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Abstract 

The hydrodynamic cavitation comes out as a promising route to lignocellulosic biomass pretreatment releasing huge 
amounts of energy and inducing physical and chemical transformations, which favor lignin–carbohydrate matrix dis-
ruption. The hydrodynamic cavitation process combined with other pretreatment processes has shown an attractive 
alternative with high pretreatment efficiency, low energy consumption, and easy setup for large-scale applications 
compared to conventional pretreatment methods. This present review includes an overview of this promising tech-
nology and a detailed discussion on the process of parameters that affect the phenomena and future perspectives of 
development of this area.
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Introduction
With high population growth rates, the global population 
should reach 9.7 billion by 2050 with estimated energy 
consumption of 851 quadrillion BTU in 2040 (Bhow-
mick et al. 2018). Associated with quick global economic 
development arises with the concern of power supply in 
the next decades and with the increased demand for fuel 
and chemicals. With the strong dependency of the inter-
national power system for fossil fuels and the preoccu-
pation of sources depletion, global climate changes and 
negative impact on the people’s health due these sources 
are clear the necessity of alternative energy resources, 
sustainable with clean and renewable raw materials 
(Mahmood et al. 2019). In this sense, extensive research 
has been done to develop biotechnological routes of low 
environmental impacts that use lignocellulosic biomass 

residual abundantly generated throughout in the agricul-
tural and forestry sectors to bioenergy, biofuel, and bio-
products production (Madison et al. 2017). However, due 
to the complex structure and recalcitrance of lignocellu-
losic biomass, a pretreatment step is required to make its 
use viable.

In this path, hydrodynamic cavitation arises as a prom-
ising technological route to lignocellulosic biomass pre-
treatment (Wu et  al. 2019). Hydrodynamic cavitation 
phenomena occur through mechanical constrictions as 
Venturi pipes, orifice plates, and throttling valve, which 
cause a sufficient pressure change to form vapor micro-
cavities that collapse releasing high energy amount, 
inducing physical and chemical transformations, which 
favor the lignin–carbohydrate matrix disruption (Bimes-
tre et al. 2020). Although the use of hydrodynamic cavita-
tion as a pretreatment of lignocellulosic biomass has been 
studied for some time, the number of published articles is 
relatively small (less than 35) compared to other emerg-
ing pretreatment methods, indicating that HC did not 
attract much attention of researchers (Sun et al. 2021a).
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This review discusses the recent developments over 
hydrodynamic cavitation for the lignocellulosic biomass 
waste pretreatment, beyond the influence parameters of 
these phenomena and perspectives of future develop-
ment on this area.

Lignocellulosic biomass and pretreatment step
Lignocellulosic biomass is grown as an energetic culture 
and does not compete with food cultures (Ji et al. 2020).

The lignocellulosic waste is commonly divided into 
two classes: residues abandoned in the field after the har-
vest and residues detached from industrial procurement. 
Usually, part of the lignocellulosic waste is destined to 
boilers in the power production at agricultural indus-
tries, however, has a large available surplus, which if not 
properly disposed of can bring significant environmental 
problems (Zuin et al. 2018). Thus, lignocellulosic biomass 
conversion provides, besides a renewable energy source, 
offers a reduction of excessive waste accumulation dur-
ing processing. The generation of lignocellulosic waste in 
the world is estimated to be over 13 billion tons per year 
(Arias et  al. 2021), which would be readily available to 
produce a range of higher value-added products as bio-
fuels, power, and chemicals, reinforcing the biorefinery 
concept (Hassan et al. 2018).

The lignocellulosic biomass is composed of cellulose, 
hemicellulose, and lignin in addition to extractives in 
smaller proportions. One of the principal compounds 
of the vegetable biomass cell wall is cellulose, which 
is a linear polysaccharide with repetitive units named 
cellobiose (disaccharide d-glucose) that are joined by 
β − (1 → 4) bonds. Strong intramolecular or intermo-
lecular hydrogen bonds occur through free hydroxyl OH 
groups of cellulose molecules. The intramolecular bond 
occurs between hydroxyl groups of the same molecule, 
giving it a certain stiffness. The intermolecular bond on 
the other hand occurs between hydroxyl groups of adja-
cent chains responsible for fibril formation and ordered 
structures, which are accountable for generating cellulose 
fibers (Sharma et  al. 2019). The cellulose molecules are 
extremely solid and low reactive, with a high degree of 
polymerization and cristanility (polymerization degree of 
500–15,000) having crystalline and amorphous regions; 
so that for cellulose solubilization degradation of fibril 
structures is necessary, breaking intermolecular bonds 
and obtaining glucose as a product (Kleingesinds et  al. 
2018).

Hemicellulose is a random heterogeneous and 
branched polymer, composed of different polysaccha-
rides (poliosis) and includes pentoses (xylose and ara-
binose), hexoses (glucose, galactose, and mannose), 
and uronic acids. The branched nature of hemicellu-
lose allows the formation of strong bonds with cellulose 

(hydrogen bonds) and lignin (covalent bonds) that 
increase the lignocellulosic material stiffness. Further-
more, hemicellulose has different sugar units that are 
linked together, does not form a fibrous arrangement as 
cellulose, and has amorphous regions. The hemicellulose 
has a low polymerization degree (DP 50–200) (Koupaie 
et al. 2019). Different types of hemicellulose can be found 
in nature, which is composed of different polymers, e.g., 
xyloglucans, xylans, and mannanas, of which xylan is 
more abundant. The xylans can be classified in homox-
ylans, arabinoxylans, glucuronoxylan, and arabinose 
glucuronoxylan, the last one is the main component of 
agricultural residue (Banerjee et al. 2019). Lignin is a big 
and complex compound, made of phenylpropane units 
that are bonded in a three-dimensional structure.

The main lignin monomers are the cumarylic alcohol 
(p-Hydroxyphenyl), the coniferyl, and synapse alcohols 
(Renault et al. 2019). Lignin acts as a “glue” that joins cel-
lulose and hemicellulose to form a three-dimensional stiff 
structure cell wall of plants. These features turn lignin 
into the most resistant lignocellulosic biomass compo-
nent to chemical and biological degradation (Zheng et al. 
2014). If the lignin content is high, higher is the degrada-
tion resistance (Li et al. 2018).

Due to the complex structure of lignocellulosic bio-
mass, its use without a pretreatment step results in lower 
sugar yields in biorefineries. Hence the complex lignocel-
lulosic matrix’s highly recalcitrant deconstruction pre-
sents itself as the main challenge to be surpassed through 
the pretreatment step. The pretreatment step aims to 
open the recalcitrant structure of lignocellulosic material, 
providing an easier action of enzymes at a later stage of 
enzymatic hydrolysis, favoring the recovery of monomer 
sugars that are present in the carbohydrate fractions for 
later use in bioprocesses (Luo et  al. 2021; Verdini et  al. 
2021). A successful pretreatment step should promote 
the biomass delignification, modifying and/or remov-
ing hemicellulose, decrease the crystallinity degree of 
cellulose, and increase the surface area and porosity, 
thus increasing the digestibility extension. In addition, 
it should limit the production of inhibitors, reduce pro-
duction costs and the energy demand (Kumari and Singh 
2018; Ponnusamy et al. 2019; Rezania et al. 2020; Zheng 
et al. 2014; Sun et al. 2021a).

The pretreatment of lignocellulosic material can be 
classified as physical, chemical, physical–chemical, bio-
logical, or a combination of these, which will depend 
on the required separation degree and of the proposed 
end (Lee and Park 2020) (Kumar and Sharma 2017). 
Through the physical pretreatment methods can high-
light milling, extrusion, freezing, and microwave irra-
diation. These methods decrease the particle size and 
increase the superficial lignocellulosic material area but 
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are not effective in isolation and are employed combined 
(Kumari and Singh 2018). Among the chemical pretreat-
ment methods can highlight organosolv, ozone, and ionic 
liquids methods. The acid and alkaline methods are the 
most extensively employed due to providing high cellu-
lose and hemicellulose solubilization and lignin removal.

Acid pretreatment methods are performed at low con-
centrations with high temperatures; furthermore, specific 
equipment must work in severe chemical conditions to 
avoid reactor corrosion. Differently, the alkaline pretreat-
ment can be performed with low temperatures with long 
residence time, although have high water consumption 
to wash the pretreated biomass, which is not environ-
mentally friendly (Haldar and Purkait 2021). The physi-
cal–chemical pretreatments are ammonia fiber explosion 
(AFEx), autohydrolysis or steam explosion pretreatment, 
liquid hot water (LWG), wet oxidation (WO), and ultra-
sonication (US) (the US is a physical pretreatment used 
for pretreating lignocellulosic biomass for their conver-
sion to bioproducts but when the US is used with an acid 
or base it can be called a physicochemical pretreatment) 
(Abraham et  al. 2020). The biological methods most 
employed are fungal (Giri and Sharma 2020) microbial, 
and enzymatic (Rai et al. 2019). Detailed information on 
emerging technologies for pretreating of lignocellulosic 
biomass can be found in many reviews such as (Yiin et al. 
2021; Mankar et al. 2021; Kumar et al. 2020; Sarker et al. 
2021).

The generation of hazardous environmental waste and/
or high energetic inputs are the bottleneck of lignocel-
lulosic biomass pretreatment processes and there is an 
urgent need for green technological solutions for this 
challenge (Ong et al. 2021).

Hydrodynamic cavitation
The cavitation phenomena occur when vapor micro-
bubbles are formed in a liquid flow, grow and then col-
lapse due to sudden reductions of local pressure. Based 
on generation modes the cavitation is classified into 
four types: acoustic, hydrodynamic, optic, and particle. 
Meanwhile, only acoustic and hydrodynamic cavitation 
was efficiently considered in physical–chemical change 
production which is desired in pretreatment processes 
(Thanekar and Gogate 2019; Li et al. 2020). The acoustic 
cavitation is obtained by propagating an ultrasonic sig-
nal (20–100 kHz) of high amplitude in a liquid being the 
most frequent way to produce cavitation on a laboratory 
scale (Hilares et al. 2017a).

Hydrodynamic cavitation is more efficient than acous-
tic cavitation in many applications due to its capacity to 
oxide organic substances allied to low-cost operation, 
easy scalability, high power efficiency, and less pollut-
ing with no byproducts formed (Raut-Jadhav et al. 2016; 

Nakashima et al. 2016). Figure 1 shows a hydrodynamic 
cavitation reactor and its components as well as some 
cavitation device options.

It is produced through mechanical constrictions, such 
as Venturi pipes, orifice plates, and throttling valves. The 
cavitation can be explained based on the velocity–pres-
sure fluid relationship in agreement with Bernoulli’s 
equation. When fluid flows through the constriction the 
pressure falls below the liquid–vapor pressure with flow 
temperature, then form vapor cavities, which collapse 
in the downstream region and create highly destructive 
shockwaves with huge pressures, vigorous turbulence, 
and generate strain (Badve et  al. 2013). This collapse is 
sufficiently strong to release large energy amounts in a 
short space (Shrikant and Khambete 2017). The vapor 
cavity implosion can locally generate high temperatures 
of 5000–10,000  K and pressures of 1000–2000  atm, 
which induces physical and chemical transformations, 
producing strong oxidative radicals such as the hydroxyl 
radical (OH-) due to water molecules decomposition 
and organic molecules decomposition/pyrolysis trapped 
inside or nearby vapor cavities contributing to structural 
disintegration and biomass porosity increase (Kim et al. 
2015). Concerning vapor bubbles, dynamic exists two 
main features: the maximum size bubble and its trave-
led distance before the collapse, i.e., its useful life. After 
vapor bubbles form, an expansion process begins due to 
quick liquid vaporization. If during the expansion pro-
cess the vapor bubbles are submitted to a pressure higher 
than vapor pressure, its development is interrupted, the 
interior bubble pressure increases, and vapor condensa-
tion initiate resulting in bubble collapse. As the specific 
vapor volume is greater than the specific liquid volume 
the collapse will create void provoking shockwaves. The 
maximum bubble size defines the cavitation intensity. 
Bubbles grow under low pressure or high temperature, 
and larger bubbles implode with greater intensity and 
can generate more effects on a substance than smaller 
bubbles (Madison et  al. 2017). Hydrodynamic cavita-
tion can also be produced by an object mechanical rotat-
ing through a liquid, occurring in the centrifugal pump 
inlet and hydraulic turbine rotor outlet. Although it is an 
undesired phenomenon in hydraulic machinery areas, 
hydrodynamic cavitation is being applied in water and 
effluent treatment (Abramov et al. 2021; Sun et al. 2021a; 
Wang et  al. 2020), biogas production (Zielinski et  al. 
2019; Saxena et al. 2019; Patil et al. 2016), cell disruption 
(Mevada et al. 2019), biodiesel production (Samani et al. 
2021; Chipurici et al. 2019; Chitsaz et al. 2018), microal-
gae oil extraction (Waghmare et al. 2019; Lee et al. 2019), 
chemical reactors (Dhanke and Wagh 2020) and ligno-
cellulosic biomass pretreatment (Thangavelu et al. 2018; 
Hilares et al. 2019).



Page 4 of 16Bimestre et al. Bioresources and Bioprocessing             (2022) 9:7 

Hydrodynamic cavitation reactors
Hydrodynamic cavitation reactors are divided into two 
categories: non-rotating reactors, such as orifice plates 
or Venturi pipes and rotating reactors, where cavitation 
is generated on a region swept by high-velocity propellers 
(Sun et al. 2018a). Hydrodynamic cavitation reactor can 
also be categorized based upon its operating ways, as a 
pulsating hydrodynamic cavitation reactor (operating the 
reactor in cycles); continuous hydrodynamic cavitation 
reactor, and a shear-induced hydrodynamic cavitation 
reactor (Panda et al. 2020).

Non‑rotational hydrodynamic cavitation reactors (NRHCRs)
The NRHCRs consist of a feed tank, a pump that makes 
circular mixture reactions through the reactor (cavitation 
chamber) as well as control valves, pressure transducers, 
and temperature gauge.

The Venturi pipe is composed of three sequential parts: 
a convergent section (nozzle), a throat, and a divergent 
section (diffusor). It can present circular or polygonal 
cross sections depending on the application and is his-
torically applied to measure and to control the flow rate 
inflows, and recently is being employed in gas purifica-
tion systems (Bal et al. 2019) solid–gas injectors (Jensen 
et  al. 2018), jet hydraulic pumping (Ji et  al. 2015) and 

hydrodynamic cavitation reactors (Simpson and Ranade 
2019).

Orifice plates are simple, robust, relatively easy, and low 
cost to manufacture, instruments compared with ven-
turi pipes. In an orifice plate reactor, the fluid flow follows 
through one or more constrictions in such a way that with 
a flow area decrease occurs a sudden velocity increase leads 
to pressures below liquid vapor pressure resulting in cavita-
tion. When fluid flow passes by the orifice a flow reconfig-
uration occurs, which is named vena contracta. By that of 
Li et al. (2019), the Venturi pipes outperform orifice plates 
in disinfection applications with excellent performance in 
bacterial clusters generating denser cavitation and with 
more vapor bubbles formed. Moreover, Venturi pipes pre-
sent higher flow rates than orifice plates to the same inlet 
energy leading to a greater treatment capacity and ener-
getic efficiency, despite the higher manufacturing cost. 
Besides, in Venturi pipe systems with high solid load can 
be needed the use of special pumps as the diaphragm and 
helicoidal pumps with relatively higher costs than usual 
centrifugal pumps. For Saharan (2016), the pressure recov-
ers smoothly in Venturi pipes due to the divergence angle 
leaving vapor cavities with enough time to grow to maxi-
mum size, increasing collapse intensity and the yield of cav-
itation, which does not occur in orifice plates. In the design 
of hydrodynamic cavitation, reactor is needed to consider 

Fig. 1  Schematic diagram of different HC systems
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some vital parameters in the process and the influence 
comprehension of these parameters in involved physical 
and chemical mechanisms. An important and widely used 
parameter to evaluate and optimize the hydrodynamic 
cavitation reactor performance is a dimensionless quantity 
known as cavitation number given as:

where P2 is the recovered pressure downstream of the 
cavitation device (Pa), Pv is the vapor pressure of the liq-
uid at the operating temperature (Pa), ρ is the density of 
the solution (kg/m3) and U is the velocity at the constric-
tion (m/s). The critical cavitation number corresponds to 
σc = 1 , i.e., the number, where cavitation initiates. Under 
ideal conditions, cavitation occurs when σc < 1 . Mini-
mum cavitation number values result in more bubble 
generation and consequently increase the phenomenon 
intensity (Ijiri et  al. 2018). However, it can be observed 
that the cavitation number does not consider local fluid 
dynamics. Therefore, the cavitation number is not a suit-
able parameter to compare the geometrical efficacy of 
cavitation devices (Dastane et  al. 2019). A parameter 
called Cavitation Efficacy Ratio (CER) can be used to fix 
this problem. The CER is defined as follows:

where Pcollapse is the generated pressure after cavity col-
lapse (Pa), P1 is the inlet pressure (Pa) and P2 is the out-
let pressure (Pa). Essentially, the CER is the maximum 
theoretical efficacy of a cavitation system, where the col-
lapse pressure represents the maximum energy amount 
that can be released by a cavity in a determined flow field, 
and the denominator is the permanent pressure loss (dis-
sipated energy) during the process. The CER values can 
be useful to estimate the physical effects extension of 
cavitation. A cavitation device comparison based on CER 
can be directly applied to select cavitation devices (Das-
tane et al. 2019). The collapse pressure is determined by 
empirical correlation proposed by Gogate and Pandit 
(2001), which is easy-to-use and valid across the entire 
parameters range that commonly are employed in hydro-
dynamic cavitation applications (initial cavity size of 
0.01–0.1 mm, inlet pressure of 1–8 atm, orifice diameter 
of 1–10  mm and holes free area percentage of 1–20%). 
The final developed correlation to hydrodynamic cavita-
tion is given by the following:

(1)σc =
P2 − Pυ

0.5ρU2

(2)CER =
Pcollapse

P1 − P2

(3)
Pcollapse = 7527.(A)−2.55

{

(Pi)
2.46(r0)

−0.8(d0)
2.37

}

where Pcollapse is the bubble collapse pressure (atm), A is 
the holes free area percentage (%), Pi is the inlet pressure 
(atm), r0 is the initial cavities radius (mm) and d0 is the 
cavitation device diameter (mm). The correlation is only 
an indication of collapse pressure magnitude in hydrody-
namic cavitation reactor. Another important parameter 
to consider in hydrodynamic cavitation reactor design 
is the cavitational yield developed by Gogate and Pandit 
(2001) expressed as:

where the constant K  and exponent w rely on reactor 
geometry, operational parameters and reaction type, 
which is being realized.

Despite the wide use of non-rotational reactors in 
numerous applications due to their structural versatility 
and ease of use, their effectiveness was considered unsat-
isfactory as they present considerable pressure losses due 
to severely restricted flow (Šarc et  al. 2018; Tasalagkas 
et al. 2021).

Advanced rotational hydrodynamic cavitation reactors 
(ARHCRs)
The rotational reactors are based on centrifugal pumps, 
which have a modified rotor and a stator added in their 
housing (Kumar and Pandit 1999). In this type of reac-
tor, the cavitation phenomenon is generated by numer-
ous cavitation generation units (CGUs) located on the 
rotor and stator. A geometric structure of the CGUs is 
fundamental for the generation of cavitation as well as 
the effectiveness and economic efficiency. Furthermore, 
the frequency of energy release is significantly higher 
compared to NRHCRs (Sun et al. 2020a). Rotational reac-
tors have exhibited excellent performance compared to 
non-rotational reactors for delignification (Lauberte et al. 
2021), water treatments (Gostiša et  al. 2021), biodiesel 
production (Samani et  al. 2021), and sludge disintegra-
tion (Kim et al. 2020).

Researches investigating ARHCRs by experimental 
flow visualization (Kosel et al. 2019; Petkovšek et al. 2013; 
Šarc et  al. 2018), computational fluid dynamics (Badve 
et al. 2015), and the characteristic experiment (Sun et al. 
2018b, 2020b, 2021b) were presented to understand the 
mechanisms and design criteria of ARHCRs.

The effects of cavitation generation units (CGUs) on 
the performance of ARHCRs must be studied using com-
putational fluid dynamics evaluating the effects of shape, 
diameter, interaction distance, height, and inclination 
angle of a CGU on the amount of cavitation generation 
and energy consumption of a representative ARHCR 
(Sun et al. 2021c).

To further improve the performance and develop 
the design criteria of the ARHCRs, a multi-objective 

(4)Cavitational yield = K .(Pcollapse)
w
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optimization in the ARHCR framework is required. 
Sun et al. (2021d) performed for the first time a multi-
objective optimization combining genetic algorithm 
(GA) and CFD. The chosen objectives were to minimize 
energy consumption and maximize the generation of 
hydrodynamic cavitation (Sun et al. 2021d).

To evaluate the thermal performance of ARHCRs, 
two important parameters are proposed by Sun et  al. 
(2020b): Heat generation rate (HGR) and thermal effi-
ciency (TE). The HGR produced by the ARHCRs is 
defined as the following:

where HGR is heat generation rate in MJ/h, Qout is the 
outlet flow rate, m3/h, Cp is the specific heat of fluid, 
�T = Tout − Tin , in °C, and ρout is the outlet fluid density 
in kg/m3, defined as:

The thermal efficiency (TE) according to Sun et  al. 
(2020b) is defined as:

where Ps is the measured shaft power of the electric 
motor in kW.

The cavitation index, σc , is defined as:

(5)HGR = ρout.Qout.Cp.�T

(6)ρout = 1000− 0.0178x|Tout − 4|1.7

(7)TE =
HGR

3.6xPs

where Pout and Pv are the outlet static and saturated vapor 
pressures in Pa, respectively, Vin is the inlet velocity in 
m/s and Vtangential is the tangential velocity at the side of 
the rotor and can be calculated by:

where d is the rotor diameter in m and ω is the rotational 
speed in rpm.

Hydrodynamic cavitation applied to lignocellulosic 
biomass pretreatment
The effects of hydrodynamic cavitation can enhance the 
pretreatment of lignocellulosic biomass and contribute 
to delignification and subsequent hydrolysis of carbo-
hydrates. Figure  2 illustrates the lignocellulosic biomass 
pretreatment via the hydrodynamic cavitation approach.

A recent literature review of hydrodynamic application 
as lignocellulosic biomass pretreatment is presented in 
Table 1 highlighting the process parameters, reactor type 
and the main results obtained in each study.

The first studies on hydrodynamic cavitation applied 
to lignocellulosic biomass pretreatment date from 2012 
and were conducted by Baxi and Pandit (2012). In this 
study, hydrodynamic cavitation was used for the del-
ignification of wood. The sawdust was treated with 

(8)σc =
Pout − Pv

0.5ρ.
(

Vin + Vtangential

)2

(9)Vtangential =
π .d.ω

6

Fig. 2  Mechanical effect of hydrodynamic cavitation on lignocellulosic biomass pretreatment
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hydrodynamic cavitation (Venturi tube reactor) and 
alkaline sodium hydroxide solution (5%w/w). The rates 
of delignification obtained using hydrodynamic cavita-
tion were about 4–5 orders of magnitude greater than 
those obtained using acoustic cavitation (rate constants 
for delignification were 9.78 × 10–6 and 6.8 × 10–1/min 
for acoustic and hydrodynamic cavitation, respectively).

A hydrodynamic cavitation is a versatile form of pre-
treatment that can be combined with other methods. 
Using the synergistic benefits of combined methods has 
been a new integrated pretreatment approach.

Badve et  al. (2014) use hydrodynamic cavitation for 
intensification of the delignification of wheat straw as 
an essential step in the paper manufacturing process. 
Wheat straw was first treated with potassium hydroxide 
(KOH) for 48 h and subsequently, alkali-treated wheat 
straw was subjected to hydrodynamic cavitation in an 
ARHCR. It has been observed that treatment of alkali-
treated wheat straw in hydrodynamic cavitation reactor 
for 10–15 min increases the tensile index of the synthe-
sized paper sheets to about 50–55%, which is sufficient 
for paper board manufacture.

Kim et  al. (2015) studied hydrodynamic cavitation-
assisted alkali pretreatment of reed. The cavitation 
device employed was an orifice plate with 27 holes of 
a 1 mm diameter. Reactional volume used was 150 mL, 
with an inlet pressure of 500  kPa at a work tempera-
ture of 77  °C. The optimal pretreatment condition was 
determined as 3% NaOH, 11.8% solid load, and reaction 
time of 41.1  min, with lignin removal of 35–42% and 
maximum glucose yield of 326.5  g/kg of biomass after 
72 h of enzymatic hydrolysis. The hydrodynamic cavita-
tion as biomass pretreatment also proved to be benefit 
from an energetic viewpoint with energetic consump-
tion of 3.65  MJ/kg of biomass, a significatively lower 
value compared with ultrasonic cavitation with a con-
sumption of 14.4  MJ/kg of biomass performed under 
similar conditions.

Zielinski et  al. (2019) monitored the small-scale 
agricultural biogas plant for biogas production from 
agricultural residues over a period of 330 days. As the 
feedstock contained lignocellulosic biomass, ultrasonic 
pretreatment, and hydrodynamic cavitation pretreat-
ment were used. The final net energy output of agricul-
tural biogas plant (ABP), ABP-Ultrasonic pretreatment, 
and ABP-Hydrodynamic cavitation pretreatment was, 
respectively, 56, 52, and 61 kWh/day. Also, in previous 
works based only on electricity consumption, hydrody-
namic cavitation pretreatment of lignocellulosic bio-
mass proved to be more competitive than a microwave 
(Wu et al. 2019), ultraviolet (Rajoriya et  al. 2019), and 
electric field (Jung et al. 2014).

The lignocellulosic biomass processing steps require 
operations to be carried out more efficiently from the 
point of view of energy consumption, processing and 
production time, the quality of the material produced, 
and through environmentally friendly processes.

In this sense, Hilares et al. (2016) used hydrodynamic 
cavitation to optimize the sugarcane bagasse alkaline pre-
treatment. Under optimized conditions (0.48  M NaOH, 
4.27% solid loading, and 44.48  min.) reported 52.1% of 
glucan content, 60.4% of lignin removal, and 97.2% enzy-
matic digestibility after 48 h of hydrolysis. Furthermore, 
the enzymatic hydrolysis of pretreated sugarcane bagasse 
presents a yield of 82% higher in relation to the bagasse 
hydrolysis without pretreatment and 30% higher than 
pretreated bagasse with only alkali. These results sug-
gest that biomass digestibility does not depend only on 
changes in the composition of the pretreated biomass but 
has a strong correlation with structural changes that can 
be attributed to increased biomass porosity due to the 
mechanical effects of cavitation, favoring the diffusion 
of enzymes in the substrate (Nakashima et  al. 2016). In 
another study, Hilares et al. (2017a) evaluate the hydro-
dynamic cavitation using the surface response meth-
odology varying parameters as inlet pressure (1–3  bar), 
temperature (40–70 °C), and NaOH concentration (0.1–
0.3 M). Under optimal conditions (3 bar, 70 °C, and 0.3 M 
NaOH) were obtained, respectively, 93.05% and 94.45% 
of hydrolysis cellulose and hemicellulose yield in 30 min 
of pretreatment. The authors also conducted two new 
experiments, to optimize the results, achieving a sig-
nificant reduction in the pretreatment time to 20  min. 
with an alkali (NaOH) load of 0.3 mol/L in the first study 
(Hilares et al. 2017b) and reducing the amount of 0.29 M 
NaOH with the addition of 0.78% v/v H202 in the second 
study (Hilares et  al. 2018), managing to reduce the pre-
treatment time to 10 min.

To reduce the alkali consumption, the black liquor 
obtained after first HC pretreatment can be further 
reused in each additional batch with fresh lignocellulosic 
biomass. Hilares et  al. (2017b) reported that about 80% 
and 70% of cellulose and hemicellulose hydrolysis yields 
were achieved in SCB pretreated with black liquor in 
nine successive repeated batches. This is an important 
result in terms of favoring the economic viability of pre-
treatment of lignocellulosic biomass, reducing solvent 
consumption.

In addition to this approach, the use of biocatalysts 
to remove recalcitrant fractions from lignocellulosic 
biomass can also be combined with hydrodynamic cav-
itation. Thangavelu et al. (2018) combined the hydrody-
namic cavitation using an orifice plate with the enzymatic 
pretreatment for corncob to biofuel production. The 
most significatively parameters of the study were enzyme 
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load (3–10 U g1), solid load (2.5–5%), and reaction time 
(5–60 min). On optimized conditions (6.5 U g1, 5%, and 
60 min) obtained 47.4% of lignin removal, cavitation yield 
of 3.56.10–5  g/J, and energy consumption calculated at 
1.35 MJ/kg.

Considering the potential of hydrodynamic cavitation, 
different operating modes have been studied, such as 
semi-continuous and continuous, both interesting alter-
natives from the operational point of view for biorefin-
eries and other industrial applications. These processes 
save time, energy, and operating costs compared to 
the batch process if we consider that the biomass does 
not recirculate in the reactor, being treated only once, 
ensuring greater productivity (Lee et  al. 2015; Hilares 
et  al. 2019). Some research on continuous pretreatment 
methods with potential large-scale applications has been 
reported by Chen et al. (2013), Choi and Oh (2012), Van-
denbossche et al. (2016), and Han et al. (2013).

Influencing parameters on hydrodynamic 
cavitation intensity to lignocellulosic biomass 
pretreatment
Is essential the identification of vital process parameters 
and the comprehension of the influence of these param-
eters involved in physical and chemical mechanisms 
(Gogate and Patil 2015). The main influence parameters 
in a hydrodynamic cavitation reactor to lignocellulosic 
biomass pretreatment can be classified in three groups:

Reactor structural characteristic (geometry of cavitation 
device)
In cavitation devices with Venturi pipe, a narrower throat 
causes a greater pressure gradient and consequently 
stronger cavitation, resulting in greater pretreatment effi-
cacy compared to a case with a wider throat. Nakashima 
et  al. (2016) assessed the throat diameter Venturi pipe 
influence in corn stover pretreatment. In this study, the 
greater release of glucose of 4  g/L in enzymatic hydrol-
ysis was reached when the 1.4 mm throat diameter was 
employed with a cavitation number of 0.29 compared 
with the case of 1.8 mm throat diameter with cavitation 
number equal to 0.44 and glucose release of 3  g/L. The 
ratio of length and throat diameter (l/d) is a parameter 
that plays an important role in cavities growth control 
and in its final collapse conditions, concluding that the 
increase in l/d ratio slows down the pressure recovery on 
Venturi pipe (Simpson and Ranade 2019). In cavitation 
reactors of the Venturi type, the recovery pressure rate is 
controlled by its divergence angle. This angle should vary 
from 5.5° to 7.5° for a Venturi pipe applied to hydrody-
namic cavitation, where the recovery pressure rate must 
be favorable. High divergence angle values lead to sud-
den expansion and hydraulic losses raise. The expansion 

induces a loss due to the flow separation on walls and a 
secondary turbulent flux in the tube divergent section 
(Ashrafizadeh and Ghassemi 2015).

In orifice plates, the number and diameter of the ori-
fices are fundamental parameters also. An area increase 
of orifices can raise the cavitation number and conse-
quently reduce the expected effects. Hilares et al. (2017a) 
verified the cavitation number reduction using orifice 
plates with 16 holes of 1 mm ( σc = 0.017) besides the high 
efficiency in sugarcane bagasse pretreatment in relation 
to plates with 27 holes of 1 mm ( σc = 0.048).

These results are in accordance with the proposal that 
sugarcane bagasse pretreatment presents high efficiency 
with a low cavitation number. In systems with orifice 
plates, the α and β parameters need to be calculated 
(Sivakumar and Pandit 2002) is given as:

where d0 is the orifice diameter, D is the pipe diameter 
and n is the number of holes in the orifice plate. The β 
value significatively influences the cavitation number. 
Lower values of β result in lower cavitation numbers. 
Already the value of α depends on the number of ori-
fices in the plate and its diameter. Hilares et  al. (2020) 
observed that the reduction sugars released in pre-
treated sugarcane bagasse enzymatic hydrolysis were 
a linear function of geometrical parameters α (directly 
proportional) and β (inversely proportional). Further-
more, smaller orifice diameters allow high-velocity flow, 
high-frequency turbulence, and greater shear area, which 
results in greater collapse pressure, eliminating posterior 
resistance to mass transfer moreover leading to higher 
process efficiency (Ghayal et al. 2013; Chuah et al. 2016).

For ARHCRs the intensity of cavitation depends on the 
rotation speed. Higher rotation speeds lead to a lower 
cavitation number and a consequent increase in cavita-
tion intensity. With higher rotation speeds, turbulence 
intensity increases, thus increasing the intensity of the 
bubble collapse (Kosel et al. 2019; Petkovšek et al. 2015).

Liquid media and biomass features
To reach efficient hydrolysis, the use of synergic ben-
efits of combined methods may be a new integrated 
lignocellulosic biomass pretreatment approach. Chemi-
cal products as sodium hydroxide (NaOH) and lime 
[Ca(OH)2] are being used in combined pretreatment 
of hydrodynamic cavitation of sugarcane bagasse and 
reed (Kim et  al. 2015; Madison et  al. 2017) and sodium 

(10)α =
total perimeter of the holes

total area of opened
=

4

d0

[

mm−1
]

(11)

β =
Sum of the hole area(s)on the orifice plate

cross sectional area of the pipe
= n

(

d0

D

)2
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percarbonate (2Na2CO3 e 3H2O2) in corn stover pre-
treatment (Nakashima et al. 2016). The use of mechani-
cal strengths as hydrodynamic cavitation increases the 
chemical reagents efficiency in pretreatment with excel-
lent effectiveness in lignocellulosic biomass delignifica-
tion, silica removal, partial hemicellulose removal, and 
cellulose swelling, resulting in a substantial increase in 
fiber superficial area, porosity, and cristanility changes 
(Carvalho et al. 2016). The biomass particle size can also 
affect the pretreatment efficiency in hydrodynamic cavi-
tation systems as the heat and mass transfer. A particle 
size reduction increases the exposed biomass superficial 
area, beyond favoring the heat and mass transfer result-
ing in higher total conversions (Khullar et  al. 2013). In 
continuous pretreatment systems, where the powdered 
biomass is mixing with the catalyst forming a biomass 
slurry, which is pumping in a closed loop. In these sys-
tems, the particle size must be observed so that it does 
not occur clogging in the pump and cavitation device. An 
alternative solution to maintaining the biomass isolated 
in the cavitation zone avoiding the solid particle circula-
tion on the orifices (Hilares et al. 2017a).

Technological process features
The liquid temperature is an important parameter, which 
can affect the cavitation efficiency. Vapor fluid pres-
sure depends on temperature and increases exponen-
tially with it. Besides, the solution properties as density, 
viscosity, and surface tension are affected too. That way 
increases the fluid temperature will result in a propor-
tional increase in reaction velocity and cavitation effects. 
However, after reaching very high temperatures (70  °C) 
the effects decrease (Šarc et al. 2018; Hilares et al. 2017a). 
As the effects of temperature on cavitation intensity for 
pretreatment of lignocellulosic biomass are contradic-
tory at high temperatures, a compromise value must be 
obtained by optimization in real applications (Sun et al. 
2021a).

Inlet pressure is an important parameter also because 
the developed vapor cavities depend on it. A pressure 
increase tends to turn vapor bubble collapse more vio-
lent, liberating a high number of radicals OH and reduc-
ing the cavitation number (Gogate and Patil 2015). 
Meanwhile, very high pressures on the inlet can cause 
the supercavitation phenomena which is a vapor cavi-
ties cloud formation whose collapse is significatively 
dampened leading to a decreasing cavitational effectivity. 
In general, inlet pressure values on 3–5  bar range have 
been considered ideal to Venturi pipe and orifice plates 
set up to hydrodynamic cavitation conditions applied to 
lignocellulosic biomass (Sharma et al. 2019; Hilares et al. 
2016).

The duration of pretreatment is also an important 
parameter. Usually, longer durations are better for pro-
cess efficiency. However, long times considerably increase 
the pretreatment costs and possibly generate more 
by-products for example inhibitors such as 5-hydroxy-
methylfurfural, furfural, phenolic acids, and aromatic 
compounds (Zhao et al. 2021; Parawira and Tekere 2011).

As observed are many factors that affect the perfor-
mance and design of cavitation reactors. The optimiza-
tion of these parameters can be done from the design of 
experiments (DOE), which is a statistical approach that 
allows the variation of different parameters at the same 
time. The most used method in the pretreatment of lig-
nocellulosic biomass is the response surface methodol-
ogy (RSM) whose objective is to optimize a response 
influenced by several factors (Nalawade et  al. 2020; 
Bimestre et al. 2020; Hilares et al. 2020).

Due to the flow complexity and necessary measure-
ment instrumentation to make experimental flow charac-
terization, allied to complex geometry and low temporal 
scales the computational fluid dynamics can be an impor-
tant tool in the cavitation reactors design (Abbas-Shi-
roodi et al. 2021).

Hydrodynamic cavitation at industrial level
Adaptation of hydrodynamic cavitation pretreatment to 
industrial level requires a lignocellulosic biomass sus-
tainable conversion with costs minimization and process 
efficiency maximization. Hydrodynamic cavitation-based 
technology appears as a promising biomass pretreatment 
at industrial scales, which may be tailored to continuous 
or semi-continuous operation saving time, energy, and 
operational costs. The fact that hydrodynamic cavita-
tion reactors have a simple setup, and are easily scalable 
if compared to other cavitation reactor options, can be 
installed in any existing production process as a separate 
module without major process modification (Sun et  al. 
2021a; Hirooka et al. 2009). Both combined methods and 
recycled chemical products usage aggregate environmen-
tal and sustainable economics to the process (Verdini 
et al. 2021).

Ramirez-Cadavid et  al. (2014) used cavitation in a 
commercial-scale corn ethanol production process to 
release and hydrolyze unconverted carbohydrate frac-
tions. The results show that cavitation altered the particle 
size distribution led to qualitative changes in cell struc-
ture, increased the total sugars after liquefaction, reduced 
the total solids after liquefaction, and led to significant 
increases in ethanol production and solids conversion 
during SSF. Simple energy and economic analysis showed 
that the energy return of cavitation in the form of etha-
nol is 16 times greater than the energy expended to gen-
erate the cavitation. Furthermore, the value of the extra 
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ethanol produced by cavitation was 38 times more than 
the cost of the electricity used for the cavitation system.

Garuti et  al. (2018) in a full-scale application of a 
hydrodynamic cavitation system in an agricultural biogas 
plant investigated the unique pretreatment without 
recirculation for enhancing the methane potential from 
agricultural biomasses with molasses and cornmeal as 
supplementary energy sources. In 6  months of opera-
tional data showed that pretreatment with hydrodynamic 
cavitation maximized specific methane production 
by about 10%. Furthermore, hydrodynamic cavitation 
affected the viscosity and particle size of digestate, con-
tributing to reduced energy demand for mixing, heating, 
and pumping.

Future perspectives
Hydrodynamic cavitation is an extremely complex phe-
nomenon and, as such, its application in the pretreat-
ment of lignocellulosic biomass has some limitations and 
challenges that should be addressed in future research.

It is essential to identify the vital parameters of the pro-
cess and understand the influence of these parameters 
on the physical and chemical mechanisms involved, as 
well as their combined effects. The optimization of these 
parameters is extremely important for the method’s via-
bility. Transport properties of the reaction mixture, the 
heat and mass transfer of the system, the chemical kinet-
ics of the reaction medium (Badve et al. 2015) in addition 
to the complexity and variability of the proportions of 
chemical structures in biomass that impact its biodegra-
dability require further research and investigations.

The hydrodynamic cavitation-assisted biomass pre-
treatment process has some disadvantages related to the 
use of different chemicals and biomass recovery process. 
Furthermore, it uses large volumes of water to reach the 
required pH of the biomass for use in the subsequent 
steps of enzymatic hydrolysis and fermentation (Prado 
et al. 2021). Due to the strong collapse of cavitation bub-
bles, erosion and vibration problems in reactors can 
affect their durability and performance, requiring further 
investigations in this regard (Sun et al. 2021a).

Future investigations for hydrodynamic cavitation 
should be conducted with hydrogen peroxide (Valim 
et  al. 2017) and ozone (Osório-González et  al. 2020) 
beyond the Fenton reactions (Fenton reaction and Fen-
ton-like reaction) releasing hydroxyl radicals (OH) and 
hydroperoxyl (HO2) oxidizing and degrading the recal-
citrant structures of lignocellulosic biomass making 
easier the access of enzymes to cellulose and enhancing 
the enzymatic hydrolysis (Liu et al. 2020). An important 
aspect to be considered is the development of recov-
ery and reuse strategies for the chemicals used, such as 
the coupling of alkali recovery membranes, as well as to 

valorize lignin–hemicellulose fractions or derivatives 
from the wastewater (Prado et al. 2021).

In addition, CFD computational fluid dynamics can 
be used from the conceptual phase of reactor design, 
helping to determine the best product solution until the 
production stage, allowing to represent of different sce-
narios. The use of advanced experiments such as high-
speed photograph and particle image velocimetry should 
also be encouraged (Sun et al. 2021a).

More accurate studies of economic feasibility analy-
sis with a survey of operating costs, maintenance, and 
investments in equipment are necessary.

Conclusions
This review highlighted the importance and hydrody-
namic cavitation potential as an alternative to conven-
tional methods of lignocellulosic biomass pretreatment. 
The reactor setup has a fundamental importance in the 
process as well as the operational conditions as tempera-
ture, inlet pressure, cavitation number, and particle size 
turning the process economically viable in the biorefinery 
context. Hydrodynamic cavitation has shown an excel-
lent alternative to large-scale processing, friendly ecolog-
ical, energetically efficient, and can be employed together 
with other pretreatment ways. Future investigations 
should concentrate on high-performance reactor design 
with low costs and combined pretreatment methods.
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