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Abstract 

Ansamitocin P-3 (AP-3) produced by Actinosynnema pretiosum is a potent antitumor agent. However, lack of efficient 
genome editing tools greatly hinders the AP-3 overproduction in A. pretiosum. To solve this problem, a tailor-made 
pCRISPR–Cas9apre system was developed from pCRISPR–Cas9 for increasing the accessibility of A. pretiosum to 
genetic engineering, by optimizing cas9 for the host codon preference and replacing pSG5 with pIJ101 replicon. 
Using pCRISPR–Cas9apre, five large-size gene clusters for putative competition pathway were individually deleted 
with homology-directed repair (HDR) and their effects on AP-3 yield were investigated. Especially, inactivation of 
T1PKS-15 increased AP-3 production by 27%, which was most likely due to the improved intracellular triacylglycerol 
(TAG) pool for essential precursor supply of AP-3 biosynthesis. To enhance a “glycolate” extender unit, two combined 
bidirectional promoters (BDPs) ermEp-kasOp and j23119p-kasOp were knocked into asm12-asm13 spacer in the center 
region of gene cluster, respectively, by pCRISPR–Cas9apre. It is shown that in the two engineered strains BDP-ek and 
BDP-jk, the gene transcription levels of asm13-17 were significantly upregulated to improve the methoxymalonyl-acyl 
carrier protein (MM-ACP) biosynthetic pathway and part of the post-PKS pathway. The AP-3 yields of BDP-ek and BDP-
jk were finally increased by 30% and 50% compared to the parent strain L40. Both CRISPR–Cas9-mediated engineer-
ing strategies employed in this study contributed to the availability of AP-3 PKS extender units and paved the way for 
further metabolic engineering of ansamitocin overproduction.
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Introduction
Actinobacteria, including numerous genera, are capable 
of producing a wide variety of secondary metabolites with 
diverse bioactivities for multiple pharmaceutical applica-
tions (Bérdy 2005, 2012; Hwang et al. 2014). These valu-
able producers are widely utilized in academic research 
and industrial production (Newman and Cragg 2016; 
Genilloud 2017). For excellent performance in produc-
tion, rational modification methods have been developed 
to provide a basis for metabolically engineering strate-
gies (Wriessnegger and Pichler 2013; Kim et  al. 2016). 
For instance, multiplex site-specific genome engineer-
ing (MSGE), based on the “one integrase-multiple attB 
sites” concept, provides a method to replace redundant 
gene clusters by multi-copy biosynthetic gene clusters 
of the target product (Li et  al. 2017). Generally speak-
ing, genetic manipulation of Actinobacteria heavily relies 
on accessible, simple, and efficient genetic tools. In the 
last decade, CRISPR/Cas technologies have emerged as 
a powerful tool for genome editing in mammalian cells, 
plants, and microorganisms (Alberti and Corre 2019). 
With high efficiency, single-gene disruptions and mul-
tiplex chromosomal deletions can be achieved in model 
and non-model Streptomyces species (Zeng et  al. 2015; 
Huang et al. 2015; Cobb et al. 2015; Jia et al. 2017; Tong 

et al. 2015). However, it still requires the systematic opti-
mization of each component in CRISPR–Cas9 system for 
efficiently engineering some non-model microorganisms, 
such as Actinosynnema spp.

Actinosynnema spp. with a truly high guanine-cyto-
sine (GC) content (73.9%) is well known for producing 
ansamitocin, as well as a variety of secondary metabolites 
such as actinosynneptide and dnacin (Martin et al. 2014; 
Wang et al. 2019a; Zhong et al. 2019; Kashyap et al. 2019; 
Hu et al. 2020). Actinosynnema genome editing relies on 
the homologous recombination either via single or dou-
ble-crossover events, hence its genetic modification is 
time- and labor-intensive (Yu et al. 2002; Fan et al. 2016b; 
Ning et al. 2017; Wang et al. 2020b). Therefore, develop-
ing a tailor-made gene editing tool for Actinosynnema 
spp. is urgent for rapid strain modification by editing 
multiple genes or large gene fragments in Actinosynnema 
genomes.

The ansamitocin biosynthesis gene cluster was identi-
fied, and the biosynthesis mechanism for this antitumor 
agent was proposed (Fig.  1) (Yu et  al. 2002). As a typi-
cal type-I PKSs, there are four large ORFs (asmA–D) in 
the gene cluster, which involve in seven condensation 
steps for biosynthesis of proansamitocin using three 
malonyl-CoAs (M-CoAs), three methylmalonyl-CoAs 
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(MM-CoAs), and one methoxymalonyl-acyl carrier pro-
tein (MM-ACP), with 3-amino-5-hydroxybenzoic acid 
(AHBA) as the starter unit (Kang et  al. 2012). The final 
product, ansamitocin, is then obtained after six tailoring 
steps (Moss et  al. 2002; Spiteller et  al. 2003; Zhao et  al. 
2008). M-CoA, the most common extender unit (load-
ing element of polyketide skeleton) (Chan et al. 2009), is 
predominantly produced by carboxylation of acetyl-CoA, 
but also by activation of malonate with M-CoA synthase 

(Staunton and Weissman 2001; Tong 2005; Milke and 
Marienhagen 2020). MM-CoA is mainly derived from 
reversible isomerization of succinyl-CoA and carboxyla-
tion of propionyl-CoA originating from cholesterol and 
fatty acids degradation (Reeves et  al. 2006). Asm13-17 
converts 1,3-bisphosphoglycerate (1,3-BPG) to MM-
ACP, a substrate for the formation of an unusual gly-
colate unit in AP-3 biosynthesis (Wenzel et  al. 2006). It 
indicates that the supply of unusual glycolate unit may 

Fig. 1  The general pathway map of AP-3 biosynthesis. Ru5p ribose 5-phosphate; 6PGA 6-phosphogluconic acid; G6P glucose-6-phosphate; 
G1P glucose 1-phosphate; UDPG uridine diphosphate glucose; F6P fructose-6-phosphate; G3P glyceraldehyde 3-phosphate; 1,3-BPG 
1,3-bisphosphoglycerate; MM-ACP methoxymalonyl-ACP; AHBA 3-amino-5-hydroxybenzoic acid; PND-3 N-demethylansamitocin P-3; ACGP-3 
4″-O-carbamoylansamitocinoside P-3; AGP-3 ansamitocinoside P-3
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contribute significantly to the increase of AP-3 biosyn-
thesis (Du et al. 2017; Du and Zhong 2018).

The biosynthesis of secondary metabolites can be hin-
dered by a particular extender unit shortage (Ding et al. 
2015). In the past, there has been considerable interest 
in increasing the supply of extender units to improve 
polyketide yields (Reeves et al. 2006; Zabala et al. 2013). 
Two strategies have been typically used to increase the 
intracellular CoA-ester levels and concentration of pol-
yketides. One is to overexpress the biosynthetic genes 
for specific extender units. For example, this approach 
effectively increased the production of actinorhodin, 
FK506, epothilone B, and AP-3 by 6-, 2-, 2.5-, and 3-fold, 
respectively (Stassi et al. 1998; Ryu et al. 2006; Mo et al. 
2009; Zabala et al. 2013; Zhao et al. 2017). The other is to 
delete the putative competing gene clusters for releasing 
more polyketide extender units. Different studies dem-
onstrated that it is possible to elevate the yields of pol-
yketides by replacing genes for the biosynthesis of starter 
unit (Xiong et al. 2006) or by interrupting the conflicting 
secondary metabolite pathways (Lu et al. 2016).

Our previous studies have shown that enhancing the 
glucose-1-phosphate and UDP-glucose pools, as well as 
redirecting the flux from pentose phosphate (PP) path-
way to AHBA biosynthesis, could partly increase the 
AP-3 production (Fan et  al. 2016a, 2016b). We hypoth-
esize that alternative gene targets for metabolic engineer-
ing modification favoring AP-3 overproduction might be 
involved in the secondary metabolism of A. pretiosum. 
Since then, the genome of ansamitocin producer A. pre-
tiosum ATCC 31565 was fully sequenced, shedding lights 
on astounding productivity of ansamitocin P-3. Herein, 
we described the development of a CRISPR/Cas9-based 
genome editing tool in A. pretiosum. With this power-
ful tool, tandem deletion of competing gene clusters and 
site-specific insertion of bidirectional promoters (BDPs) 
successfully led to the overproduction of ansamitocin P-3 
by promoting the CoA-esters accumulation and methox-
ymalonyl-ACP biosynthesis.

Results
Enabling efficient function of Cas9‑sgRNA complex in A. 
pretiosum
To harness the CRISPR/Cas system for genome edit-
ing in Actinosynnema spp., the pCRISPR–Cas9apre was 
designed. The temperature-sensitive plasmid pCRISPR–
Cas9 (GenBank ID: KR011749), which drives Cas9 pro-
tein expression in an inducible form, was chosen as the 
backbone. Given the codon usage and promoter effi-
ciency of Actinosynnema spp., a codon-optimized cas9 
was under controlled by an inducible promoter tipAp*.

To examine the activity of Cas9-sgRNA in  vivo, we 
chose to inactivate a post-PKS modification gene asm25 

that encodes an N-glycosyltransferase responsible for the 
N-glycosylation of N-demethylansamitocins (PNDs). The 
N-glycosyltransferase also competes for the N-demethyl-
AP-3 (PND-3) with AP-3 biosynthesis (Additional file 1: 
Fig. S1) (Zhao et al. 2008; Ning et al. 2017). The sgRNA 
was identified with ApE software (http://​ape-a-​plasm​id-​
editor.​wikis​paces.​com) by analyzing the entire open read-
ing frame of asm25. As negative controls, empty vector 
pCRISPR–Cas9 and pCRISPR–Cas9Δasm25 (contain-
ing the 20 nt target sequence of sgRNA and template for 
HDR) were, respectively, transformed into the high-yield 
strain L40. pCRISPR–Cas9apΔasm25 (containing the 
codon-optimized cas9, the target sgRNA and template 
for HDR) was transformed into the same parent strain 
for gene inactivation. Unfortunately, few conjugants were 
obtained whether or not the cas9 sequence was opti-
mized. By inducing Cas9 expression, nearly one-third 
of the colonies remained when templates of homolo-
gous recombination were present. Recent study shows 
that random gene recombination of PKS gene occurs as 
adopting temperature-sensitive replication-dependent 
vectors (with pSG5 replicon) in PKS gene knock-out 
experiments (Wlodek et  al. 2017). Additionally, it was 
assumed that the pSG5 replicon might limit the accuracy 
of gene editing (Mo et  al. 2019). Hence, we employed 
the structurally stable but genetically unstable replicon 
of pIJ101 to replace the temperature-sensitive replicon, 
and obtained the pCRISPR–Cas9apre. The number of 
pCRISPR–Cas9apreΔasm25-sgRNA (containing the 
same sgRNA and template for HDR) (Additional file  1: 
Fig. S2) conjugants increased by 60% compared to that of 
pCRISPR–Cas9apΔasm25 (Fig. 2). More conjugants were 
collected with the presence of HDR, suggesting that the 
incomplete Non-Homologous End Joining (NHEJ) path-
way in Actinosynnema spp. failed to repair the DNA dou-
ble strand breaks (DSBs) (Additional file 1: Fig. S3).

Subsequently, the positive colonies were confirmed 
by sequencing (Fig.  3A). A ΦC31 attB site was inserted 
in asm25 locus. The AP-3 production was increased 
to 329.2 ± 30.5  mg/L in asm25-mutant MD01 (Fig.  3B) 
owing to the interruption of competition utilization of 
PND-3. Plasmids in mutants were lost by three rounds 
(24  h per round) of liquid subculturing nonselectively 
(Fig.  3C). Thus, an iterative protocol was developed for 
multiple gene editing by pCRISPR–Cas9apre system 
(Fig.  4). Editing efficiency of pCRISPR–Cas9apre varied 
from 30 to 100% according to the N20 sequence sgRNAs 
(Additional file 1: Table S1).

Genomic insights into A. pretiosum ATCC 31565
A circular chromosome size of 8,125,960  bp in ATCC 
31565 contains 7312 CDS with an average CDS length 
of approximately 986  bp and a coding density of 88.7%. 

http://ape-a-plasmid-editor.wikispaces.com
http://ape-a-plasmid-editor.wikispaces.com
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The G + C content of ATCC 31565 is 73.9% (Fig. 5). For 
mining comprehensive genetic information, two analy-
ses were performed. The first was to construct central 
carbon metabolic network based on gene function pre-
diction. ATCC 31565 has a complete primary metabolic 
pathway (glycolysis, tricarboxylic acid cycle, and pentose 
phosphate pathway). The number of relevant functional 
genes and their copies in the primary metabolic path-
ways associated with building precursors of ansamitocin 
are depicted in Additional file 1: Fig. S4. Compared with 
the model strain (such as streptomycetes), ATCC 31565 
exhibits a relatively weak primary metabolism activity 
due to the low percentage of primary metabolism genes 
in its genome. Given that primary metabolism provides 
the precursors for secondary metabolism, improv-
ing the primary metabolism may facilitate synthesis of 

ansamitocin in ATCC 31565. The other analysis was to 
predict putative gene clusters (Additional file 1: Table S2). 
Twenty-seven putative gene clusters were identified by 
anti-SMASH, which again confirmed that Actinobacteria 
possesses the ability to produce a rich source of second-
ary metabolites. Region 9 was identified as ansamitocin 
biosynthetic gene cluster. Region 5 showed high homol-
ogy with the reported polyene macrolide biosynthetic 
gene cluster plm (Wang et al. 2019a). Moreover, ansami-
tocin polyketide chain extension would require M-CoA 
and MM-CoA. Eight type I PKS gene clusters utilizing 
these acyl-CoA esters were counted based on sequence 
homology in the acyltransferase (AT) domain (Additional 
file  1: Table  S3, gene cluster renamed according to the 
type).

Fig. 2  Conjugation transfer efficiency of optimized CRISPR–Cas9 plasmids. Data are means ± SD (standard deviation) from three independent 
conjugations. The total colonies were counted directly. Significant differences were analyzed by two-way ANOVA, and *p < 0.05, ***p < 0.0005
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Transcription analysis and individual deletion 
of competing gene clusters
Although the mutant strains derived from atmospheric 
and room temperature plasma (ARTP) mutagenesis are 

homologous to the parental generation, there may be 
differences in their secondary metabolic distribution. 
The eight gene clusters were further determined by 
gene amplification in the genome of strain L40. RNA 

Fig. 3  CRISPR–Cas9 system mediated asm25 gene inactivation in A. pretiosum. A Sanger sequencing chromatograms for mutant MD01, the ΦC31 
attB replaced asm25 gene sequence showing in grey. B Comparison of AP-3 production of mutant MD01 and parent strain L40. MD01, mutant with 
asm25 deletion. A roughly 14.5% increase in AP-3 production for MD01 compared to that of strain L40. C Marker-free mutant screening. Colonies 
were inoculated into YMG plate with thiostrepton and without antibiotics, respectively, to verify the curing of plasmid
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samples of L40 mycelia were taken on day 3 of cultiva-
tion and used to quantify transcript levels of the eight 
gene clusters by RT-qPCR. The transcription levels 

of T1PKS/NRPS-5, T1PKS-15, T1PKS-16, T1PKS-18, 
and NRPS-25 were significantly higher than that of 
ansamitocin biosynthetic gene cluster (Fig. 6).

Fig. 4  Scheme of iterative genome editing in A. pretiosum 

Fig. 5  Complete genome of A. pretiosum subsp. auranticum ATCC 31565. The seven circles (from outside in) represent the genome region of ATCC 
31565, CDSs on the forward strand, CDSs on the reverse strand, locations of predictive secondary metabolite clusters, distribution of rRNA, sRNA and 
tRNA operon, GC content and GC skew of CDSs
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Therefore, these five gene clusters were deleted with 
pCRISPR–Cas9apre system individually in strain L40, 
generating the mutants MD02 (T1PKS-15 deletion), 
MD03 (T1PKS-16 deletion), MD04 (T1PKS-18 deletion), 
MD05 (T1PKS/NRPS-5 deletion) or MD06 (NRPS-25 
deletion). To improve the genetic manipulability, artificial 
gene integration sites were simultaneously inserted into 
mutants MD02, MD03, MD04 and MD06 by template, 
respectively (Additional file  1: Fig. S5). Using a strategy 
such as MSGE, the mutant will be endowed with a multi-
copy gene integration function (Li et al. 2017, 2019). AP-3 
production of all mutant strains was tested on day 8 of 
fermentation. Surprisingly, only the mutant MD02 with 
the disruption of T1PKS-15 showed significant increase 
in AP-3 production, i.e., approximately 365  mg/L AP-3 
and 27% higher than that of parent strain L40 (no sig-
nificant difference was observed in dry cell weight, Fig. 7 
and Additional file  1: Fig. S6). Unexpectedly, the AP-3 
production of mutant strains missing the T1PKS-18 or 
T1PKS/NRPS-5 gene cluster reduced rapidly compared 
to the original strain. In particular, the loss of the T1PKS-
18 gene cluster led to a dramatic two-thirds reduction in 
AP-3 yield of mutant MD04 (Fig. 7). The significant dif-
ferences in AP-3 yields of the mutant strains implied that 
the synthetic precursors of AP-3 may also show drastic 
intracellular variations in these mutants.

Analysis of intracellular TAG and M‑CoA in PKS‑disrupted 
mutants
Acetyl-CoA and M-CoA are important components of 
TAGs synthesis and accumulation in primary metabo-
lism (Alvarez and Steinbüchel 2002; Arabolaza et  al. 
2008; Gomma et al. 2015). During the stationary growth 
phase, the carbon flux is usually channeled into pol-
yketide biosynthesis in Actinobacteria while TAGs are 
generally degraded (Wang et  al. 2020a). Therefore, the 
detection of intracellular TAG content in mutant strains 
may well represent a profile of its precursor supply. 
The intracellular TAG content of the parent strain L40 
decreased by 20% from the second day to the third day 
of fermentation (Fig.  8A), and the degradation of TAGs 
may effectively promote the ansamitocin biosynthesis 
during this stage. The amounts of TAG accumulation on 
the second day and TAG degradation from day 2 to day 3 
in MD02 mutant were more significant than those of the 
parent strain L40 and other mutants (MD04 and MD15) 
(Fig. 8A), which may contribute to the formation of abun-
dant CoA-ester extender units to improve the AP-3 bio-
synthesis of MD02 mutant. The significantly increased 
intracellular M-CoA content of MD02 mutant on the 

Fig. 6  Transcription analysis of the secondary metabolic synthesis 
gene cluster in strain L40. Transcription analysis of the putative gene 
PKS clusters in strain L40. The 2−ΔΔCt method was used to calculate 
the expression level, the average expression value of asmC is set 
to 1 as the standard. Fermentation experiments were performed 
three times. The values are means ± SD (standard deviation) of three 
independent experiments. Significant differences were analyzed by 
one-way ANOVA, and **p < 0.01, ****p < 0.0001

Fig. 7  AP-3 production of mutants at the end of fermentation. L40, 
the parent strain. MD02, mutant with T1PKS-15 deletion. MD03, 
mutant with T1PKS-16 deletion. MD04, mutant with T1PKS-18 
deletion. MD05, mutant with T1PKS/NRPS-5 deletion. MD06, mutant 
with NRPS-25 deletion, as the negative control. The fermentation 
experiments were performed for three times. The values are 
means ± SD (standard deviations) of three independent experiments. 
Significant differences were analyzed by one-way ANOVA, and 
**p < 0.01, ***p < 0.001, ****p < 0.0001
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third day of fermentation also partially confirmed the 
above hypothesis (Fig. 8B). Although MM-CoA is known 
to be another important PKS extender unit, we observed 
varying degrees of decrease in MM-CoA content in the 
parent strain and all mutants from day 2 to day 3 of fer-
mentation (data not shown). This may be related to the 
fact that there were already sufficient MM-CoA pools in 
all strains during this metabolically active phase, as also 
mentioned elsewhere (Du et  al. 2017; Du and Zhong 
2018).

Activating the MM‑ACP pathway with bidirectional 
promoters
Genes asm13-17 are located at the center of the ansami-
tocin biosynthesis gene cluster. We conducted gene 

co-transcription analysis using RT-PCR on the gene 
cluster. The asm13, asm14, asm15 and asm16 genes all 
belong to a transcriptional unit that does not contain 
asm17. In the opposite direction, asm12 belongs to an 
operon consisting of three genes (Fig.  9). Asm12 intro-
duces chloride onto proansamitocin as the start of post-
PKS modifications. Asm11 and Asm10 catalyze the last 
two steps to yield AP-3 finally. Given such distribution, 
the spacer of asm12 and asm13 was selected as the tar-
get. Two combined BDPs were designed using the com-
monly used constitutive promoters kasOp*, ermEp* and 
j23119p*: ermEp-kasOp, j23119p-kasOp. Among them, 
kasOp* and ermEp* are stronger than any native pro-
moters in A. pretiosum. Such bidirectional promoters 
have been used to activate target gene clusters in both 

Fig. 8  Analysis of intracellular TAG and M-CoA in PKS-disrupted mutants. A Relative levels of intracellular TAG pool of strain MD02, MD04, MD15 on 
day 2 and day 3 of fermentation. Data were normalized based on the TAG pool of strain L40 at day 2 of fermentation. The values are means ± SD of 
three independent experiments. Significant differences were analyzed by two-way ANOVA, and ****p < 0.0001. B Concentrations of the intracellular 
M-CoA in gene cluster-disrupted mutants. The values are means ± SD of three independent experiments. L40 the parent strain. MD02 mutant with 
T1PKS-15 deletion. MD04 mutant with T1PKS-18 deletion. MD15 mutant with T1PKS-15 and T1PKS/NRPS-5 deletion

Fig. 9  Transcript assay of AP-3 biosynthetic gene cluster (A) and transcription unit distribution (B). A RNA sample was isolated from day 3 culture 
of strain L40. RT-PCR fragments were shown. (asm11-12, 374 bp; asm14-15, 341 bp; asm15-16, 513 bp; asm16-17, 435 bp; asm8-C, 362 bp; asm2-3-4, 
854 bp; asm4-5, 566 bp; asmC-D, 589 bp; asmD-9, 348 bp; asmA-B, 482 bp; asm18-19, 402 bp; asm34-35, 617 bp). B Horizontal black arrows show the 
transcription unit confirmed by RT-PCR. ‘x’, no mRNA connecting the genes. asm11 shares 4 bp with asm10, asm13 shares 4 bp with asm14 
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Streptomyces and Saccharopolyspora species (Zhang et al. 
2017; Liu et  al. 2019). Two sgRNAs were designed for 
asm12-asm13 spacer target sequences (Additional file 1: 
Fig. S7A). The plasmids were constructed according to 
the previous procedure (Additional file  1: Figs. S7B and 
C). Positive colonies were screened by PCR and verified 
by sequencing (Additional file 1: Fig. S8) to obtain bidi-
rectional promoter knock-in mutants named BDP-ek and 
BDP-jk.

In both recombinant strains, genes expressions were 
determined by RT-qPCR analysis. As expected, transcrip-
tion units in both directions were significantly up-regu-
lated. Interestingly, the transcription level of the asm17 
gene was also remarkably increased by 3- to 5-fold in 
both BDP-ek and BDP-jk compared with original strain 
L40. We also observed that the transcription elevation of 
the asm14 gene was much less than its preceding gene 
asm13, indicating that the asm14 gene may be a further 
modification target for MM-ACP supply. Additionally, 
asm13 gene transcription was most significantly up-reg-
ulated in strain BDP-ek. While for strain BDP-jk, asm15 
behaved the most significant increase in transcriptional 
level (Fig. 10A and B).

The AP-3 productions of the original strain L40 and 
two mutant strains with the engineered bidirectional 
promoters were examined. An increase of 30% and 50% 

was obtained in mutant BDP-ek and BDP-jk, respectively. 
The ansamitocin yields of the mutants BDP-ek and BDP-
jk increased by about 30% and 50%, respectively, largely 
due to the enhanced fluxes of the MM-ACP biosynthetic 
pathway and part of the post-PKS pathway (Fig.  10C). 
Although overexpression of asm13-17 is able to enhance 
the MM-ACP synthesis pathway (Du et al. 2017; Du and 
Zhong 2018), we found that significant up-regulation of 
asm15 in strain BDP-jk appeared to be more favorable 
for AP-3 production than significant up-regulation of 
asm13 in strain BDP-ek.

Discussion
In this study, we described an approach to develop a 
CRISPR/Cas9-based genome editing tool for non-model 
actinomycetes A. pretiosum. We have demonstrated its 
efficiency and rapidity in the development of two meta-
bolic engineering strategies. The supply of precursors for 
AP-3 biosynthesis was significantly promoted by compet-
itive cluster deletion and BDP insertion.

A prerequisite for the current use of the CRISPR–Cas9 
system is the genetic tractability of the Actinosynnema 
species. Other critical issues that should be considered for 
CRISPR/Cas9 systems are (i) toxicity of Cas9 in the par-
ticular strain used, as reported attempts to use pCRISPo-
myces-2 in Streptomyces sp. KY 40-1 (Salem et al. 2017) 

Fig. 10  Transcription levels of AP-3 biosynthetic genes (A, B) and AP-3 production of strain L40 and bidirectional promoter knock-in mutant strains 
(C). A, B Transcription pattern of the genes (asm10, 11, 12, 13, 14, 15, 16, 17) in bidirectional promoter knock-in mutant strains and L40 at day 3 during 
fermentation process. C Fermentation performance of control strain L40 and bidirectional promoters knock-in strains. Fermentation experiments 
were performed for three times. The values are means ± SD of three independent experiments. Significant differences were analyzed by one-way 
ANOVA, and *p < 0.05, **p < 0.005
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and (ii) poor expression of the cas9 gene (Alberti and 
Corre 2019; Tong et al. 2019). Furthermore, significantly 
reduced conjugation efficiency was observed when this 
genetic modification system was introduced into Strep-
tomyces with constitutively expressed Cas9 (Zeng et  al. 
2015; Wang et al. 2019b; Ye et al. 2020), thus leading to 
the failure of genome editing. Nevertheless, controlling 
Cas9 expression with weak promoters at the transcrip-
tional level or a repressive riboswitch at the translational 
level could be an alternative way to ameliorate the Cas9 
cytotoxicity (Ye et  al. 2020). Random recombination 
caused by pSG5-derived replicon (temperature-sensitive 
replication) has been observed in the engineering of both 
rapamycin and tylosin PKS genes (Wlodek et al. 2017). In 
addition, editing the Saccharopolyspora erythraea using 
the pCRISPR–Cas9 plasmid also resulted in unpredict-
able homologous recombination (Mo et  al. 2019). In 
light of the above, our CRISPR–Cas9 system was modi-
fied with pCRISPR–Cas9 as a backbone harboring both 
Cas9 and the sgRNA driven by tipAp* and ermEp* pro-
moter, respectively. Compared with constitutive expres-
sion of Cas9, inducible expression of Cas9 improves the 
transformation efficiency, which is important for subse-
quent positive screening and iteration (Zeng et al. 2015; 
Mo et al. 2019). An inducible promoter tipAp* was used 
to dynamically control Cas9 activity by inducer con-
centration (Wang et  al. 2019b). The Cas9-encoding 
gene was codon-optimized for Actinosynnema spp. The 
pSG5-based Cas9 system may generate negative colo-
nies with random gene recombination. The replicon can 
be replaced by replicon of pIJ101 as an alternative way to 
overcome this obstacle, probably attributed to the seg-
regational instability of pIJ101 replicon (Mo et al. 2019). 
We discarded employing the counterselection marker 
to ensure plasmid mobility by controlling the size of the 
plasmid (Additional file 1: Fig. S9). An average efficiency 
of 77% in precise gene editing was observed in A. pretio-
sum using HDR. We further confirmed the feasibility of 
the iterative protocol as previously reported (Sun et  al. 
2009; He 2010; An et al. 2021).

Enhancing the precursors supply could be a compre-
hensive and promising method to promote the biosyn-
thesis of secondary metabolites (Bilyk and Luzhetskyy 
2016). Given the incomplete genomic information of 
AP-3 producers, previous studies were mainly focused on 
single or double genes in UDPG synthetic pathway and 
pentose phosphate (PP) pathway by the traditional gene 
modification method. And modulation of both pathways 
resulted in an increase of about 40% in AP-3 productions 
(Fan et  al. 2016a, 2016b). With the developed genome-
editing tools, we have successfully performed genome 
modification of AP-3 producers. One strategy is to elimi-
nate the potential precursor competition. And deletion 

of T1PKS-15 resulted in a remarkable increase in AP-3 
yield. However, deletion of T1PKS/NRPS-5 or T1PKS-
18 failed to increase AP-3 yield. After further analyzing 
the transcriptions of related genes involved in UDP-glu-
cose biosynthesis, AP-3 biosynthesis and fatty acyl-CoA 
accumulation in the mutants, we found that the intracel-
lular precursor supply and the gene transcription of key 
pathways in deletion of T1PKS/NRPS-5 showed similar 
trends as those of the parent strain L40 (Fig. 8 and Addi-
tional file 1: Fig. S10). Besides, the T1PKS/NRPS-5 cluster 
sharing high similarity to plm biosynthetic gene cluster 
could direct to the synthesis of a polyene macrolactam, 
pretilactam (Wang et  al. 2019a). Previous studies sug-
gested that AP-3 shares efflux proteins with pretilactam 
(Wang et al. 2021), which encouraged us to hypothesize 
that inactivation of T1PKS/NRPS-5 may diminish AP-3 
production. For the cluster T1PKS-18, quite a few simi-
lar gene clusters have been identified. In addition, unlike 
yield-enhancing strain MD02, in which intracellular TAG 
accumulated heavily at day 2, increased intracellular TAG 
content was observed in early stationary growth phase 
of mutant MD04 (Fig.  8A). Furthermore, the transcrip-
tion profile of fatty acyl-CoA synthase gene of MD04 
was completely opposite to that of the parent strain L40 
(Additional file  1: Fig. S11), which suggested that dele-
tion of the 50  kb gene fragment triggered the synthesis 
of long-chain fatty acyl-CoA. As T1PKS-18 contains a 
variety of functional genes responsible for polyketide 
formation, transcriptional regulation or transportation, 
screening for crucial genes need to be accomplished by 
individual gene deletions in subsequent studies.

Using CRISPR–Cas9-mediated promoter knock-in 
strategy to activate individual synthetic pathways is a 
common approach for enhancement of target compound 
yield in synthetic biology and natural product discovery 
(Zhang et  al. 2017; Liu et  al. 2019; Mo et  al. 2019). In 
contrast to gene overexpression, bidirectional promoters 
(BDP) insertion allows co-expression of multiple genes 
and improve the flexibility of metabolic pathway opti-
mization (Vogl et al. 2018). Here, the supply of glycolate 
unit is considered to be the bottleneck for AP‐3 biosyn-
thesis (Fan et al. 2016b; Du and Zhong 2018). It has been 
reported that overexpression of precursor biosynthetic 
genes can effectively increase the yield of target metabo-
lites under a strong promoter (Zhou et  al. 2021). Moti-
vated by the native gene distributions of asm10-12 and 
asm13-17, we generated two recombinant strains with 
BDP knock-in. The transcription levels of both the MM-
ACP biosynthetic genes and the tailoring genes (asm10, 
11, 12) were increased, resulting in higher yields of AP-3 
(Fig. 10). This strategy was firstly developed to promote 
gene transcriptional level in two pathway genes by a sin-
gle genetic modification for overproduction of AP-3. 
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The BDPs with different expression intensities expanded 
the flexibility of gene expression. Further improvement 
in AP-3 production with the BDP library strategy may 
be expected, as successfully demonstrated by optimized 
gene co-expression for taxadiene and β-carotene biosyn-
thesis (Vogl et al. 2018).

On the other hand, random mutations may activate 
silent genes leading to splitting of precursors and car-
bon fluxes to other metabolisms. These changes in the 
mutants may introduce new limitations for AP-3 over-
production. In this study, a minimum of 27% increase 
in AP-3 yield was obtained based on the objective-
oriented strategies. The AP-3 production obtained in 
mutant MD02 (365 mg/L) was higher than those recently 
reported, where improvement of AP-3 tolerance and 
enhancement of the efflux efficiency of AP-3 were mainly 
focused (Wu et  al. 2020; Wang et  al. 2021, 2020b). We 
additionally constructed the strain with both the knock-
out of gene cluster T1PKS-15 and the knock-in of BDP 
promoter. However, there was no further increase in yield 
compared with MD02 or bidirectional promoters knock-
in mutants, which was probably due to the degradation 
of AP-3 synthesis performance of the engineered strain. 
Moreover, a global regulator may comprehensively con-
trol AP-3 biosynthesis during strain fermentation. Some 
pleiotropic transcriptional regulators have been reported 
to play a central role in regulation of secondary metabo-
lism and morphological differentiation in most Strepto-
myces species (Makitrynskyy et al. 2013; Qiao et al. 2020). 
The limited increase of yield in this study may be caused 
by the restrictive regulatory pathways and this hypothesis 
needs to be supported by further experiments.

Conclusion
In this study, we developed a tailored CRISPR/Cas9-
based genome-editing tool allowing for scarless genome 
editing in Actinosynnema. Leveraging this versatile tool, 
we proposed two strategies to improve the precursor 
supply for AP-3 biosynthesis. For gene deletion, inacti-
vation of competing PKS gene cluster enhanced AP-3 
production by redirecting the metabolic flux of building 
precursors. For gene insertion, the introduction of BDPs 
alleviated the bottlenecks in both glycolate unit supply 
and tailoring steps of AP-3 biosynthesis, which therefore 
led to the overproduction of AP-3. The developed engi-
neering strategies can also provide guidance to the effec-
tive construction other cell factories.

Materials and methods
Bacterial strains, plasmids and culture conditions
The bacterial strains and plasmids used in this study are 
listed in Additional file 1: Table S4. A. pretiosum subsp. 
auranticum L40 and its derivatives were cultivated as 

described previously (Li et al. 2021). In brief, strains were 
cultured on YMG agar plates (0.4% yeast extract, 1.0% 
malt extract, 0.4% glucose, 1.7% agar (w/v), pH 7.0) for 
the growth of aerial mycelia and TSBY liquid medium 
(3.0% tryptone soya broth powder, 0.5% yeast extract, 
and 10.3% sucrose (w/v), pH 7.2) for enrichment cul-
ture. For fermentation experiments, agar-grown myce-
lia were inoculated in seed medium (1.0% glucose, 0.5% 
yeast extract, 1.0% glycerol, 0.5% corn syrup, 1.5% solu-
ble starch, 0.2% calcium carbonate (w/v), pH 7.0) and 
the fermentation medium containing 0.94% (w/v) fruc-
tose, 2.68% (w/v) glycerol, 0.3% (w/v) soluble starch, 
0.7% (w/v) yeast extract, 0.1% (w/v) NH4Cl, 0.05% (w/v) 
MgSO4⋅H2O, 0.001% (w/v) FeSO4⋅H2O, 0.05% (w/v) 
KH2PO4, 0.5% (w/v) CaCO3, 2% (w/v) buckwheat flour, 
pH 7.4. Strains were cultured in shake flasks at 28 °C and 
analyzed at the end of the eighth day of fermentation.

Genome sequencing, annotation, and analysis of A. 
pretiosum subsp. auranticum ATCC 31565
The genome sequencing of ATCC 31565 was sequenced 
using a PacBio RS II platform and Illumina HiSeq 4000 
platform at the Beijing Genomics Institute (BGI, Shen-
zhen, China). Draft genomic unitigs, which are uncon-
tested groups of fragments, were assembled using the 
Celera Assembler against a high-quality corrected cir-
cular consensus sequence subreads set. Four databases, 
KEGG (Kyoto Encyclopedia of Genes and Genomes), 
COG (Clusters of Orthologous Groups), NR (Non-
Redundant Protein Database databases), Swiss-Prot 
(Bairoch and Apweiler 1999), and GO (Gene Ontology), 
were used for general function annotation. Manual cor-
rection via alignments with A. mirum was performed for 
essential metabolism pathways construction. The ant-
iSMASH (antibiotics & Secondary Metabolite Analysis 
Shell, http://​antis​mash.​secon​darym​etabo​lites.​org/) was 
utilized to analyze the secondary metabolite gene clusters 
in A. pretiosum (Blin et al. 2019). The R package circlize 
(http://​cran.r-​proje​ct.​org/​web/​packa​ges/​circl​ize/​index.​
html) was adopted to draw the genome map (Gu et  al. 
2014).

Construction of the pCRISPR–Cas9apre
Our CRISPR–Cas9 system was retrofitted by pCRISPR–
Cas9 as a backbone to harbor both Cas9 and the sgRNA, 
which were driven by tipAp and ermEp promoter, respec-
tively. The Cas9 encoding gene (4163  bp) was codon-
optimized for A. pretiosum amplified from the Cas9 
synthesized by Genscript (Nanjing, China, the sequence 
referenced pCRISPR–Cas9). Synthetic guide RNA 
(sgRNA) region (7158  bp), including the StuI flanked 
aac(3)IV resistance selection cassettes and origin of 
transfer (oriT), were amplified from pCRISPR–Cas9 

http://antismash.secondarymetabolites.org/
http://cran.r-project.org/web/packages/circlize/index.html
http://cran.r-project.org/web/packages/circlize/index.html
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plasmid by primer pair Cas9backbone-F/R. Then, the 
two fragments were ligated to generate pCRISPR–Cas9ap 
(Additional file 1: Fig. S9). The pSG5 replicon was substi-
tuted by pIJ101 replicon amplified by primer pair YH7-
F/R from pYH7. Primers used in this study are listed in 
Additional file  1: Table  S5. Double fragment assembly 
was carried out by using One Step Cloning Kit (Vazyme, 
Nanjing, China).

Construction of recombinant strains
Precise gene deletion using HDR
The genomic DNA of A. pretiosum subsp. auranticum 
was used as PCR template. The homologous arms and 
sgRNA guide sequences used for gene knockout were 
designed based on the genome sequence of strain L40. 
The pCRISPR–Cas9apreΔasm25-sgRNA construction 
process as an example is illustrated in Additional file  1: 
Fig. S2. Briefly, two 1 kb homologous arms for asm25 dis-
ruption were amplified, sequenced, and together cloned 
to StuI-digested plasmid pCRISPR–Cas9apre by Gibson 
assembly to generate the pCRISPR–Cas9apreΔasm25-
sgRNA. The amplification primers are shown in Addi-
tional file  1: Table  S5. The ApE software was used to 
search N20 targeting sequences of sgRNAs (http://​ape-
a-​plasm​id-​editor.​wikis​paces.​com). The relevant prim-
ers used to construct the functional sgRNA are shown 
in Additional file 1: Table S5. The sgRNA cassettes con-
taining the 20-bp DNA region were cloned into the 
XmaJI/SnaBI site of pCRISPR–Cas9apreΔasm25 to gen-
erate pCRISPR–Cas9apreΔasm25-sgRNA. The resulting 
plasmid was introduced into L40 from E. coli ET12567 
(pUZ8002) through intergeneric conjugation. Conjugants 
were transferred to YMG plates with 1 μg/mL thiostrep-
ton that induces Cas9 expression. The survivals were 
screened for the correct constructs by colony PCR and 
Sanger sequencing.

The iterative genome editing protocol is depicted in 
Fig. 4. The genotype confirmed edited colonies may use 
for the next round of editing. Before introducing new 
plasmids, the previous editing plasmid must be cured. 
The edited A. pretiosum mutants were cultured in TSBY 
without antibiotics for three rounds, 24 h per round. Sub-
sequently, mutants were streaked on two different sets of 
agar plates with and without thiostrepton. Edited strains 
were selected by loss of thiostrepton resistance, which 
had already cured plasmid and were chosen for the next 
round of gene editing.

Construction of BDPs insertion plasmid
Two combined BDPs were spliced by overlap extension 
PCR, and cloned into StuI-digested plasmid pCRISPR–
Cas9apre with the relevant UHA (upper homologous 

arm) and DHA (down homologous arm) amplified 
from genomic DNA of L40 (Additional file  1: Fig. S7B). 
An sgRNA scaffold including gene specific 20-nt guide 
sequence TGC​GGA​TCG​TCA​CCG​CCG​CG was 
amplified from pCRISPR–Cas9apre, then cloned into 
p12J_K13CRISPR–Cas9apre at XmaJI/SnaBI by infu-
sion cloning kit resulting plasmid p12J_K13sgCRISPR–
Cas9apre (Additional file  1: Fig. S7C). Similarly, 
p12E_K13sgCRISPR–Cas9apre was generated according 
to the previous procedure. The resulting plasmids were, 
respectively, introduced into L40 using the method men-
tioned above and the recombinant strains were screened 
and validated.

Seamless assembly of multiple DNA fragments was 
carried out using NEB DNA Assembly Master Mix 
(New England Biolabs, Ipswich, MA). Restriction endo-
nucleases were purchased from Thermo Fischer Sci-
entific (Waltham, MA). All assay kits and enzymes 
were performed according to the manufacturers’ 
recommendations.

RNA isolation, cDNA synthesis and real‑time quantitative 
PCR (RT‑qPCR)
Total RNA was extracted using a bacterial RNA extrac-
tion kit (Jiangsu Cowin Biotech Co., Ltd., Taizhou, 
China). Total DNA was removed by DNase I, and reverse 
transcription was performed by cDNA Synthesis Kit 
(Jiangsu Cowin). The transcription of target genes was 
internally normalized to 16S rRNA and determined by 
quantitative real-time PCR using a CFX96 Real-Time 
System (Bio-Rad, Richmond, CA). The relative level of 
genes expression was calculated using the 2−ΔΔCt method 
(Livak and Schmittgen 2001). Three PCR replicate deter-
minations were made for each transcription analysis.

HPLC analysis of AP‑3
The supernatant of the fermentation broth was extracted 
with triple volumes of ethyl acetate and evaporated to 
quantify AP-3 production. The residues were dissolved 
in methanol. The HPLC analysis of AP-3 was operated 
on Agilent series 1260 (Agilent Technologies, Inc., Santa 
Clara, CA) with a SinoChrom ODS-BP C18 column 
(4.6 mm × 250 mm, 5 μm, Elite, Dalian, China). The flow 
rate was 0.6 mL/min with 85% methanol and 15% water 
at 28 °C, and UV detection was set at 254 nm.

Determination of concentrations of intracellular acyl‑CoA 
esters
The concentrations of intracellular M-CoA and MM-
CoA in the relevant strains at 48 h and 72 h of incuba-
tion were extracted following the method described by 
Lu et al. (2016) and determined by LC–MS/MS. For each 

http://ape-a-plasmid-editor.wikispaces.com
http://ape-a-plasmid-editor.wikispaces.com
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time point, samples of 25 mL were harvested. One mil-
liliter of culture was collected to quantify the dry cell 
weight. The liquid cell sample of remaining culture was 
transferred into a precooled tube containing quenching 
and extraction solution (acetonitrile/methanol/0.1% gla-
cial acetate at a volume ratio of 45:45:10, −  20  °C). The 
extraction was performed by repetitive vortexing and 
cooling on ice for 15 min and centrifuged to collect the 
supernatant (12,000 rpm, 4 °C, 3 min). Samples were ana-
lyzed using an Atlantis BEH C18 (1.7 µm, 2.1 × 100 mm, 
Waters Co., Milford, MA) on a triple quadrupole MS 
(Waters). The mobile phase was acetonitrile with 50 mM 
ammonium hydrogen carbonate (solvent A), 0.1% ammo-
nium hydroxide (solvent B), ddH2O (solvent C) and 0.1% 
ammonium hydroxide-acetonitrile (solvent D). Elution 
was performed as follows: 0–3 min 20% A 5% B 75% C, 
3–3.5  min 20% A 10% B 30% C 40% D, 3.5–5  min 20% 
A 80% D, 5–7  min 20% A 5% B 75% C. Quantification 
was detected in the multiple reaction monitoring mode 
(MRM) with the m/z parent > m/z daughter (M-CoA 
854 > 347, MM-CoA 868 > 361).

Determination of concentrations of intracellular TAGs
TAGs were purified following the method described 
by Wang et  al. (2020a) with some modifications. In 
brief, mycelia were collected by centrifugation at 4  °C, 
12,000  rpm for 5  min. Mycelia were immediately sub-
merged into liquid nitrogen and then lyophilized with a 
vacuum concentrator. Total lipids were extracted from 
50  mg lyophilized cells by chloroform/methanol (2:1, 
v/v) in a water bath at 100  °C for 10 min. Subsequently, 
the mixture was shaken at 28  °C for 2  h at 250  rpm/
min. TAGs samples were concentrated and dissolved 
with 1 mL of extraction solution. To determine the lipid 
compositions, TLC was carried out on silica gel 60 F254 
plates (Arabolaza et al. 2008). Cu-phosphoric acid stain-
ing was used to visualize lipid fractions, and an imaging 
system (BG-gdsAUTO 720, Baygene Biotechnol Co., Ltd., 
Shanghai, China) was used to quantify bands of TAGs 
and phospholipids (PLs).
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