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Abstract 

Dunaliella salina is a green microalga with the great potential to generate natural β-carotene. However, the corre-
sponding mathematical models to guide optimized production of β-carotene in Dunaliella salina (D. salina) are not 
yet available. In this study, dynamic models were proposed to simulate effects of environmental factors on cell growth 
and β-carotene production in D. salina using online monitoring system. Moreover, the identification model of the 
parameter variables was established, and an adaptive particle swarm optimization algorithm based on parameter sen-
sitivity analysis was constructed to solve the premature problem of particle swarm algorithm. The proposed kinetic 
model is characterized by high accuracy and predictability through experimental verification, which indicates its com-
petence for future process design, control, and optimization. Based on the model established in this study, the opti-
mal environmental factors for both β-carotene production and microalgae growth were identified. The approaches 
created are potentially useful for microalga Dunaliella salina cultivation and high-value β-carotene production.
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Introduction
In the last decades, massive investments were done 
on microalgae industry, mainly due to their capacity 
to synthesize lipids for biofuel production or synthe-
size the carotenoid for high-value product production 
(Chew 2017; Kong et  al. 2018; Salome and Merchant 
2019). β-Carotene is a high-valued carotenoid pigment 
with wide applications in the cosmetic, pharmaceutical, 
and food industries (Coppens et  al. 2016; Gateau et  al. 
2017; Paillie-Jimenez et al. 2020). However, the supply of 
natural β-carotene still falls short of demand at present 
(Henriquez et al. 2016). The green microalga Dunaliella 
salina has been regarded as one of the best candidates for 
β-carotene production due to its high β-carotene content 
(up to 10%) (Benamotz et al. 1982; Xi et al. 2020).

Microalgae require macronutrients and micronu-
trients for photosynthesis, which are important for 
growth and product accumulation. The optimal tem-
perature and light are also critical for rapid metabolism 

and biomass productivity in microalgae (Viruela et  al. 
2021; del Rio-Chanona et  al. 2017). During the past 
years, many studies have been carried out to evalu-
ate the optimal operating conditions for β-carotene 
production in Dunaliella sp. For example, high irradi-
ance, high temperature, oxidative stress, and nitrogen-
deprivation have been found to significantly stimulate 
the accumulation of β-carotene (Fachet et al. 2016; Wu 
et al. 2016; Kim et al. 2013). Although there are exten-
sive indoor measurements for the microalgae system 
(Zhu et  al. 2021, 2018b), much less effort has been 
focused on the modeling of these stages to determine 
the optimal operating conditions. To optimize reac-
tor design and predict its performance, understanding 
of simultaneous effects of different environmental and 
operational variables on microalgae culture is neces-
sary. Mathematical models can be used to study the 
effects of the environmental and operational variables, 
which are related to the output variables (e.g., biomass 
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productivity and bioproduct production), allowing 
the effect of changing the input variables to be stud-
ied without the need for individual experimental tests 
(Viruela et  al. 2021; del Rio-Chanona et  al. 2018). To 
successfully conduct process control and make opti-
mization, it is essential to construct a highly accurate 
kinetic model, which can be capable of well predict-
ing the dynamic behavior of the underlying biosystem. 
Meanwhile, model-based process design is also consid-
ered to be one of the most effective tools to accomplish 
the transfer of bioprocess from laboratory short-term 
scale to industrial long-term scale (Viruela et al. 2021; 
del Rio-Chanona et  al. 2017). Despite its importance, 
model-based process design for β-carotene production 
still remains to be elucidated.

Previous modeling studies have taken on the specific 
challenge of modeling growth in microalgae systems 
(Fachet et  al. 2014; Viruela et  al. 2021). Although some 
dynamic models have been constructed to simulate this 
process. However, most of the environmental parameters 
have not been considered in biokinetics in those mod-
els, which limited their application. For example, a pho-
tobioreactor model that deals only with both light and 
nitrogen limitation has been proposed through Beer–
Lamberts Law and the Droop Equation, respectively 
(Bernard et  al. 2009). Microalgae growth is reported to 
be related to light intensity and the intracellular nitrogen 
concentration or quota, but the effect of other relevant 
parameters such as temperature or inorganic carbon 
concentration which restrict the applicability of micro-
algae has not been included. Mathematical models have 
been used to predict and optimize the microalgae bio-
mass and astaxanthin production, and specific variables 
including light intensity, temperature, retention time, and 
nutrients’ concentration have been used to monitor the 
process performance and construct models (Zhang et al. 
2015, 2016). However, due to the specificity between 
microalgae species and the induction stage of carotenoid, 
where cells stop growing and carotenoid commences to 
accumulate are very difficult to model.

Droop, Monod, and Andrew models have been exten-
sively applied to predict biomass growth rate under a sin-
gle substrate or nutrient condition, such as phosphorus 
(del Rio-Chanona et al. 2017), nitrogen (del Rio-Chanona 
et al. 2017; Liu et al. 2018), carbon (Straka and Rittmann 
2019), and light (Holdmann et al. 2018; Zhang et al. 2015). 
Previous models are able to accurately estimate biomass 
productivity when the temperature is within a range of 
values enabling microalgae growth (Zhang et  al. 2016). 
Integrated experimental–computational frameworks that 
have the ability to predict biomass growth and product 
accumulation under different growing conditions, which 
will help to optimize the process performance, operating 

conditions, and scale-up of cultivation systems for com-
mercialization and industrial applicability (Zeriouh et al. 
2017).

Nevertheless, kinetic modeling of simultaneous co-
limitation of growth media elements (e.g., nitrogen and 
carbon) and environmental factors (e.g., light and tem-
perature) has not been reported yet. Additionally, while 
carotenoid accumulation has been considered to be pro-
portional to biomass growth, the effects of abiotic stress 
toward enhancement of carotenoid productivity have 
been recently shown through a new kinetic model con-
sidering biomass growth and carotenoid accumulation 
as two different dynamic variables (Zhang et  al. 2016). 
Dynamic simulation is an effective tool to determine the 
optimal operating conditions for both laboratory-scale 
and industrial-scale carotenoid production processes. 
However, the previous models are only able to accurately 
estimate biomass productivity when the temperature 
is within a range of values enabling microalgae growth 
(Jiang et  al. 2015). Moreover, the previous models can 
only predict biomass and bio-compounds production 
when the incident light intensity is within a range of con-
stant, but the average light intensity received by the cells 
in the photobioreactors (PBRs) is underestimated (Lam-
ers et al. 2010).

To accurately simulate the dynamic process of the 
β-carotene induction stage, the current study aims to 
construct rigorous models including the effects of tem-
perature, average light intensity, carbon and nitrogen 
source on microalgal growth, and β-carotene accumu-
lation, which to the best of our knowledge has not been 
reported at present. Furthermore, a sensitivity analysis 
was conducted to simulate various parameters on micro-
algae production process. The relationship between 
β-carotene accumulation and algal growth has also been 
comprehensively studied in this study, which are poten-
tially useful for microalga Dunaliella salina cultivation 
and high-value β-carotene production.

Material and modeling methodology
Microalgal strain and its preculture conditions
The microalga Dunaliella salina (D. salina) CCAP 19/18 
was purchased from Culture Collection of Algae and Pro-
tozoa (Windermere, United Kingdom). The strain was 
maintained in the medium of optimized Artificial Sea 
Water (ASW), composing of 1.5 M NaCl, 5 mM KNO3, 
0.45 mM MgCl2·6H2O, 0.05 mM MgSO4·7H2O, 0.3 mM 
CaCl2·2H2O, 0.13 mM K2HPO4, 0.02 mM FeCl3, 0.02 mM 
EDTA, 1 mL of trace elements stock per liter with 50 mM 
H3BO3, 10  mM MnCl2·4H2O, 0.8  mM ZnSO4·7H2O, 
0.8  mM CuSO4·5H2O, 2  mM NaMoO4·2H2O, 1.5  mM 
NaVO3, and 0.2  mM CoCl2·6H2O, and the pH was 
adjusted to 7.5 by addition of Tris-buffer (40  mM). 
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D. salina was precultured in 500  mL conical flasks at 
50  µmol·photons·m−2·s−1 light intensity and under 
14 h/10 h light/dark cycles.

Operation of photobioreactor
The microalgal cells at logarithmic phase were inoculated 
into a multi-device-equipped flat plate photobioreactor 
(also known as Algal Station) (Additional file 1: Fig. S1), 
which can guarantee accurate and stable light condition 
control as we previously described (Cao et al., 2019). In 
the platform of Algal Station, the cultivation temperature 
was automatically controlled at 25 ℃, the pH was main-
tained at 7.5 by computer-controlled micro-addition of 
CO2 in the bubbling air, and the cultures were agitated 
at 400 mL.min−1 with filtered air (0.2 μm porosity mem-
brane). The culturing broth was sampled daily for anal-
ysis of dry weight and β-carotene content. The incident 
photon flux density and transmitted photon flux were 
recorded online at 20 min intervals. Each treatment was 
independently repeated three times.

Analytical methods
Growth analyses
Cell density was determined spectrophotometrically 
using a UV/Vis spectrophotometer (Jasco V-530, Japan) 
at 680 nm. The microalgal dry weight (DW) was deter-
mined according to the method we previously described 
(Cao et  al. 2019). Briefly, with pre-weighed What-
man GF/C filters, 10 mL culture broth was filtered and 
washed three times with 2  mL of 0.5  M ammonium 
bicarbonate, and then dried below 60  °C for over 16  h 
until the weight was constant. The DW of the microalgae 
cells was calculated, according to the difference between 
final and initial filter weights and volume of the filtered 
sample.

The microalgal growth rate (µi, h−1) was calculated by 
Eq. (1).

where DWi and DWi−1 (g·L−1) are the biomass concen-
tration measured at time ti and ti-1, respectively. ti and ti-1 
are hour i and i-1 when the culture broth was sampled.

(1)µi =
LnDWi − LnDWi−1

ti − ti−1
,

β‑Carotene content analysis
The β-carotene content was determined by modified 
spectrophotometric method as previously described (Xi 
et  al. 2020; Zhu et  al. 2018a). Briefly, 1  mL of cell sus-
pension was centrifuged at 10,000  rpm for 2 min. After 
centrifugation, the supernatant was discarded, and 3 mL 
dodecane was added. The sample was shaken vigorously 
to re-suspend the pellets. Then, 9  mL of methanol was 
added to completely break up the cells, and the tube was 
shaken vigorously again and then centrifuged for 2  min 
at 10,000 rpm. The dodecane-containing lipophilic carot-
enoids (upper layer) were measured with a spectropho-
tometer (Jasco V-530, Japan) at 453 nm and 665 nm with 
dodecane as reference. β-Carotene concentration was 
calculated using Eq. (2).

where: (A453 − A665/3.91) is the absorbance of β-carotene 
corrected for chlorophyll contamination, 3.657 is the cal-
ibration factor derived from HPLC analysis of β-carotene 
concentration, 3 is the number of milliliters of dodecane 
added for extraction, and X is the dilution factor to meas-
ure absorbance on spectrophotometer.

The content of β-carotene in the biomass was calcu-
lated according to Eq. (3).

where Cβ-car is β-carotene concentration (mg∙L−1), 
β-carotene (%) is β-carotene content, and DW is cell dry 
weight (mg∙L−1).

Model construction methodology
Currently, the types of kinetic models, namely the 
Monod model and the Droop model (Zhang et al. 2015), 
are widely used for bioprocess simulation. Due to its high 
accuracy and flexibility, the Monod model is selected and 
modified to simulate the correlation between biomass 
growth and consumption of nitrate and carbon.

(2)
Cβ−car

(

mg · L−1
)

= (A453 − A665/3.91)× 3.657× 3× X,

(3)β − carotene (%) =
Cβ−car × 10

DW
,

(4)
dX

dt
= µ0 ∗ X − µd ∗ X2

(5)µ0 = µmax (T , I ,N ,C)f (T )


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where X is biomass concentration (g·L−1), µ0 is cell-spe-
cific growth rate (h−1), µmax is maximum cell-specific 
growth rate (h−1), Iav is average light intensity, µd is cell 
decay rate (h−1), Ks is light saturation value produced by 
cell growth, Ki is photoinhibition value of cell growth, A 
and B are the coefficients before the index, Ea is the acti-
vation energy for cell growth, Eb is inactivation energy of 
cell growth, KN is the nitrate half-velocity constant, and 
KC is carbon half-velocity constant.

Equation 4 simulates the biomass growth rate. Its first 
term on the right-hand side represents biomass growth, 
and the second term represents cell respiration and 
decay. In terms of β-carotene production, it was reported 
that the uptake of culture nitrate is essential for cells to 
synthesize β-carotene (Lamers et al. 2012). Meanwhile, as 
β-carotene is a primary carotenoid, it can be consumed 
by cells for their growth and converted to other metabo-
lites when necessary. Therefore, Eq.  7 is constructed to 
simulate β-carotene production. In this equation, the 
first term on the rightepresents β-carotene synthesis rate 
and is originated from the Monod model, while the sec-
ond term represents β-carotene consumption rate. So far, 
there were no reports about investigating the detailed 
metabolic mechanisms of β-carotene consumption.

where W is β-carotene content, b is no correlation coef-
ficient for the growth of β-carotene production, Ksw is the 
light saturation value of β-carotene accumulation, Eaw is 
activation energy of β-carotene accumulation; wmax is the 
maximum β-carotene content, KNW is nitrate half-veloc-
ity constant for β-carotene synthesis, Iav is average light 
intensity (μmol· photons·m−2· s−1), Kiw is β-carotene 
accumulation photoinhibition value, KCW is carbon con-
tent half-velocity constant for β-carotene synthesis, and 
Ebw is inactivation energy for β-carotene synthesis, the 
all mathematical parameters  were shown in  (Additional 
file 1: Table S1).

Parameter estimation methodology
To obtain the best parameters of dynamic model that 
can fit the experimental data, the average relative error 
between the experimental data and the system output 
was used as the objective function. Moreover, the range 
of biomass and β-carotene concentration was used as the 
state constraints to establish a final nonlinear program-
ming problem (NLP) for the parameter variables. Con-
sidering that the particle swarm optimization (PSO) is 

(6)f(T)A ∗ e−
Ea
R∗T − B ∗ e−

Eb
R∗T ,

(7)
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=

[
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[
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]

,

easy to be premature, in this study, we used an adaptive 
PSO based on sensitivity analysis to solve the problem. 
This algorithm can ensure that the required parameters 
reach the approximate global optimum, and have a cer-
tain degree of robustness. The implementation in this 
work is programmed in the MATLAB (R2021a) optimi-
zation environment.

Results and discussion
Effects of environmental factors on cell growth
To examine the effect of temperature, light intensity, and 
carbon and nitrate concentration on the growth kinet-
ics of D. salina, different specific sets of experiments 
were carried out by cultivating the cells in photobiore-
actors (PBRs) under different temperature, average light 
intensity, and initial concentrations of dissolved nitrates 
and carbons. The experiment was set up and then moni-
tored daily up to a total cultivation time of 96 h, when the 
occurrence of exponential growth was observed (Addi-
tional file 1: Fig. S2).

It was found that temperature remarkably influ-
ences the rate of cell growth, cell decay, and bioproduct 
accumulation. The optimal temperature can facilitate 
microbial biomass growth and bioproducts synthesis 
(del Rio-Chanona et al. 2017; Fachet et al. 2014; Guihe-
neuf and Stengel 2017). The effect of temperature on the 

growth rate in D. salina is mainly reflected in the effi-
ciency of photosynthesis and respiration (Fachet et  al. 
2014). The growth rate at different temperatures is shown 
in Fig.  1A. At the range of 10–30  °C, the growth rate 
was positively correlated with temperature, and when 
the temperature rises to 30 °C, the growth rate begins to 
decrease. In the range of 30–40  °C, the growth rate has 
a negative correlation with temperature. The logarith-
mic growth phase of D. salina has the largest growth rate 
(0.164  h−1) at the temperature of 28  °C. The Arrhenius 
equation has been widely used to describe the effects of 
temperature on both biomass growth (Zhang et al. 2016). 
The parameters of the Arrhenius model can be obtained 
by model fitting under different range of temperatures.

Light intensity significantly affects biomass growth 
rates (Bonnefond et  al. 2016). In general, the effect of 
light intensity on cell growth can be reflected by the 
Aiba model (del Rio-Chanona et al. 2017). In our experi-
ments, the Aiba model was used to replace local light 
intensities by an average light intensity which was calcu-
lated by Eq. 5 in a suspended reactor. The model param-
eters μmax and Ks were fitted, as shown in Fig.  1B, and 
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within a certain range of light intensity, the relationship 
between the average light intensity and the growth rate 
of D. salina conforms to the Aiba equation. The growth 
rate tends to increase with the increase of light intensity 
stable value when the light intensity exceeds 379.6 μmol· 
photons·m−2· s−1. According to the curve, the half-satu-
ration constant of light (Ki) is 1705 μmol· photons·m−2· 
s−1. It was indicated that in most of the cases, a higher 
average light intensity (up to 600 μmol· photons·m−2·s−1) 
can result in a higher biomass growth rate, which was 
consistent with the observations published in the previ-
ous studies (Bonnefond et al. 2016; Fachet et al. 2016).

When nitrogen concentration is the limiting factor, 
the relationship between the growth rate and the nitro-
gen concentration is shown in Fig.  1C. The relationship 
between the nitrogen concentration and the growth rate 
of D. salina conforms to the Monod equation. The values 
of the model parameters μmax and KN after fitting show 
that within a certain range of nitrogen concentration, 
the growth rate (referred as μ) of cells increased with 
the increase of the nitrogen concentration. The μ tended 

to be a stable value when the nitrogen concentration 
exceeds 330 mg·L−1. In terms of the influence of nitrate 
concentration on biomass growth rate, in both sets of 
experiments, nitrate concentration in the culture keeps 
increasing after the addition of dense nitrate influent, 
which means that the consumption rate of nitrate due to 
biomass uptake was slower than its refreshment rate. By 
comparing biomass concentrations at the different sets 
of experiments, it seems that biomass growth rate was 
always higher in a denser nitrate concentration culture.

This tendency was also observed in the carbon experi-
ments when the carbon content changes from 0 to 
500 mM. Under the carbon limiting condition, the rela-
tionship between specific growth rate and carbon content 
is shown in Fig. 1D. The relationship between the carbon 
concentration and the growth rate conformed to the 
Monod equation within a certain range of carbon con-
tent in D. salina. The growth rate μ was improved as the 
increase of the carbon content when the carbon concen-
tration was in a lower range. The μ tended to be a stable 
value with the increase of the carbon concentration when 

Fig. 1  Growth rate of D. salina under different culture conditions. A The relationship of temperature and cell-specific growth rate B The relationship 
of light intensity and cell-specific growth rate. C The relationship of nitrogen concentration and cell-specific growth rate. D The relationship of 
carbon concentration and cell-specific growth rate
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the carbon concentration exceeds 50  mM, above which 
a stable of final biomass concentration was obtained, 
and indicated a stable biomass growth rate. Therefore, 
these results suggested that the high biomass growth rate 
obtained with nitrate concentration 500  mg·L−1, car-
bon concentration 50 mM at 28 ℃ and the average light 
intensity 600 μmol· photons·m−2· s−1 (Fig. 1).

Effects of environmental factors on β‑carotene synthesis
The β-carotene accumulation rate at different tempera-
tures is shown in Fig. 2A. We found that the β-carotene 
accumulation rate was negatively correlated with tem-
perature at the range of 10–35 °C, and when the tempera-
ture rises to 30  °C, the β-carotene accumulation begins 
to increase. In the range of 30–40  °C, the β-carotene 
accumulation rate has a positive correlation with temper-
ature. The D. salina has the largest β-carotene accumula-
tion rate at 10  °C, which was 0.095  h−1. The Arrhenius 
equation has been widely used to describe the effects 
of temperature on both bioproduct accumulation. The 
parameters of the Arrhenius model can be obtained by 
model fitting under different range of temperatures.

We found that in the experiments under different light 
intensities, β-carotene content continuously increases 
with the raising average light intensity from 150 to 
600  μmol· photons·m−2· s−1, while its maximum value 
falls within the range of 300–480  μmol· photons·m−2· 
s−1 (Fig.  2B). However, neither of the current obser-
vations were in agreement with the previous studies 
where β-carotene content was found to decrease with 
the increasing light intensity from 150 to 750  μmol· 
photons·m−2· s−1 (Fachet et  al. 2014). As a result, the 
distinct discrepancy between current observations and 
previous conclusions suggested the complex metabolic 
mechanisms of β-carotene synthesis. It also indicated 
that other factors apart from light intensity can signifi-
cantly affect intracellular β-carotene content. In terms of 
the effect of nitrate concentration on β-carotene synthe-
sis, it was known that nitrate is essential for β-carotene 
synthesis, and β-carotene was a primary carotenoid 
which can be accumulated under nitrogen-sufficient 
conditions. The results showed that under the same light 
intensity, β-carotene content in the experiments with 
lower nitrate concentration was higher than that in the 

Fig. 2  β-Carotene accumulation rate of D. salina under different culture conditions. A The relationship of temperature and β-carotene 
accumulation rate. B The relationship of light intensity and β-carotene accumulation rate. C The relationship of nitrogen concentration and 
β-carotene accumulation rate. D The relationship of carbon concentration and β-carotene accumulation rate
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experiments with higher culture nitrate concentration 
(Fig. 2B). This phenomenon was also reported in a recent 
study where a similar photosynthetic pigment lutein was 
synthesized by Desmodesmus sp. under a nitrogen-suffi-
cient condition (del Rio-Chanona et al. 2017).

Therefore, the current observation indicated that 
β-carotene content was higher in a lower nitrate con-
centration condition which could also be explained as 
what has been demonstrated for β-carotene. Under the 
carbon deprivation condition, the relationship between 
β-carotene accumulation and carbon concentration is 
shown in Fig.  2D, and within a certain range of carbon 
concentration, the relationship between the carbon con-
centration and the specific accumulation rate conformed 
to the Monod equation in D. salina. The β-carotene accu-
mulation rate in microalgae increased with the higher 
concentration of the carbon. The μ tended to be a stable 
value with the increase of the carbon concentration when 
the carbon concentration exceeds 200 mM.

For β-carotene production, the results showed that a 
higher light intensity and a denser culture nitrate concen-
tration frequently led to a higher β-carotene production 
as long as nitrate inhibition does not happen, as shown 
in Fig. 2B. Such conflicting conclusion compared to that 
of β-carotene synthesis was reasonable, since β-carotene 
production is the product of both biomass concentration 
and β-carotene intracellular content. Although a high 
nitrate concentration may limit β-carotene accumulation, 
it can significantly facilitate green microalgae biomass 
growth. Consequently, total β-carotene production can 
still be increased through this condition. Nonetheless, it 
should be noted that low β-carotene content can remark-
ably elevate the bioprocess downstream separation cost, 
which may seriously reduce the process profitability. 
Hence, it is essential to guarantee an adequate β-carotene 
content when aiming to maximize total β-carotene 
production.

Results of dynamic model construction
To construct a highly accurate dynamic model which is 
capable of simulating the performance of green microal-
gal β-carotene production, and accomplish further pro-
cess optimization, it is vital to understand the biochemical 
kinetics of the investigated system. Especially for the cur-
rent process, the temperature, light intensity, carbon con-
tent, and culture nitrate concentration should be included 
in the model, since previous studies have declared that 
they are the main factors affecting β-carotene synthe-
sis (Bonnefond et  al. 2016; Lamers et  al. 2012). From 
the “Growth analyses” section and “β-carotene content 
analysis” section, parameters in the kinetic model were 
calculated through single factor experiments, as shown 
in Table 1. We found that the specific biomass decay rate 

was not equal 0, which indicated that they have not neg-
ligible effects on the system. This can be attributed to the 
fact that in all the conducted experiments, biomass con-
centration kept steady until the end of the study, and the 
effect of cell decay should not disguise. The parameters 
were used as the initial value of the parameter for further 
parameter identification. Considering that a single pertur-
bation method may affect the accuracy of the results, to 
reduce the sensitivity of the parameters from the pertur-
bation method, we randomly perturb each parameter Q 
times and draw a box plot of the objective function with 
respect to the perturbation percentage.

In the process of parameter simulation, the distur-
bances time Q = 100, disturbance range ζ = 5%, and the 
optimal parameters value of the system were obtained 
with the aid of the PSO algorithm. The optimized 
parameters resulted in a box plot of the objective func-
tion change under a certain perturbation percent-
age, as shown in Table 2, Figs. 3 and 4, in which Eb, Aw, 
and b obtain the minimum value of the objective func-
tion within the perturbation range of the correspond-
ing parameter ± 5%, and Ea decreases monotonically 
within the perturbation range of the parameter. However, 
within this range, the maximum difference of the objec-
tive function value is 0.016 × 10–3. It was suggested that 
the system is not sensitive to changing the parameters, 
and the system reaches the approximate global optimal 
solution of the objective function at 0 perturbation of the 

Table 1  Parameters based on average light intensity

Parameter Unit Value

Ks μmol· photons·m−2· s−1 379.6

Ea kJ mol−1 0.6684

Eb kJ mol−1 0.6449

Eaw kJ mol−1 5.286

Ebw kJ mol−1 6.069

Ksw μmol· photons·m−2· s−1 580

A 15.09

B 14.9

Aw 0.4355

Bw 0.35

µmax h−1 0.1608

wmax h−1 0.039

Ki μmol· photons·m−2· s−1 1705

Kiw μmol· photons·m−2· s−1 936.5

KN 9.88

KC 0.22

KCW 10.38

KNw 43.37

b 0.03

μd h−1 0.3
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parameters. These results showed that the parameters 
obtained by the above algorithm can fit the experimental 
data well, and the parameters created in this study were 

an approximate global optimal solution of the nonlinear 
dynamic system and have certain robustness.

Validation of dynamic model predictability
To estimate the optimal operating conditions for long-
term bioprocess optimization, besides accurately repre-
senting a known experiment, the model should possess 
great predictive capability when simulating unknown 
processes. For this reason, the predictive capability of the 
constructed model was investigated through two scenar-
ios. In the first scenario, the model was used to predict 
the dynamic performance of a continuous illumination 
batch experiment lasting for 6 day indoors. In the second 
scenario, the model was applied to predict a light/dark 
cycle batch experiment lasting for 6 days under outdoor 
condition. Noticeably, due to the frequent change of light 
intensity, the second system becomes more complex and 
has a higher uncertainty compared to the first scenario. 
Both light intensity and initial nitrate concentration in 
these two experiments are different from those used for 
model construction. The detailed operating conditions of 
these experiments are listed in Table 3.

To identify the predictability of current models for 
β-carotene production process in different D. salina 
strains, four additional experiments were carried out. The 
experiments have the initial biomass concentration of 
0.10 g·L−1, with incident light intensity of 200, 600, 800, 
and 1000 μmol· photons·m−2·s−1 and temperature of 20 
and 25 °C. The model was validated by Algal station sys-
tem with 1.0 L PBR (Additional file 1: Fig. S1), steady tem-
perature, and light intensity within the reactor operating 

Table 2  Optimization of model parameters (optimized by 
MATLAB)

Opt stands for optimization

Parameter Unit Value 
(prior to 
Opt)

Value (after Opt)

Ks μmol· photons·m−2· s−1 379.6 384.9

Ea kJ mol−1 0.6684 1.0026

Eb kJ mol−1 0.6449 0.5572

Eaw kJ mol−1 5.286 7.9290

Ebw kJ mol−1 6.069 3.0345

Ksw μmol· photons·m−2· s−1 580 581.6

A 15.09 22.6350

B 14.9 17.4630

Aw 0.4355 0.6533

Bw 0.35 0.1750

µmax h−1 0.1608 0.20278

wmax h−1 0.039 0.0405

Ki μmol· photons·m−2· s−1 1705 1707

Kiw μmol· photons·m−2· s−1 936.5 937.1

KN 9.88 10.23

KC 0.22 0.26

KCW 10.38 10.5

KNW 43.37 45.98

b 0.03 0.0150

μd h−1 0.3 0.15

Fig. 3  Optimization of model parameters for cell growth in D. salina (optimized by MATLAB). SSE: system squared error. Where A and B are the 
coefficients before the index, Ea is the activation energy for cell growth, Eb is inactivation energy of cell growth, KC is carbon half-velocity constant, 
µmax is maximum cell-specific growth rate, Ks is light saturation value produced by cell growth, Ki is photoinhibition value of cell growth, KN is the 
nitrate half-velocity constant, µd is cell decay rate
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conditions. Despite the added variability, the model was 
able to accurately reproduce the process performance 
with the same calibrated values for all the model param-
eters. The comparison between the current model simu-
lation results and experimental data was examined. It was 
shown that the current models can accurately predict the 
dynamic performance of green microalgal β-carotene 
production process with different operating conditions 
(Figs. 5 and 6). Because the current dynamic model was 
constructed with the aim to predict the optimal operat-
ing conditions in future process design and control, it 
has to be characterized by not only high accuracy but 

also good predictability. Therefore, this model is used to 
simulate the dynamic performance of all the remaining 
four experiments conducted in this study. We found that 
the current model showed great predictability within a 
wide range of operating conditions throughout the entire 
experimental time-course. Among the all the experimen-
tal data points, the majority of deviation between model 
prediction and real experiment was far below 10%, with 
only four exceptions shown in Fig. 5A (11.4%) and Fig. 6C 
(13.8%). Therefore, it was strongly indicated the current 
model showed high predictability and accuracy of the 

Fig. 4  Optimization of model parameters for β-carotene accumulation in D. salina (optimized by MATLAB). SSE: system squared error, where 
Aw and Bw are the coefficients before the index, Eaw is activation energy of β-carotene accumulation, Ebw is inactivation energy for β-carotene 
synthesis, b is no correlation coefficient for the growth of β-carotene production, Ksw is the light saturation value of β-carotene accumulation, μwmax 
is the maximum β-carotene content, KNw is nitrate half-velocity constant for β-carotene synthesis, Iav is average light intensity, Kiw is β-carotene 
accumulation photoinhibition value, and KCw is carbon content half-velocity constant for β-carotene synthesis

Table 3  List of arbitrary cultivation condition parameter value

Cultivation 
conditions

Initial DW
(g·L−1)

Day/night
(h:h)

Temperature
(℃)

Light
(μmol· photons·m−2· 
s−1)

Carbon (mM) Nitrogen 
(mg·L−1)

A 0.1 14:10 20 200 5 50

B 0.1 24:0 25 600 5 500

C 0.1 24:0 20 800 200 50

D 0.1 14:10 25 1000 200 500
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current model, as well as its great competence for further 
process design and optimal control.

Our model was fitted with experimental data that 
accounted for the most significant parameters that affect 
D. salina metabolism, which was intended to promote 
and assist the development of evaluation applications of 
D. salina at industrial level. Moreover, our model could 
also be used as a predictive tool to determine the combi-
nation of environmental and operational parameters that 
promote maximum biomass productivity and bioprod-
uct production in other microalgae. Methods developed 
in this study might be helpful for establishing a model 

to simulate β-carotene production in other microalgae 
species.

Conclusions
In this study, a mathematical model was constructed 
to simulate the growth and β-carotene produc-
tion from D. salina. Sensitivity analysis showed that 
β-carotene synthesis is more sensitive to the operating 
parameters of the system than cell growth. Moreover, 
the accuracy and predictability of kinetic model were 
further verified. Based on the dynamic model, opti-
mal light intensities for cell growth and β-carotene 

Fig. 5  Comparison of model simulation results and real experimental data of biomass in D. salina. A–D were the arbitrary cultivation condition 
parameter values showed in Table 3, and the initial DW was 0.1 g·L−1; Day/Night were 14 h:10 h, 24 h:0 h, 24 h:0 h, and 14 h:10 h; the temperature 
was 20, 25, 20, and 25℃, light intensity were 200, 600, 800, and 1000 μmol· photons·m−2· s−1; the carbon concentrations were 5, 5, 200, and 
200 mM; and the nitrogen concentration was 50, 500, 50, and 500 mg·L−1, respectively. The Lines indicate simulation results, and the points indicate 
experimental measurements. DW, dry weight
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production were proposed. The established model 
has high accuracy and predictive capability, which is 
potentially useful for further application in process 
control and optimization during microalgae cultiva-
tion at industrial level.
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