
ferase

Streptomyces laurentii 120 480 Frenzel et al. (1990)

2.1.1.142 Cycloartenol 24-C-methyltrans-
ferase

Glycine max 32 56 Nes et al. (2003)

2.1.1.156 Glycine/sarcosine N-methyltrans-
ferase

Halorhodospira halochloris 280 with sarcosine 400c Nyyssölä et al. (2001)

420 with glycin 500c

2.1.1.156 Glycine/sarcosine N-methyltrans-
ferase

Aphanothece halophytica 700 with glycin 500 Waditee et al. (2003)

600 with sarcosine 300

Ectothiorhodospira halochloris 420 with glycin 500

280 with sarcosine 400

Rat 36 with glycin 80

2.1.1.157 Sarcosine/dimethylglycine 
N-methyltransferase

Aphanothece halophytica 180 600 Waditee et al. (2003)

Ectothiorhodospira halochloris 210 with sarcosine 500

2.1.1.165 Methyl halide transferase Brassica oleracea 30 32 Attieh et al. (1995)

2.1.1.7 Nicotinate N-methyltransferase Glycine max 55 95 Upmeier et al. (1988)

2.1.1.8 Histamine N-methyltransferase Human 1.8 1.1 Francis et al. (1980)

2.1.1.9 Thiol S-methyltransferase Rat 105 144 Borchardt and Cheng (1978)

2.1.1.25 Phenol O-methyltransferase Phanerochaete chrysosporium 99 41 Coulter et al. (1993)

2.1.1.46 Isoflavone 4′-O-methyltrans-
ferase

Cicer arietinum 80 30 Wengenmayer et al. (1974)

2.1.1.50 Loganate O-methyltransferase Catharanthus roseus 742.1 400 Murata et al. (2008)

2.1.1.53 Putrescine N-methyltransferase Datura stramonium L. 100 10 Walton et al. (1994)

2.1.1.53 Putrescine N-methyltransferase Hyoscyamus albus 227 110 Hibi et al. (1992)

2.1.1.67 Thiopurine S-methyltransferase Homo sapiens 2.7 0.75 Woodson and Weinshilboum 
(1983)

2.1.1.68 Caffeate O-methyltransferase Beta vulgaris L. 13 4 Poulton and Butt (1975)

2.1.1.68 Caffeate O-methyltransferase Glycine max 15 6.9 Poulton et al. (1976)

2.1.1.68 Caffeate O-methyltransferase Medicago sativa L. 7 2 Edwards and Dixon (1991)

2.1.1.68 Caffeate O-methyltransferase Medicago sativa L. 12 4 Edwards and Dixon (1991)

2.1.1.91 Isobutyraldoxime O-methyltrans-
ferase

Pseudomonas sp. N.C.I.B. 11652 150 27 Harper and Kennedy (1985)

2.1.1.94 Tabersonine 16-O-methyltrans-
ferase

Catharanthus roseus 21.7 6 Levac et al. (2008)

2.1.1.102 Demethylmacrocin O-methyl-
transferase

Streptomyces fradiae 110 226 Kreuzman et al. (1988)

2.1.1.104 Caffeoyl-CoA O-methyltrans-
ferase

Petroselinum crispum 8.2 3.5 Pakusch and Matern (1991)

2.1.1.103 Phosphoethanolamine N-meth-
yltransferase

Caenorhabditis elegans 145 9.1 Brendza et al. (2007)

2.1.1.103 Phosphoethanolamine N-meth-
yltransferase

Plasmodium falciparum 153 50c Pessi et al. (2004)

2.1.1.107 Uroporphyrinogen-III C-methyl-
transferase

Pseudomonas denitrificans 6.3 0.32 Blanche et al. (1989)

2.1..1.136 Chlorophenol O-methyltrans-
ferase

Trichoderma longibrachiatum 284 368.9 Coque et al. (2003)
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a coclaurine-N-methyltransferase (CNMT) from Coptis 
japonica so as to engineer these methyltransferases to 
be more selective with cxSAM than SAM (Herbert et al. 
2020). By coupling these engineered methyltransferases 
with CmoA, carboxymethylated products, namely, car-
boxymethylated catechol and carboxymethylated tet-
rahydroisoquinoline, have been produced by COMT or 
CNMT, respectively.

In addition, a few SAM analogues have improved 
stability as compared to SAM, which is susceptible to 
depurination, intramolecular cyclization and sulfonium 
epimerization. To stabilize SAM, Huber et  al. (2016) 
have synthesized an analogue of SAM, 7dzAdotMet, 
from 7dzATP and l-tMet (Fig. 6b). The analogue exhibits 
exceptionally high stability at pH8. Interestingly, permis-
sive carminomycin 4-OMT (DnrK) can utilize the modi-
fied SAM analogue with similar efficiency as SAM, thus 
potentially 7dzAdotMet can be an advantageous substitute 
in SAM-dependent enzymatic reaction. Although SAM 
analogues hold a great promise to diversify natural prod-
ucts, their synthesis and regeneration still pose a chal-
lenge for scaled-up applications.

Conclusions
With the advancements in genomic and chemical screen-
ing methods, novel SAM-dependent methyltransferases 
have been discovered. Many of methyltransferases are 
ubiquitous in various natural product biosynthetic path-
ways, and sometimes a network of methyltransferases 
participates concertedly in diversifying the natural prod-
uct. Structural elucidation of these methyltransferases 
along the same pathway will provide valuable insights 
on their specificity and advance our understanding of 
how these methyltransferases are permissive to accept 

structurally similar compounds and at the same time spe-
cific to the site of methylation. The knowledge will allow 
us to better predict enzyme function and alter enzyme 
specificity (Morris et  al. 2020). Notably, many SAM-
dependent methyltransferases reviewed here are catalyti-
cally promiscuous. These are excellent initial templates 
to methylate non-native molecules and potentially allow 
retrosynthetic design of artificial pathway. Side activities 
are often inefficient and require substantial engineering 
efforts. High-throughput assays coupled with computer-
aided enzyme design will significantly speed up the 
optimization process. Integrated assays can be applied 
to narrow down the library of beneficial mutants: the 
growth-coupled methyltransferase assay can be applied 
first to screen out non-active methyltransferase mutants. 
Subsequently, SAH biosensor can be applied to the active 
mutants to identify higher methyltransferase activi-
ties. Application of the biosensor remains to be demon-
strated for methyltransferase engineering. Despite the 
exciting development in methyltransferase discovery 
and engineering, to apply methyltransferases as indus-
trial enzymes, co-factor regeneration is still a challenge. 
Biosynthesis of SAM from SAH via methyl halide meth-
yltransferase is a breakthrough in SAM co-factor regen-
eration in vitro. However, its application is limited by the 
safety concern of methyl iodide. Thus, more innovation is 
required to identify novel SAM recycling enzymes.

Taken together, the field of SAM-dependent methyl-
transferases has advanced significantly with the discovery 
of novel methyltransferases and innovative solutions to 
improve methyltransferase activity and diversify meth-
yltransferase reaction. These open up the possibility of 
biosynthesizing individual complex natural product, 
especially some natural products that cannot be obtained 

a Kd
b Concentration when inhibition observed
c IC50 or 50% inhibition

Table 3 (continued)

EC number Name Organism Km (µM SAM) Ki (µM SAH) Refs.

2.1.1.140 (S)-Coclaurine-N-methyltrans-
ferase

Tinospora cordifolia 40 62 Loeffler et al. (1995)

2.1.1.147 Corydaline synthase Corydalis cava 2.7 2.6 Rueffer et al. (1994)

2.1.1.153 Vitexin 2″-O-rhamnoside 
7-O-methyltransferase

Avena sativa L. 1.6 2.5 Knogge and Weissenböck (1984)

2.1.1.154 Isoliquiritigenin 2′-O-methyl-
transferase

Medicago sativa L. 17.7 2.2 (Medicago sativa L.) Maxwell et al. 
(1992)

2.1.1.273 Benzoate O-methyltransferase Antirrhinum majus 28 7 Murfitt et al. (2000)

2.1.1.338 Desmethylxanthohumol 
6′-O-methyltransferase

Humulus lupulus 286 98 Nagel et al. (2008)

2.1.1.343 8-Amino-8-demethylriboflavin 
N,N-dimethyltransferase

Streptomyces davaonensis 70 27 Tongsook et al. (2016)
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in pure form and contaminants from isomers are toxic 
(Li et  al. 2018). Moreover, the expanded biocatalytic 
property of methyltransferases to catalyse non-native 
substrate/co-factors will widen the scope of chemical 
diversity which can be explored for food, flavour and fra-
grance, energy, and pharmaceutical industries.
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