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Abstract

Due to the increasing environmental pollution of un-degradable plastics and the consumption of non-renewable
resources, more attention has been attracted by new bio-degradable/based polymers produced from renewable
resources. Polylactic acid (PLA) is one of the most representative bio-based materials, with obvious advantages and
disadvantages, and has a wide range of applications in industry, medicine, and research. By copolymerizing to make
up for its deficiencies, the obtained copolymers have more excellent properties. The development of a one-step
microbial metabolism production process of the lactate (LA)-based copolymers overcomes the inherent shortcom-
ings in the traditional chemical synthesis process. The most common lactate-based copolymer is poly(lactate-co-3-hy-
droxybutyrate) [P(LA-co-3HB)], within which the difference of LA monomer fraction will cause the change in the mate-
rial properties. It is necessary to regulate LA monomer fraction by appropriate methods. Based on synthetic biology
and systems metabolic engineering, this review mainly focus on how did the different production strategies (such as
enzyme engineering, fermentation engineering, etc.) of P(LA-co-3HB) optimize the chassis cells to efficiently produce

it. In addition, the metabolic engineering strategies of some other lactate-based copolymers are also introduced in
this article. These studies would facilitate to expand the application fields of the corresponding materials.
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Introduction

Almost all traditional organic copolymers come from pet-
rochemical industry, which will cause ‘greenhouse effect;,
‘white pollution; and other environmental problems in
the process of production, application, and management.
With the increasing tension of resource development and
people’s continued attention to the environmental issues,
most of the research concepts in recent years are in line
with the characteristics of recycling and environmental
protection. Bio-based polymers, which can be degraded
by microorganisms and are made from natural materials,
have attracted much attention in recent years (Taguchi
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et al. 2008; Matsumoto and Taguchi 2010; Park et al.
2012a; Yang et al. 2013; Choi et al. 2020b).

Nowadays, PLA is one of the most representative bio-
based polymers, its most notable features are biocompat-
ibility and biodegradability (Pang et al. 2010; Shah et al.
2014). In addition to the above mentioned, PLA also has
pros and cons, such as the advantages of high strength,
high modulus, biocompostability, low toxicity, etc., as
well as the disadvantages of hydrophobicity, low impact
toughness, etc. Due to its complex biological and chemi-
cal production processes, PLA is relatively expensive
compared with other commercial plastics (Lee et al. 2019;
Singhvi et al. 2019). In order to make up for its shortcom-
ings, copolymerization with other compositions is the
most effective method. After copolymerization, the prop-
erties of PLA will be adjusted, such as degradation cycle,
mechanical properties, hydrophilic properties, lipophilic
properties, etc. At the same time, with the change of the
composition and the proportion of the copolymers, PLA
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and its copolymers [belonging to polyhydroxyalkanoate
(PHA), which is the general term for a class of bio-based
polymers] will have more extensive applications, such
as medical field (efficient nanocarriers for drug delivery
applications, etc.) and other fields (S6dergard and Stolt
2002; Makadia and Siegel 2011; Giammona and Craparo
2018; Singhvi et al. 2019; Su et al. 2020).

In 2008, Taguchi et al. (2008) firstly established a one-
step microbial metabolic process for the synthesis of a
representative lactate-based copolymer, P(LA-co-3HB)
(Fig. 1). The disadvantages of residues, which are gener-
ated in the process of chemical synthesis of the lactate-
based copolymers, are effectively avoided by using the
biosynthesis method. In addition, isolated microbial
enzymes (such as lipase) also have been successfully used
as catalysts for the production of the copolymers with
diverse structures, various compositions and properties
(Jiang and Zhang 2013).

In P(LA-co-3HB), the molecular weight of it will
decrease with LA monomer incorporating into the
copolymer (Yamada et al. 2011). Thermodynamic analy-
sis reveals that melting (7,,) and glass transition (7})
temperatures of the copolymer vary with the change of
the mole percentage of LA monomer fraction. The copol-
ymer with the higher mole percentage of LA monomer
fraction usually has a lower melting temperature (7,) and
a higher glass transition temperature (Tg) (Yamada et al.
2009, 2010, 2011; Ishii et al. 2017). However, Yamada
et al. (2010) point out that the change of glass transition
temperature (Tg) also needs to consider the molecu-
lar weight of the copolymer. In terms of the mechanical
properties, Young’s modulus of the copolymer is lower
than that of the homopolymer, and it decreases with the
increase of the mole percentage of LA monomer frac-
tion. The elongation at break of the copolymer is higher
than that of the homopolymer and can be maintained
for a relatively long time (Yamada et al. 2011; Ishii et al.
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2017). The crystallinity of cast film [mainly due to the
crystallization of 3-hydroxybutyrate (3HB)] decreases
with the increase of LA monomer fraction (Yamada et al.
2010; Ishii et al. 2017). When the mole percentage of LA
monomer fraction of the copolymer is higher than 15%,
the transparency of the copolymer film increases signifi-
cantly (Yamada et al. 2011).

It is meaningful to compare the material properties of
P(LA-co-3HB) with the homopolymers PLA and poly(3-
hydroxybutyrate) [P(3HB)]. PLA is a rigid, transparent,
and compostable biodegradable material, P(3HB) is rigid
and opaque but has high biodegradability, while P(LA-
c0-3HB) combines the advantages of PLA and P(3HB)
in terms of transparency and biodegradability (Taguchi
and Matsumoto 2020). Whereas, compared with PLA,
PHAs containing 3HB, 3-hydroxyvalerate (3HV), and
4-hydroxybutyrate (4HB) have a higher hazard (cytotox-
icity) due to their relatively low acidity and bioactivity
(Singh et al. 2019). In addition, the hydrophobicity of the
lactate-based copolymers lead to its poor biocompatibil-
ity, which will limit its application in some fields (such
as medical field). These existing shortcomings of the
lactate-based copolymers indicate that further studies
and developments are needed before their commerciali-
zation. While the commercialization of the lactate-based
copolymers has not been reported, in recent years there
are more and more researches focus on P(LA-co-3HB).
The properties [enantiomeric purity; sequential structure
and molecular weight; thermal and mechanical proper-
ties (Nduko and Taguchi 2019)] of P(LA-co-3HB) are
affected by the mole percentage of incorporated mono-
mers, and different properties will affect its application in
different fields. Therefore, it is very important to regulate
the mole percentage of the monomer composition in the
copolymers, especially to increase the mole percentage
of LA monomer fractions in the copolymers. However,
researchers will face the problems of the poor specificity
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Fig. 1 Synthetic pathway of P(LA-co-3HB) in recombinant Escherichia coli. Letters in boxes indicate enzymes. Ldh lactate dehydrogenase, Pct
propionyl-CoA transferase, PhaA B-ketothiolase, PhaB NADPH-dependent acetoacetyl-CoA reductase, PhaC PHA synthase
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of precursor supply enzymes and PHA synthases, as well
as the inappropriate chassis cells, etc. So it is necessary
to adjust microbial metabolic pathways through genetic
engineering, fermentation engineering, etc. (Park et al.
2012a; Matsumoto and Taguchi 2013a, b).

Although the main contents of this article are the dif-
ferent production strategies of biosynthetic P(LA-co-
3HB), the representative lactate-based copolymer, other
microbial synthesis strategies of PHA containing LA are
also introduced here (Table 1).

Different engineered strategies of E. coli

for P(LA-co-3HB) biosynthesis

Enzyme engineering

The wild-type E. coli cannot provide D-LA-CoA, which
is required for copolymer synthesis, so CoA transferase
is needed to produce it. Propionate-CoA transferase of
Clostridium propionicum (Pctc,) is one of the most rep-
resentative CoA transferases. In addition, Pct of Meg-
asphaera elsdenii has also been used, which contribute
to the heterologous expression in E. coli (Taguchi et al.
2008). Different precursors containing CoA require
polymerization of PhaC, and the PhaC that can polymer-
ize LA into the copolymers effectively is called LA-CoA
polymerizing enzyme (LPE); the discovery of LPE is a
decisive breakthrough in the biosynthesis of the lactate-
based copolymers (Taguchi et al. 2008; Matsumoto and
Taguchi 2013b). To adjust the monomer composition
of the copolymers, researchers are committed to dis-
covering new enzymes or improving the activity and
the substrate specificity of existing enzymes by random
mutagenesis, screening, or structure prediction based on
homologous sequences of identified enzymes (Choi et al.
2020Db).

LPE is created by introducing double mutations, S325T
and Q481K, into PHA synthase 1 (PhaClpg 19) of Pseu-
domonas sp. 61-3 (Taguchi et al. 2008; Tajima et al.
2009). To find the same effect, the same mutations are
introduced into Pseudomonas sp. MBEL 6-19 at the cor-
responding sites of PHA synthase 1 (PhaClpy ;4). The
mutant enzyme cannot polymerize LA-CoA into the
copolymers effectively. Its activity can be improved by
gene mutations of its four sites (E130, S325, S477, and
Q481), which are previously addressed through evo-
lutionary engineering studies performed by Taguchi’s
group (Taguchi and Doi 2004; Shozui et al. 2009) (Yang
et al. 2010). Further engineered type II Pseudomonas
PHA synthases 1 (PhaCls) are obtained from Pseu-
domonas chlororaphis, Pseudomonas sp. 61-3, Pseu-
domonas putida KT2440, Pseudomonas resinovorans,
and Pseudomonas aeruginosa PAO1 by mutagenesis of
four sites (E130, S325, S477, and Q481) (Yang et al. 2011).
Base on the PhaCl, ;4 (Taguchi et al. 2008), another
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mutant, F392, is obtained. Engineered E. coli BW25113
(with mutated PHA synthase, F392S) along with the
pyruvate formate lyase activating enzyme gene (pflA)
deletion can synthesize 62 wt% P(45 mol% LA-co-3HB) in
a medium containing 20 g/L glucose with the highest LA
monomer fraction (Yamada et al. 2010). Ren et al. (2017)
examine the mutation effects of PhaCl (E130D, S325T,
F392S, S477G, and Q481K) and PhaC2 (S326T, S478G,
and Q482K) of Pseudomonas stutzeri. Lu et al. (2019)
examine the mutation effects of PhaCm (E130D, S325T,
and Q481K) of Pseudomonas fluorescens. In addition, it
should be noted that LPE has a strict substrate specificity
toward D-LA-CoA, which is obtained from enantiomer
analysis of P(LA-co-3HB) synthesized in vivo and analy-
sis of LPE in vitro, the synthesized copolymers by LPE are
almost entirely composed of D-LA (Tajima et al. 2009;
Yamada et al. 2009; Matsumoto and Taguchi 2013b).

Type I PHA synthase of Cupriavidus necator (PhaCp,)
exhibits activity toward 2-hydroxybutyryl-CoA (2HB-
CoA) in vitro (Han et al. 2011). Similar to position 481 in
type II PHA synthase (PhaCl, ;o) (Taguchi et al. 2008),
PhaCy, is mutated at position 510. Partially engineered
E. coli LS5218 (A510X) can synthesize the copolymers
in a medium with 5 g/L (R)-LA and 3 g/L sodium dode-
canoate, indicating that 510 residue plays a key role in LA
polymerization (Ochi et al. 2013).

Pct, cannot convert LA into LA-CoA effectively, and
it also exert the inhibitory effects on cell growth (Yang
et al. 2010). While when some sites of Pct, are mutated,
its activity can be promoted and the inhibition of cell
growth can be alleviated. Two beneficial Pct¢, mutants
have been constructed to achieve these two goals. One
mutant is Pct532,, within which with amino acid muta-
tion of A243T and A1200G (silent nucleotide mutation).
Another mutant is Pct540, with amino acid mutation
of V193A and four silent nucleotide mutations of T78C,
T669C, A1125G, as well as T1158C (Yang et al. 2010).
Engineered E. coli XL1-Blue with the expression of the
phaC1437 gene of Pseudomonas sp. MBEL 6-19 and the
CB3819 gene (or the CB4543 gene) of Clostridium beijer-
inckii can synthesize P(3HB) within a medium containing
20 g/L glucose and 2 g/L sodium 3HB. Engineered E. coli
XL1-Blue with the expression of the pct gene of Clostrid-
ium perfringens can synthesize 10.6 wt% P(13.6 mol%
LA-co-3HB) in the same culture media too (Kim et al.
2016). Four butyryl-CoA transferases (Bct) of Roseburia
sp., Eubacterium hallii, Faecalibacterium prausnitzii, and
Anaerostipes caccae can polymerize LA, 2HB, and 3HB
with different activities (David et al. 2017).

Moreover, cinnamoyl-CoA:phenyllactate CoA-trans-
ferase (FIdA) of Clostridium sporogenes can transfer CoA
from cinnamoyl-CoA to phenyllactate and 4-hydroxy-
phenyllactate; isocaprenoyl-CoA:2-hydroxyisocaproate
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. 2 2 2 £ CoA-transferase (HadA) of Clostridium difficile which
2 5 ; < %E FEs < ;E ks can use acetyl-CoA as a CoA donor is further identified,
g §§ g o 5% ,:,; é s § 2 % and have been revealed that it has a wider substrate spec-
gixs gl g ggx Bg |§ trum than FIdA (Yang et al. 2018).
32 E53 £ ££5 58 |§
g 2 g E \%’m;: . % é % 85 é E é Metabolic pathway engineering
2|88 g $Ey ;éc’ sy % %% £ Lactyl-CoA and acetyl-CoA are two precursors of P(LA-
g8 sElS 2 ) s£2% 3§ ) 2 co-3HB), both of them are derived from pyruvate. These
3 S %ﬁ E‘g:: s g 8& é égg % S 3 indicate that regulation of metabolic flux of pyruvate is
-f: 8cs ?5%\5 'T\r‘ 82 3%, 2 o % an effective method to adjust LA monomer fraction in
E|128% 2fo=s 58T §f°§ s5¢& P e the copolymers. The overexpression of the key pathway
8185 2E2x 58558225888 genes or blocking competitive pathways are both effec-
% tive metabolic engineering strategies to achieve this gold.
é Except for these two strategies, there are still some other
g, . . . _ g methods that can adjust LA monomer fraction in the
£ |8 g g 3 £ g copolymers.
3 % f» fn é é i The deletion of the acetate kinase gene (ackA) and the
g g g g > E g phosphoenolpyruvate carboxylase gene (ppc), as well as
“ 3 the replacement of the native promoter of the D-lactate
g%g . 2 i dehydrogenase gene (/dhA) with the trc¢ promoter, can
= %% 52 T © 2 regulate the metabolic flux by rational engineering. In
255 28 2. S g addition, the deletion of the acetaldehyde/alcohol dehy-
f g g g g % 5 85 é drogenase gene (adhE) and the replacement of the native
g% % y 3 2 :;E 5 2 promoter of the acetyl-CoA synthetase gene (acs) with
g2¢ § g é § 5 £ & the trc promoter by in silico gene knockout simulation
g § % 5% Ei - é £ % L as well as flux response analysis can further regulate the
3 §§§ S ,§ S £ 32 3 metabolic flux. Engineered E. coli XL1-Blue increased
g |2 Eg g3 g g; 5 . |2 3 the copolymer content and LA monomer fraction up
S865288. 3 82 2% |E £ to ca 37-fold (in case of expressing PhaC1310p 5,
¢ | EZ285 ECE E =% gL § & Pct540, and PhaAB,) and 2.6-fold (in case of express-
= 2 ing PhaCl1400p 19, Pct532(,, and PhaAB,), respectively
§ § TE (Jung et al. 2010). With the deletion of the pyruvate for-
g g §C I&lszlZ;aDs)e gezlle:[ h(pﬂgzl,E the fumar‘ate reddlgctas; )%Eng
5 El > ¥ , and the a gene, engineered E. coli XB-
g . S E c z can synthesize 15.2 wt% P(67.4 mol% LA-co-3HB) in
3 = é . . E % .GEJ ¢ a medium containing 20 g/L glucose along with the
¢ % é g 3 S _?g; £ trc promoter replacement of the ldhA and acs genes
E ;8 ;m E S § %5 % (Jung and Lee 2011). Partial deletion of other target
€8 £ genes, such as the pflA gene, the phosphate acetyltrans-
é &3 § ferase gene (pta), the pyruvate oxidase gene (poxB), the
f; g % 5 NAD"-independent lactate dehydrogenase gene (dld),
g s E% % and the ackA gene, are also conducive to improve the
2 3 _‘C; 2 % copolymers. With the deletion of the pflA and dld genes,
g 52 2% I engineered E. coli BW25113 can synthesize 58 wt%
” - £8 % P(73 mol% LA-co-3HB) in a medium containing 20 g/L
&% ; xylose. In addition, the overexpression of non-ATP
_ “E;% 3 consuming galactitol permease (GatC) to promote the
?g = 8% 2  absorption of xylose can increase the copolymer yield
£ S ¢Z % and LA monomer fraction of some mutants (Nduko
5 2 = 2 @ 8 B% & etal 2014). PfIB is regulated by PflA, then the deletion
f ;% § é é g ° % g of the pflA gene can increase the flux of pyruvate into LA
9 é *g i £ =z = i< g and acetyl-CoA. Engineered E. coli LS5218 can synthe-
s |55 g 0z § | Bg & size 451 wt% P(0.9 mol% LA-co-3HB) in a medium with




Guo et al. Bioresour. Bioprocess. (2021) 8:106

20 g/L glucose and 41.1 wt% P(8.3 mol% LA-co-3HB)
in a medium with 20 g/L xylose, respectively. However,
when compared with the wild-type strain, the increase
of LA monomer fraction could be offset for the signifi-
cantly lower total cell biomass (Salamanca-Cardona et al.
2014a). Engineered E. coli BW25113 along with the dele-
tion of the monofunctional peptidoglycan transglycosy-
lase gene (mtgA) can enhance the copolymer production.
Simultaneously, with the deletion of mtgA, the widths
of the mutant cells become wilder than that of the wild-
type cells (Kadoya et al. 2015a). The introduction of the
D-LDH gene (ldhD) of Lactobacillus acetotolerans HT
into different E. coli allows the improvement of LA mon-
omer fraction (Goto et al. 2019b). Moreover, one-step
production of the copolymers containing phenyllactate
and 4-hydroxyphenyllactate from glucose by engineered
E. coli XL1-Blue is designed. The globally metabolic engi-
neering strategy of this one-step production of the copol-
ymers includes the deletions of the IdhA, adhE, pfiB, frdB,
and poxB genes (Yang et al. 2018).

The cultivation of E. coli with mixed sugar will cause
carbon catabolite repression, which can be dere-
pressed by the overexpression of Mlc, a multiple regu-
lator of glucose and xylose uptake. Engineered E. coli
BW25113 can synthesize 64.9 wt% P(11.8 mol% LA-co-
3HB) in a medium with 50 g/L mixed sugar (wt%,
glucose:xylose =4:1). In the same experiment, an increase
in cell length is also observed, which is helpful for the
accumulation of the copolymer (Kadoya et al. 2018).

Aim to change the copolymer production and the
monomer composition, we can also disrupt o factors,
which globally govern the transcription of the corre-
sponding genes. E. coli possesses four non-essential o
factors, RpoS, RpoN, FliA, and Fecl. Engineered E. coli
BW25113 along with the rpoN gene deletion can syn-
thesize 75.1 wt% P(26.2 mol% LA-co-3HB) in a medium
containing 20 g/L glucose, which is superior to that of
the wild-type strain (Kadoya et al. 2015b). Furthermore,
all of the deletions of non-lethal transcription factors of
E. coli are screened by Keio Collection test. Among 252
mutants, eight of them, ApdhR, AcspG, Ayne], AchbR,
Ayial, AcreB, Aygfl, and AnanK, increase the copolymer
yield (6.2-10.1 g/L) when compared to E. coli BW25113
(5.1 g/L) in a medium containing 30 g/L glucose with an
insignificant change in cell density (Kadoya et al. 2017).

Attenuating respiratory chain increases the accumu-
lation of LA in E. coli under aerobic conditions. The
deletion of the flavin prenyltransferase gene (#biX) can
implement this strategy by attenuating the synthesis
of coenzyme Q8, a key ingredient involved in respira-
tory chain in E. coli. Engineered E. coli MG1655 along
with the dld gene deletion can synthesize 81.7 wt%
P(14.1 mol% LA-co-3HB) in a medium containing 20 g/L
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glucose (Lu et al. 2019). On this basis, the Pct540, pro-
moter is replaced with the /dhA promoter, and the glu-
cose-specific PTS enzyme IIBC component gene (ptsG)
is knocked out to weaken carbon catabolite repression.
Engineered E. coli MG1655 can synthesize P(7 mol%
LA-co-3HB) in a medium containing 10 g/L mixed sugar
(wt%, glucose:xylose=7:3), but LA monomer fraction is
decreased compared with strain without the ptsG gene
deletion (Wu et al. 2021). Another strategy is proposed
by the same research group too, which is aimed to delete
the thioesterase genes (ydil and yciA) to prevent the
degradation of intracellular LA-CoA. Engineered E. coli
MG1655 along with the dld gene deletion can synthesize
66.3 wt% P(46.1 mol% LA-co-3HB) in a medium con-
taining 20 g/L xylose. It should be pointed out that the
lack of thioesterase plays a major regulatory role (Wei
et al. 2021). The presence of LA-CoA degrading enzymes
(LDEs) (such as thioesterase) may lead to extremely low
intracellular LA-CoA content in E. coli, which accounts
for the efficient copolymer production (Matsumoto et al.
2018). The deletion of similar enzymes may increase LA
monomer fraction in the copolymers while preventing
the extension of the copolymer chain (Matsumoto et al.
2018). Potential LDEs [such as possible short-chain fatty
acyl-CoA degrading enzymes (Clomburg et al. 2012)]
are promising as elements for regulating the copolymer
composition.

Different culture conditions of E. coli

for P(LA-co-3HB) biosynthesis

Introducing LPE and monomer synthesis enzymes into
the pflA gene deleted E. coli BW25113, the copolymer
in the mutant growing on 20 g/L xylose has a higher LA
monomer fraction (34 mol%) than that growing on 20 g/L
glucose (LA monomer fraction is 26 mol%). The utiliza-
tion of evolved LPE (ST/FS/QK) can further enhance
this advantage (Nduko et al. 2013). Introduction of the
endoxylanase gene (xy/B) of Streptomyces coelicolor and
the B-xylosidase gene (xynB) of Bacillus subtilis into E.
coli LS5218 allows converting xylan into PHA in vivo.
Furthermore, when xylose or arabinose is added to the
media at the same time, the production yields of PHA in
engineered E. coli can increase up to 18-fold (Salamanca-
Cardona et al. 2014b). Sucrose is undoubtedly one of the
most abundant and the least expensive carbon sources.
Engineered E. coli W can break down 20 g/L sucrose
into fructose and glucose, and further to synthesize
12.2 wt% P(16 mol% LA-co-3HB) in vivo (Oh et al. 2014).
To establish an efficient sucrose utilization pathway, the
B-fructofuranosidase gene (sacC) of Mannheimia suc-
ciniciproducens MBEL55E is introduced into different
genetically modified E. coli strains. Among the tested
recombinant E. coli strains, engineered E. coli XL1-Blue
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synthesize the P(42.3 mol% LA-co-3HB) with the high-
est concentration of 0.576 g/L and a relatively high con-
tent of 29.44 wt% in a medium containing 20 g/L sucrose
(Sohn et al. 2020).

Using traditional carbon sources such as glucose to
produce the copolymers is a simple and effective method,
but the copolymers’ increase in the production and the
expansion of the use scope are inhibited by high raw
material costs, so it is necessary to focus on the develop-
ment of the inexpensive materials. By-products from dif-
ferent processing industries have great potentials, such
as the residues of the biodiesel industry (Placido and
Capareda 2016), chitin and chitosan extracted from the
marine waste resources (Yadav et al. 2019), the wastes
of milk processing and reducing such as cheese whey
(Zikmanis et al. 2020), lignocellulosic biomass and other
green wastes (Langsdorf et al. 2021), as well as pulp and
paper mill wastes (Haile et al. 2021). Some non-tradi-
tional carbon sources are not only beneficial to the copol-
ymer production to a certain extent, but also can reduce
the risk of the environmental pollution.

Rice bran is a by-product of the rice manufacturing
process, and possesses certain potential as a feedstock
for bio-based polymers. A rice bran treatment process
has been developed to produce 43.7 kg hydrolysate solu-
tion containing 24.41 g/L glucose and a small amount of
fructose from 5 kg rice bran (Oh et al. 2015). With the
expression of LPE and monomer supplying enzymes,
engineered E. coli XL1-Blue can synthesize 82.3 wt%
P(28.6 mol% LA-co-3HB) in 10 mL/L hydrolysate solu-
tion; C. necator 437-540 can synthesize 35.8 wt%
P(7.3 mol% LA-co-3HB) in the same condition (Oh et al.
2015).

P(LA-co-3HB) can be produced from glucose or xylose,
which demonstrates the feasibility of using lignocellu-
losic-like biomass as a carbon source to produce P(LA-
co-3HB). Wu et al. (2021) use corn stover hydrolysate to
synthesize P(7.1 mol% LA-co-3HB) successfully, although
cell growth is slightly inhibited. Compared with pure
sugars, Sun et al. (2016) find that the hydrolysate solu-
tion derived from Miscanthus x giganteus (hybrid Mis-
canthus) does not affect content, yield, and LA monomer
fraction of the copolymer, while the hydrolysate solution
derived from rice straw decrease LA monomer fraction.
However, some other researchers find that using the
hydrolysate solution derived from hybrid Miscanthus will
lead to a decrease in LA monomer fraction of the copoly-
mer, which is suspected to be the effect of a small amount
of acetate in the biomass sugar solution (Kadoya et al.
2018).

The hemicellulosic hydrolysate solution derived from
dissolving pulp manufacturing-obtained woody extract
is mainly composed of xylose and galactose, but a small
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amount of acetate contained in the hydrolysate solu-
tion will inhibit copolymer synthesis. After treating with
active charcoal and ion-exchange columns to remove
acetate, engineered E. coli BW25113 can synthesize
62.4 wt% P(5.5 mol% LA-co-3HB) in a medium contain-
ing the hydrolysate solution (Takisawa et al. 2017). The
above conclusions all clarified the adverse effect of ace-
tate on the copolymer production.

Although acetate inhibits copolymer synthesis, some
acetate-tolerant strains are still discovered. The process
of using engineered E. coli LS5218 along with the pflA
gene deletion to produce the copolymers suggests that
acetate played an important role in controlling LA mon-
omer incorporation into the copolymers (Salamanca-
Cardona et al. 2014a). Compared to using 20 g/L xylose
alone, the overall yields of engineered E. coli LS5218
along with the pfIA gene deletion increase by more than
twofold with the presence of 25 mM acetate. In addition,
when 25 mM acetate is used as the sole carbon source,
the copolymer still can be synthesize by strain (Sala-
manca-Cardona et al. 2017).

High reducing power brought by anaerobic cultivation
is beneficial to an increase in the flux toward LA-CoA.
After a 24 h aerobic cultivation, engineered E. coli W3110
can synthesize 2 wt% P(47 mol% LA-co-3HB) when it is
transferred into anaerobic conditions and is further cul-
tured for another 24 h in a medium with 20 g/L glucose
(Yamada et al. 2009). 12 wt% P(62 mol% LA-co-3HB) can
be synthesized by combining anaerobic cultivation with
engineered E. coli BW25113 along with the pflA gene
deletion as well as carrying LPE of F392S mutant (Yam-
ada et al. 2010). LA monomer fraction of the copolymers
produced by engineered E. coli BW25113 along with the
PfIA gene deletion can be adjusted between the range
from 29 to 47 mol% by the fine-regulation of the cul-
ture conditions in anaerobic cultivation with a medium
containing 20 g/L glucose within a fermentation tank
(Yamada et al. 2011). In addition, relatively anaerobic
conditions (shaking speed=0/60 strokes/min) can also
increase LA monomer fraction in the copolymers (Goto
et al. 2019b).

Fed-batch cultivation is an important technology to
achieve high cell density and high volumetric productiv-
ity in a fermentation tank. By adjusting dissolved oxygen
concentration (DOC) and glucose concentration (upon
pH-stat feeding), LA monomer fraction can be adjusted
between the range from 8.7 to 64.4 mol% by engineered
E. coli XL1-Blue (Yang et al. 2010). Jung and Lee (2011)
increase the weight percentage of P(LA-co-3HB) by fed-
batch cultivation, but LA monomer fraction is decreased.
The utilization of the pH-stat strategy or the pulsed-
feeding strategy can produce aromatic PHAs to a reason-
ably high concentration (Yang et al. 2018). In addition,
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20 g/L initial glucose concentration (0-24 h) is used for
cell growth, and xylose (24—81.6 h) is used for the copol-
ymer production, the feeding rate of the sugar solution
is increased in a stepwise manner. Under this condition,
engineered E. coli MG1655 can synthesize 44.3 wt%
P(4.9 mol% LA-co-3HB) and the copolymer production
increases significantly (Hori et al. 2019). Moreover, batch
fermentation technology is used to overcome the bot-
tleneck of the utilization of fructose, which is one of the
components of rice bran (Oh et al. 2015)/sucrose (Sohn
et al. 2020) hydrolysates. Compared with Pct540,, engi-
neered E. coli XL1-Blue expressing PhaC1437,, ,, and
Bctg, in batch fermentation shows higher ODg,, and
weight percentage, but LA monomer fraction is lower
(David et al. 2017).

Introduction of other monomers into lactate-based
PHA

Engineered E. coli can synthesize LA-CoA by introduc-
ing Pct, synthesize 3HB-CoA by introducing PhaAB, and
synthesize the copolymers by introducing LPE. Similarly,
other monomers can be introduced into the copolymers
by transforming the corresponding CoA metabolic path-
way into E. coli. Alternatively, monomers can be added to
the substrate directly and then use the one-pot method
to produce the copolymers (Matsumoto et al. 2013). Dif-
ferent monomer copolymerization strategies are summa-
rized in Fig. 2.

Introduction of 2HB biosynthesis pathway

The introduction of the citramalate synthase gene
(cimA3.7) of Methanococcus jannaschii, the 3-isopro-
pylmalate dehydrogenase gene (lexB) and the isopropyl
malate (IPM) isomerase gene (leuCD) of E. coli W3110,
as well as the 2HB dehydrogenase gene (panE) of Lac-
tococcus lactis subsp. lactis 111403 into E. coli XL1-Blue
allows converting glucose into 2HB in vivo (Park et al.
2012b, 2013a; Chae et al. 2016; David et al. 2017). By
introducing the propionyl-CoA synthetase gene (prpE)
of C. necator and using the inherent pyruvate dehydro-
genase complex (PDHc), E. coli XL1-Blue allows convert-
ing propionate into 2HB with the help of the panE gene
in vivo. In addition, the deletion of the 2-methylcitrate
synthase gene (prpC) can increase 2HB monomer frac-
tion in the copolymers, while it will decrease the copol-
ymer content (Park et al. 2013a). Moreover, E. coli can
endogenously produce L-threonine, which can be trans-
formed into 2HB with the help of the panE gene (Yang
et al. 2016) or into 2HB-CoA with the help of the ldhA
and hadA genes of C. difficile 630 (Mizuno et al. 2018;
Sudo et al. 2020). The deletion of the L-threonine dehy-
dratase gene (ilvA), will lead to the remove 2HB from
the copolymers. However, since ilvA is the crucial gene
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for amino acid biosynthesis, the deletion of it in E. coli
will result in the growth retardation and the decrease
of the copolymer content. Considering the activity of
L-threonine dehydratase can be inhibited allosterically
by L-isoleucine, the same effect can be achieved by the
strategy of adding L-isoleucine into the medium (Choi
et al. 2016, 2017; Yang et al. 2016; Choi et al. 2020a). In
order to increase 2HB monomer fraction, L-threonine
can be added to the medium (Sudo et al. 2020). Further-
more, L-valine can also achieve the same effect, because
the activity of acetohydroxy acid synthase is negatively
regulated by L-valine (Yang et al. 2016; Sudo et al. 2020).
In another explanation, L-valine is pointed out that allos-
terically activates L-threonine deaminase and catalyzes
L-threonine to form 2-ketobutyrate (Sudo et al. 2020).
Sudo et al. (2020) indicate that L-valine inhibits bacteria
growth and leads to a decrease in the copolymer produc-
tion, but this phenomenon is not discussed by Yang et al.
(2016).

Introduction of 4HB biosynthesis pathway

The introduction of the succinate semialdehyde dehy-
drogenase gene (sucD), the 4HB dehydrogenase gene
(4hbD), and the CoA transferase gene (orfZ) of Clostrid-
ium kluyveri DSM555 into E. coli J]M109 allows convert-
ing glucose into 4HB-CoA in vivo (Li et al. 2017). With
the introduction of the sucD and 44bD genes into E.
coli XL1-Blue and with the help of Pct540,, the E. coli
mutant also allows converting glucose into 4HB-CoA
in vivo (Choi et al. 2016, 2020a). In addition, the dele-
tion of the succinate semialdehyde dehydrogenase genes
(sad and gabD) can increase 4HB monomer fraction in
the copolymers (Li et al. 2017). In another study, deleting
the ynel and gabD genes, which coding succinate semial-
dehyde dehydrogenase too, can also increase 4HB mono-
mer fraction in the copolymers (Choi et al. 2016, 2020a).

Introduction of glycolate (GL) biosynthesis pathway

In 2011, the copolymers containing GL were synthe-
sized in E. coli LS5218 for the first time with exog-
enous GL (Matsumoto et al. 2011). Subsequently, the
methods for providing endogenous GL by modulat-
ing the metabolic pathway were established gradually.
Establishing the Dahms pathway (XylBC,,) in E. coli
XL1-Blue by introducing of the xylose dehydrogenase
gene (xy[B) and the xylonolactonase gene (xy/C) of
Caulobacter crescentus allows converting xylose into
GL in vivo (Choi et al. 2016, 2017, 2020a). The native
glyoxylate bypass pathway of E. coli is amplified by
the overexpression of the isocitrate lyase gene (aceA),
the isocitrate dehydrogenase kinase/phosphatase gene
(aceK), and the glyoxylate reductase gene (ycdW),
which allows converting glucose into GL in vivo.
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The deletion of the glycolate oxidase gene (glcD) can
increase GL monomer fraction in the copolymers (Li
et al. 2016, 2017). The introduction of the D-tagatose
3-epimerase gene (dte) of Pseudomonas cichorii and
the overexpression of the native genes [the ribulose
kinase gene (fucK), the aldolase gene (fucA), and the
aldehyde dehydrogenase gene (aldA)] in E. coli K12
also allow converting xylose into GL in vivo (Da et al.
2019).

Introduction of other 2-hydroxyalkanoates (2HA)
biosynthesis pathway

The introduction of the mutant acetolactate synthase
gene (ilvBN"™™) [or the B. subtilis acetolactate synthase

gene (alsS)], the ketol-acid reductoisomerase gene (ilvC),
and the dihydroxyacid dehydratase gene (ilvD) of E. coli
W3110 into E. coli XL1-Blue allows converting glucose
into 2-hydroxyisovalerate (2HIV) with the help of the
panE gene in vivo. In addition, adding L-valine into the
medium can also increase 2HIV monomer fraction in the
copolymers (Choi et al. 2016; Yang et al. 2016). The intro-
duction of the /dhA and hadA genes into E. coli DH5a
allows converting glucose/xylose/glycerol into 2HA-CoA
(2HP, 2H3MB, 2H3MV, 2H4MV, and 2H3PhP) with the
supplement of different amino acids in vivo (Mizuno
etal. 2018).
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Introduction of 3-hydroxypropionate (3HP) biosynthesis
pathway

The introduction of the glycerol dehydratase gene (dhaB)
of Klebsiella pneumoniae, the 1,3-propanediol dehydro-
genase gene (dhaT) and the aldehyde dehydrogenase gene
(aldD) of P. putida KT2442, as well as the ACS domain
of tri-functional propionyl-CoA synthetase gene (pcs’)
of Chloroflexus aurantiacus into E. coli S17-1 allows
converting glycerol into 3HP-CoA in vivo (Ren et al
2017). The introduction of the glycerol dehydratase gene
(dhaB123) of K. pneumoniae and the propionaldehyde
dehydrogenase gene (pduP) of Salmonella typhimurium
LT2 into E. coli JM109 also allows converting glycerol
into 3HP-CoA in vivo (Zhao et al. 2018).

Introduction of 3HV and medium-chain-length
3-hydroxyalkanoates (3HA) biosynthesis pathway

Using E. coli BW25113 along with the pflA gene dele-
tion, 3HV-CoA can be supplied from propionate, which
is esterified into propionyl-CoA by proposed inherent
pathways (such as acetyl-CoA synthetase and propionyl-
CoA synthetase) firstly. Then, Propionyl-CoA is con-
verted into 3HV-CoA by PhaAB (Shozui et al. 2010b).
The introduction of the (R)-specific enoyl-CoA hydratase
4 gene (phaj4) of P. aeruginosa into E. coli LS5218 allows
converting valerate into 3HV-CoA in vivo with the help
of the pB-oxidation pathway (Shozui et al. 2011). In addi-
tion, with the same strategies (using the phaj4 gene and
the p-oxidation pathway together), E. coli LS5218 can
polymerize 3HHx into the copolymers from butyrate
(Shozui et al. 2010a) and polymerize 3HA (3HB, 3HHX,
3HO, 3HD, and 3HDD) into the copolymers from dode-
canoate (Matsumoto et al. 2011). Moreover, the introduc-
tion of enzymes for the synthesis of 3HA monomers with
medium-chain length into the fadR gene deleted E. coli
allows converting glucose into 3HA (3HB, 3HO, 3HD,
3HDD, and 3H5DD) in vivo (Goto et al. 2019a).

Microorganisms other than E. coli for P(LA-co-3HB)
biosynthesis

Due to the relatively mature metabolic regulation mecha-
nism and molecular tools, E. coli is the most widely used
chassis cell in the copolymer production. While in recent
years, some other non-traditional chassis cells also have
been developed and applied.

As an endotoxin-free platform, a Gram-positive bac-
teria Corynebacterium glutamicum is metabolic engi-
neered to produce the copolymers. After introducing LPE
and monomer supplying enzymes, 2.4 wt% P(96.8 mol%
LA-co-3HB) is synthesized by engineered strain in a
medium with 60 g/L glucose. LA monomer fraction
is further increased to 99.3 mol% after the phaAB gene
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deletion, while the copolymer content is decreased to
1.4 wt% (Song et al. 2012).

Cupriavidus necator is one of the most effective plat-
forms for producing various PHAs. With the expression
of LPE and monomer supplying enzymes, C. necator
437-540 can synthesize 33.9 wt% P(37 mol% LA-co-3HB)
in a medium containing 20 g/L glucose. Furthermore,
2HB and 3HV can be polymerized into the copolymers
by this strain when 2HB is added to the medium (Park
et al. 2013b). Introducing the sacC and /dhA genes into
C. necator 437-540 can synthesize 19.5 wt% P(21.5 mol%
LA-co-3HB) in a medium with 20 g/L sucrose (Park et al.
2015).

Considering the higher production efficiency and the
lower cost of the copolymers, Sinorhizobium meliloti
is selected as a production platform. Pct532., and
PhaC1400p 19 are introduced into S. meliloti Rm1021
and the native PHA synthase enzyme gene (phbC) is
replaced. Under the control of the native phbC promoter,
engineered strain can synthesize P(30 mol% LA-co-3HB)
in a medium containing mannitol. This is the first report
of the copolymer production in Alphaproteobacteria
(Tran and Charles 2016).

Conclusions

Due to the rising price of crude oil, the depletion of
petroleum resources, and the environmental damage
caused by plastic wastes, PLA and its copolymers have
become the potential substitutes for the degradable syn-
thetic plastics and the “green copolymers” made from
renewable resources. Therefore, they have attracted
more and more attention in the fields of industry, medi-
cine, and research. The researches of the lactate-based
copolymers, which possess broad application prospects,
not only greatly improve the properties of PLA, but also
greatly expand the application field of it.

It has become a trend to utilize inexpensive extrane-
ous carbon sources (such as glucose and glycerol) and/
or mixed cultures (such as agricultural wastes) in the
production. Recombinant E. coli has been developed
as a conventional platform to produce the copolymers
(Choi et al. 2020b). The strategies of the copolymer pro-
duction are generally to overcome the shortcomings of
inducible promoters and/or introduce new key enzymes.
Because of the ability of E. coli to use a variety of cheap
and unrelated carbon sources, the large-scale bioreac-
tors production from the culture in shake flasks should
be further studied to obtain a more efficient fermentation
process. In addition, the separation and the purification
of the copolymers from E. coli is also one of the research
directions.

With the further development of the potential recom-
binant E. coli strains and other related strains, it is not
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only helpful to expand the production types of the
copolymers but also can improve the productivity and
the yield of the copolymers, making copolymer recy-
cling more convenient and economical. In order to
replace the plastics derived from the petrochemical
industry ideally, more researches should be conducted
on reducing the production costs and improving the
properties of bioplastics.
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