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Abstract 

Energy shortage and environmental concern urgently require establishing the feasible bio-refinery process from 
various feedstocks. The methylotrophic yeast Ogataea polymorpha is thermo-tolerant and can utilize various carbon 
sources, such as glucose, xylose and methanol, which makes it a promising host for bio-manufacturing. Here, we 
explored the capacity of O. polymorpha for overproduction of free fatty acids (FFAs) from multiple substrates. The engi-
neered yeast produced 674 mg/L FFA from 20 g/L glucose in shake flask and could sequentially utilize the mixture of 
glucose and xylose. However, the FFA producing strain failed to survive in sole methanol and supplementing co-sub-
strate xylose promoted methanol metabolism. A synergistic utilization of xylose and methanol was observed in the 
FFA producing strain. Finally, a mixture of glucose, xylose and methanol was evaluated for FFA production (1.2 g/L). 
This study showed that O. polymorpha is an ideal host for chemical production from various carbon sources.
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Introduction
Fossil fuel crisis and environmental concern urgently 
require bio-manufacturing from sustainable, clean, and 
cheap feedstocks (Liu et al. 2021; Zhou et al. 2018). Lig-
nocellulosic biomass represents for the most abundant 
and evenly distributed feedstock (Alonso et al. 2017), and 
numerous studies have explored the utilization of bio-
mass derived sugars (glucose or xylose) as the substrate 

for bio-productions (Reshmy et al. 2022; Sun et al. 2021). 
In addition, one carbon resources such as methanol 
can be massively produced from natural gas, coal, bio-
mass, and even CO2, which makes it an ideal feedstock 
for bio-manufacturing and have “carbon zero” footprint 
(Clomburg et al. 2017). In particular, it has been shown 
that methanol contributed to the pretreatment of ligno-
cellulosic biomass (Warner et  al. 2014). Therefore, co-
utilization of mixed substrates, such as glucose, xylose 
and methanol, may be a promising route for production 
of chemicals and biofuels.

Free fatty acids (FFAs) have been widely used for 
production of detergents, lubricants, cosmetics (Tee 
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et  al. 2014) and advanced biofuels (Moore et  al. 2017). 
However, the traditional production of FFAs and its 
derivatives from natural resources and chemical pro-
cess cannot meet the increasing market demand, which 
greatly threatens the biodiversity and ecological environ-
ment (Fillet and Adrio 2016). Alternatively, microbial 
production is considered as a sustainable process and 
has attracted extensive attentions in recent years (Yu 
et  al. 2018). Currently, engineering the central metabo-
lism and fatty acid biosynthetic pathway enabled high-
level production of FFA in various microorganisms, such 
as Escherichia coli (Xu et  al. 2013), Rhodococcus opacus 
(Kim et  al. 2019), Yarrowia lipolytic (Ledesma-Amaro 
et  al. 2016) and Saccharomyces cerevisiae (Zhou et  al. 
2016). However, most studies obtained FFA from glucose, 
and co-utilization of multiple substrates for FFA produc-
tion requires superior microbial chassis.

The methylotrophic yeast Ogataea polymorpha pos-
sesses the capacity to utilize numerous carbon sources 
including glucose, xylose and methanol, and the thermo-
tolerant characteristic also makes it an ideal chassis 
organism to covert methanol and lignocellulosic materi-
als into value-added products. Although this industrial 
yeast has been widely used for production of proteins 
(Cai et al. 2019; Ryabova et al. 2003), there is limited pro-
gress on engineering O. polymorpha for production of 
small molecules.

In this study, we explored to engineer O. polymor-
pha for production of FFA from various carbon sources 
using the established genetic engineering platform (Gao 
et  al. 2021; Yu et  al. 2021). The co-feeding of these car-
bon sources may eventually lay a foundation of O. poly-
morpha for biosynthesis of FFA and its derivatives from 
methanol and lignocellulosic materials.

Materials and methods
Strains and cultivation conditions
All strains used in this study were listed in Table1. O. 
polymopha NCYC 495 leu1.1 was purchased from China 
General Microbiological Culture Collection Center 
(CGMCC). FD07, FD09 were constructed in this study 
via the CRISPR/Cas9 tool, and gRNA plasmids, donor 
DNA, transformation, colony verification, and selec-
tive marker removal were all based on previous meth-
ods (Gao et al., 2021). Delft minimum medium (contains 

2.5  g (NH4)2SO4, 14.4  g KH2PO4, 0.5  g MgSO4•7H2O, 
1  mL Vitamin solution and 2  mL Trace metal solution 
(Verduyn et al. 1992) per liter, pH value 5.6) was used for 
cell cultivation with glucose, xylose or methanol as car-
bon sources. Culturing strain 495–3 needs to add leu-
cine (60 mg/L) in medium. All strains were cultivated in 
100 mL shake flasks with a working volume of 20 mL at 
37 °C, 220 rpm in a shake incubator (Zhichu ZQZY-CS8, 
Shanghai, China). YPD medium (20 g/L glucose, 20 g/L 
peptone and 10 g/L yeast extract) with a working volume 
of 10 mL was used to pre-culture in 50 mL tubes when 
methanol was used as carbon source. The pre-culture 
(centrifugation at 1000 × g for 5  min) was washed with 
Delft medium without any carbon source and was then 
re-suspended before inoculation. The same Delft medium 
(20 g/L glucose and 10 g/L xylose as carbon sources) were 
used in pre-culture with 2 mL in 15 mL tubes. The initial 
OD600 of inoculation in this study was 0.2.

Growth curve measurement
Fermentation samples were taken every 24 h during fer-
mentation, and at the beginning of the fermentation, 
samples were taken every 6 or 12  h when glucose was 
used as the carbon source. In this study, biomass was rep-
resented by optical density at 600 nm (OD600), which can 
be converted by dry cell weight (DCW, g/L) with a coef-
ficient of 0.2. The OD600 of the sample was detected by 
UV spectrophotometer (Macy UV-1100). Each data was 
displayed as mean ± standard deviation of three or four 
independent samples.

FFA quantification
Quantification of FFA was performed by GC (Thermo 
Fisher Trace 1300), equipped with a Zebron ZB-5MS 
GUARDIAN capillary column (30 m* 0.25 mm* 0.25 μm, 
Phenomenex) and FID detector. Extraction and quanti-
fication were performed as previously reported (Zhou 
et al. 2016) with some modifications. The cell culture was 
diluted by 10 times if there were FFA pallets. 100 μL H2O 
was added to 100 μL (diluted) cell culture for dilution and 
then 10 μL 40% tetrabutylammonium hydroxide solution 
and 200 μL methylation reagent (1.245 mL methyl iodide 
and 1  mL pentadecanoic acid were added to 97.75  mL 
dichloromethane) were added. The mixtures were shaken 
for 30  min at 1600  rpm using a vortex mixer, and then 
centrifuged at 2000 × g for 10  min to promote phase 
separation. Dichloromethane layer (about 150 μL) was 
transferred into GC sample bottle and placed in fume 
cupboard until volatilization completed and then 200 
μL hexane was added to resuspend the extracted methyl 
esters. GC program was set as follows: initial temperature 
of 40 °C, hold for 2 min; ramp to 180 °C at a rate of 30 °C/
min; then raised to 200 °C at a rate of 40 °C/min, hold for 

Table 1  Strains used in this study

Strains Genotype

495–3 MATa; leu1.1; (PGAP-hCAS9-TAOX1)

FD07 MATa; leu1.1:: OPLEU2; (PGAP-hCAS9-TAOX1)

FD09 MATa; leu1.1:: OPLEU2; (PGAP-hCAS9-TAOX1); faa1Δ
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1 min; finally raised to 240 °C at a rate of 2 °C/min, hold 
for 10 min. The temperature of inlet and detection were 
kept at 250  °C. The injection volume was 1 μL and the 
flow rate of carrier gas (nitrogen) was set as 1.0 mL/min.

Quantification of sugars and methanol
Glucose, xylose and methanol in medium were deter-
mined by HPLC (Agilent Infinity II) with 1260 RID 
detector (G7162A). In detail, 1.5 mL cell culture was cen-
trifuged at 12 000 × g for 10  min. 700–800 μL superna-
tant was filtered through a 0.2 μm syringe filter, and then 
transferred into HPLC sample bottle. The column was 
eluted with 5 mM H2SO4 at a flow rate of 1 mL/min at 
50 °C for 25 min. The injection volume was 20 μL.

Statistics
Statistical analysis is performed in Office Excel Soft-
ware using two-tailed t test method of variance ANOVA 
hypothesis. Significant differences are marked as 
*p < 0.05, **p < 0.01, and ***p < 0.001. All data are pre-
sented as mean ± s.e.m. The number of biologically inde-
pendent samples for each panel is three or four.

Results
Engineering O. polymorpha for overproducing FFA
The starting strain 495–3 with a copy of integrated 
CAS9 gene possessed the leucine auxotroph for genetic 
manipulation (Gao et  al., 2021). However, this auxo-
troph is inferred to greatly hinder cell growth, which 
may decrease the corresponding FFA production owing 
to the possible relationship with acetyl-CoA metabolism 
(Fig. 1A). Therefore, native gene OpLEU2 was integrated 

in  situ in  strain 495–3, and the obtained strain FD07 
increased the maximum OD600 which was 85% higher 
than 495–3 (Fig. 1B). On this basis, O. polymorpha was 
engineered for overproducing FFA. It has been showed 
that deletion of fatty acyl-CoA synthetase (encoded by 
FAA1 and FAA4) resulted high level production of FFA in 
S. cerevisiae (Scharnewski et al. 2008; Zhou et al. 2016). 
We here thus tried to disrupt fatty acyl-CoA synthetase 
gene FAA1 in 495–3 by the CRISPR/Cas9 system, and 
subsequently OpLEU2 was also supplemented to obtain 
strain FD09. FAA1 deletion resulted 8.8 folds higher FFA 
production (674  mg/L) with no obvious effect on cell 
growth compared with the control strain FD07 (Fig. 1B, 
C), demonstrating that FAA1 encoded the main fatty 
acyl-CoA synthetase in O. polymorpha. Interestingly, 
main five types of FFA were detected in the engineered 
strain, including palmitoleic acid (C16:1), palmitic acid 
(C16:0), linoleic acid (C18:2), oleic acid (C18:1), and 
stearic acid (C18:0) (Fig. 1C).

Co‑feed of glucose and xylose
Lignocellulose is an inexpensive, abundant and sustain-
able feedstock, which mainly contains glucose and xylose 
with an approximate ratio of 2:1 and has been generally 
considered as a promising feedstock for bio-refinery. In 
this case, 20 g/L glucose and 10 g/L xylose were applied 
to simulate lignocellulosic hydrolysates for FFA produc-
tion in engineered O. polymorpha. The prototrophic 
strain FD09 co-utilized glucose and xylose with FFA 
titer of 837  mg/L and final OD600 of 44.7 (Fig.  2). Glu-
cose was quickly consumed within 24 h, and then xylose 
was exhausted in the next 24  h (Fig.  2). These results 
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suggested glucose metabolism brought catabolite repres-
sion on xylose metabolism in O. polymorpha.

Co‑feed of methanol and glucose
Methanol represents a promising low-cost feedstock to 
produce FFA (Duan et al. 2018). In addition, methanol 
can also promote the pretreatment of lignocellulose 
(Warner et al. 2014). Therefore, we evaluate the metha-
nol utilization for FFA production. Firstly, methanol 
volatilization was observed during the fermentation, 

which seriously prevented the high FFA yields. We thus 
tried to prevent methanol volatilization by comparing 
different types of plugs including plastic film, gauze 
film, paper plug and silicone plug (Fig.  3). In regard-
ing of loading cells or without cells, methanol volatil-
ized fastest in shake flask with gauze film, followed by 
that of plastic film and paper plug. Silicone plug had the 
best performance in preventing methanol volatilization 
(Fig. 3A, B). Consistently,  strain 495–3 had the highest 
final OD600 of 7.5 when cultivating in shake flasks with 
silicone plug (containing 10 g/L methanol), which was 
11%, 23%, 92% higher than those of paper plug, plastic 
film and gauze film, respectively (Fig.  3C). Thus, sili-
cone plug was used for shake flask fermentation.

Surprisingly, our engineered FFA producing strain 
(faa1Δ) could not grow in minimum medium contain-
ing methanol as sole carbon source (Fig.  4C), which 
might be attributed to the limited supply of precursor 
xylulose-5-phophaste (Xu5P). We thus tried to sup-
plement co-substrate glucose for promoting methanol 
utilization and FFA production, since glucose metabo-
lism was supposed to increase the supply of Xu5P 
(Fig.  4A). Methanol was slightly used in glucose and 
methanol mixed medium (Fig.  4B), the cell growth 
was slightly retarded compared with that of sole glu-
cose medium (Fig.  4C), which might be attributed to 
the methanol toxicity. Correspondingly, FFA titers 
in mixed substrates were 33% (methanol was initial 
added) and 17% (methanol was added at 24 h) lower in 
mixture of glucose and methanol compared with that 
of glucose medium, respectively (Fig.  4D). These data 
suggested that glucose didn’t significantly promote 
methanol utilization, which might be explained that the 
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gene promoters of methanol metabolism were severely 
repressed by glucose (Zhai et al. 2021).

Co‑feed of methanol and xylose
Methanol utilization pathway requires Xu5P for metha-
nol assimilation (Fig. 5A), suggesting that xylose could 
promote methanol utilization via the enhancement of 
Xu5P supply. Therefore, a mixed xylose and metha-
nol were used as substrates to evaluate the cell growth 
and FFA production of strain FD09. Supplementation 

of 10  g/L xylose (10  M + 10X) significantly enhanced 
methanol utilization and cell growth (Fig.  5B, E). The 
cells cultured in the mixture of xylose and methanol 
(10  M + 10X) had much higher cell biomass (OD600 
21.9 vs 10.1, Fig. 5B) which also had much higher FFA 
titer (480 vs 277 mg/L, Fig. 5C) compared with that of 
10 g/L xylose (10X). These results suggested that there 
was a synergy between xylose and methanol metabo-
lism (Fig.  5A). We observed there was  a longer lag 
phase when cultivating the strain in 10  g/L methanol 
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and xylose compared with sole xylose (Fig. 5B), which 
might be attributed to methanol toxicity. Lower meth-
anol concentration indeed greatly decreased the lag 
phase time compared with that of 10  g/L methanol 
(Fig.  5B) and slightly improved FFA production than 
that of 10 g/L xylose (Fig. 5C). To balance the produc-
tion and methanol toxicity, we applied a two-stage 
strategy with adding 5 g/L methanol to 10 g/L xylose at 
the initial cultivation and adding another 5 g/L metha-
nol after 48  h (5  M + 5  M + 10X). These two stages of 
methanol supplementation greatly reduced the lag 
phase time and had the highest biomass (OD600 25.6) 
and FFA production (725 mg/L) (Fig. 5B, C). The syn-
ergy between methanol and xylose utilization was 
observed within a suitable concentration range (Fig. 5E, 
F), which suggested that xylose could promote metha-
nol assimilation and FFA production in faa1Δ strain. 
When utilizing methanol as co-substrates, the specific 

FFA titer (mg/L/OD) was slightly decreased (Fig.  5D), 
which might be attributed to methanol toxicity.

Co‑feed of glucose, xylose and methanol
Though glucose metabolism brought catabolite repres-
sion in O. polymorpha (Fig.  4), we explored the possi-
ble co-feed of methanol with glucose and xylose, which 
may simultaneously exist in real lignocellulosic hydro-
lysates (Warner et al. 2014). 20 g/L glucose, 10 g/L xylose 
and 10  g/L methanol was mixed for FFA production in 
strain FD09. Compared with co-feed of two specific 
substrates, the co-feed of glucose, xylose and metha-
nol (20G + 10X + 10 M) achieved the highest maximum 
OD600, which was 5% higher (**P < 0.01) than that of glu-
cose and xylose mixture (20G + 10X), 50% higher than 
that of glucose and methanol mixture (20G + 10  M), 
and 81% higher than that of xylose and methanol mix-
ture (10X + 10  M), respectively (Fig.  6A). The FFA pro-
duction of 20G + 10X + 10  M (1.2  g/L) was 9% higher 
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(*P < 0.05) than that of 20G + 10X, and obviously higher 
(105% and 160%, respectively) than those of 20G + 10 M 
and 10X + 10 M (Fig. 6B). After consumption of glucose, 
methanol and xylose could be consumed simultaneously, 
and methanol was completely consumed at 72 h (Fig. 6D, 
E). Similar to results in Fig. 5D, methanol slightly reduced 
specific FFA production (mg/L/OD, Fig.  6C). Interest-
ingly, strain cultivation in 20G + 10X + 10  M medium 
had the highest methanol consumption rate, which indi-
cated that O. polymorpha possessed the greatest potential 
for co-feed of methanol and lignocellulosic hydrolysates.

Discussion
Renewable feedstocks are required to satisfy the increas-
ing demands of bio-refinery and contribute to carbon 
neutrality goal. Lignocellulosic biomass is abundant and 

renewable resources, thus becoming a promising feed-
stock for bio-manufacturing. In addition, methanol, 
which can be produced from coal, natural gas, and even 
CO2, has been considered as a promising feedstock (Shih 
et  al. 2018). Methanol biotransformation by microor-
ganism is a feasible way to utilize one carbon (C1) clean 
energy, which has a broad application prospect (Duan 
et al. 2018).

Though several chemicals were produced from meth-
anol through engineered microbes (Yamada et  al. 2019; 
Miao et al. 2021; Cai et al., 2022), we here observed that 
the engineering O. polymorpha for FFA production failed 
in growing in minimal methanol medium. Co-feeding 
xylose and methanol significantly enhanced methanol 
utilization and also behaved much better in cell growth 
and FFA production than that of sole xylose medium. 
This can be well explained that xylose can stimulate Xu5P 
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cycle for methanol assimilation. Supplementing glu-
cose brought strong repression on utilization of xylose 
and methanol. Alleviating the glucose repression should 
be helpful to enhance co-feed of xylose and methanol 
(Vasylyshyn et  al. 2020). Anyway, we here found that 
methanol stimulated xylose utilization, which should be 
helpful for utilizing lignocellulosic hydrolysates, since 
methanol can enhance biomass pretreatment (Warner 
et  al. 2014). In particularly, the sequential utilization of 
glucose and xylose was also observed in O. polymorpha. 
Enhancing xylose assimilation by engineering native 
xylose utilization pathways, introducing heterogenous 
xylose isomerase (XI) pathway, and alleviating xylose 
uptake, may be appropriate options to relieve glucose 
repression.

We here showed that disruption of fatty acyl-CoA 
synthase gene FAA1 in O. polymorpha resulted in high-
level production of FFA, which was higher than that of 
model microbial chassis cells (E. coli and S. cerevisiae) 
(Chen et  al. 2020; Dai et  al. 2017). This result showed 
great potential of O. polymorpha as a chassis cell for 
production of high-value chemicals. Currently, methy-
lotrophic yeasts are mainly used for protein production 
(Ravin et al. 2013), which may be the limitation of avail-
able tools and genetic information (Gao and Zhou 2020). 
The development of genetic engineering platform and 
systems biology should pave the road for engineering  
O. polymorpha for overproducing a variety of chemicals 
other than fatty acids.

Conclusions
In this study, the strain with FFA overproduction was 
obtained after deletion of fatty acyl-CoA synthetase gene 
FAA1. The engineered strain realized the co-feed of glu-
cose, xylose and methanol, which lay a foundation for 
co-feeding of methanol and lignocellulosic hydrolysates 
to produce FFA and other high-value chemicals in O. 
polymorpha.
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