
Yang et al. Bioresources and Bioprocessing           (2022) 9:103  
https://doi.org/10.1186/s40643-022-00586-4

REVIEW
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Abstract 

Rapeseed meal (RSM) is an agro-industrial residue of increased functional biological value that contains high-quality 
proteins for animal feed. Due to the presence of antinutritional factors and immature development technology, RSM 
is currently used as a limited feed additive and in other relatively low-value applications. With increasing emphasis on 
green and sustainable industrial development and the added value of agro-industrial residues, considerable atten-
tion has been directed to the removal of antinutritional factors from RSM using high-efficiency, environment-friendly, 
and cost-effective biotechnology. Similarly, the high-value biotransformations of RSM have been the focus of research 
programmes to improve utilization rate. In this review, we introduce the sources, the nutrient and antinutrient con-
tent of RSM, and emphasize improvements on RSM feed quality using biological methods and its biotransformation 
applications.
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Background
Besides soybean, oilseed rape is an important oil crop 
worldwide, and rapeseed meal (RSM) is the byproduct 
of rapeseed oil production (Landero et  al. 2012). RSM 
is characterized by high yield, with rich protein con-
tent (35–44%), good amino acid balance, and low price. 
Recent increases in the prices of the main protein sources 
for animal feed combined with a major shortage of feed 
protein resources have placed the global fodder indus-
try under great pressure. Therefore, the livestock farm-
ing industry is faced with an urgent need to obtain other 
excellent feed protein sources to fill the ever-expand-
ing demand gap. This has become an urgent issue that 
requires resolution at the global level. The antinutritional 
factors contained in nondetoxified RSM not only affect 

feed digestibility and the utilization of nutrients, but also 
cause adverse effects on animal health, which greatly 
limit the amount of RSM as feed and result in a huge 
waste of RSM resources (Xie et al. 2012). Therefore, the 
development of RSM with a low antinutritional content 
and high nutritional value at a low cost has become the 
main aspect of research on feeding RSM (Ghodsvali et al. 
2005; Slominski et al. 2012).

One of the strategies for sustainable waste man-
agement is recycling or waste treatment to create 
value-added products. For example, the biological 
transformation and utilization of jujube processing 
waste, tea waste, and lobster processing byproducts 
have been reported (Oladzad et  al. 2021; Guo et  al. 
2021; Nguyen et  al. 2017). Currently, RSM treatment 
mainly includes two strategies (Fig. 1): the use of safe 
microorganisms or enzymes, combined with environ-
ment-friendly and cost-effective physical and chemi-
cal methods, to remove antinutritional factors and 
improve the utilization rate of RSM in feed; and the 
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compounds in RSM can be biotransformed to obtain 
RSM protein, active peptides, antioxidant, and other 
bioactive substances by Enzymolysis or fermentation, 
which will expand the potential value of RSM in fer-
mentation, food, medical, energy development, new 
materials, cosmetics, and other applications.

Given the high commercial and application value 
of RSM in the feed industry, we have witnessed a rise 
in studies that focus on RSM. However, at present, 
detailed reviews on improving the quality of feed-
ing RSM using biological methods and high-value 
biotransformation technology and their applications 
are lacking. Hence, this paper reviews aspects of the 
nutritional and antinutritional content in RSM as 
well as research progress in the biotransformation, 
biotechnology, and high-value uses of RSM to pro-
vide a theoretical basis and technical reference for the 

improvements and development of future applications 
of RSM.

Sources, nutrition, antinutritional factors, 
and toxicity mechanism of RSM
Sources
Rapeseed is the most commercially viable genus of Bras-
sicaceae and one of the major oil crops worldwide. Oil-
seed rape comprises four species: Brassicaceae napus L., 
B. juncea L. Brassica campestris L. and Ethiopia rape-
seed; of these, B. napus is the most common species due 
to its strong adaptability and planting range, resulting 
in a wide distribution across the six continents. RSM is 
a byproduct of the rapeseed oil industry, accounting for 
90% of rapeseed byproducts, and is manufactured using 
various processes, such as pressing and leaching. In Ger-
many, rapeseed oil byproducts rank second in vegetable 

Fig. 1 Application of rapeseed meal and potential development of high value (picture materials related to the application of rapeseed meal (such 
as cosmetics) were purchased from Paixin (https:// www. paixin. com/)

https://www.paixin.com/
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protein content after soy products (Kracht et al. 2004). In 
2017, global output reached 40.51 million tonnes, mak-
ing it the second largest output of protein cake (USDA 
2017). Changes in RSM yield are mainly determined by 
changes in rapeseed yield. Generally, ~ 60% of RSM is 
obtained by processing rapeseed via modern methods, 
with different processing techniques yielding different 
types and qualities of RSM. Depending on the processing 
temperature, RSM can be divided into high-temperature 
meal, intended for traditional baking, pre-pressing, and 
leaching, and low-temperature meal destined for low-
temperature cold pressing (Kracht et al. 2004). Compared 
with high-temperature RSM, low-temperature RSM 
appears to be superior for animal feeding. Prolonged 
high-temperature exposure of rapeseed during oil pro-
duction can greatly reduce the feeding value of RSM by 
partly degrading protein content and increasing the level 
of indigestible cellulose. Watts et al. (2020) obtained RSM 
with different nutritional values using supercritical car-
bon dioxide extraction (ScCO2) and cold-pressed hexane 
extraction (CpHe). Compared with CpHe, ScCO2-pro-
duced RSM showed higher metabolizable energy, better 
protein digestibility, and energy metabolic rate during 
broiler feeding due to less heat damage (Mosenthin et al. 
2016). Currently, classification distinguishes between 
double-low and common RSM, depending on the content 
of erucic acid and glucosinolate. Canola meal is a typical 
example of double-low RSM, which contains < 2% erucic 
acid and < 30  µmol/g glucosinolate. Common RSM is 
richer in antinutritional factors and has poor palatability; 
however, its protein solubility is higher, and its price is 
maintained lower.

Nutrient composition
RSM contains ~ 3.5% crude fat, 35% crude protein, 6% 
crude ash, and 12% crude fibre. In addition, it con-
tains ~ 4% phytic acid, 15 mmoL/g glucosinolates (GLS), 
polyphenols, and several essential amino acids, such as 
arginine, methionine, and lysine (Gatlin III et  al. 2007; 
Yu et al. 2015). Its content of methionine and cysteine is 
higher than that of soybean (Khajali et al. 2015), although 
lysine content is slightly lower. RSM is rich in mineral 
elements, such as calcium, phosphorus, magnesium, 
and selenium; importantly, the content of selenium is 
the highest among vegetable proteins (Kissil et al. 2000). 
Selenium deficiency is a common global issue, which 
raises the importance of RSM in potential commercial 
applications. RSM is also a good source of vitamins, par-
ticularly the vitamin B complex (niacin, folic acid, B1, and 
B2), and the essential nutrient choline (Seneviratne et al. 
2010).

The amino acid composition of rapeseed protein is 
reasonable and within the levels recommended by the 

WHO/FAO. Its nutritional value is equal to or better 
than that of animal protein; therefore, it is consid-
ered an excellent plant protein (Gorissen et  al. 2018). 
Jones (1979) reported that the protein efficiency ratio 
of rapeseed protein was better than that of casein, and 
Ohlson and Anjou (1979) showed that the net utiliza-
tion ratio of rapeseed protein was 87–90%. Ingestion 
of RSM protein results in a decreased insulin response 
after meals and stronger satiety than soybean protein 
(Volk et al. 2020). Furthermore, hydrolysis of the rape-
seed protein produces a mixture of low-molecular-
weight peptides and various amino acid chain lengths, 
including active peptides with important physiological 
functions that could be further explored by the phar-
maceutical and food industries. Compared with those 
of other proteins, rapeseed peptides exhibit good acid 
solubility, low viscosity, gel formation resistance, and 
solubility (90% higher than rapeseed protein solubility) 
in addition to higher absorption and utilization rates 
(Pinterits and Arntfield 2008; Chabanon 2007).

Antinutritional factors and toxicity mechanism
RSM is considered a resource of great potential indus-
trial value due to its vast reserves and high nutritional 
content. However, at present, its development and 
application are largely limited by the elevated con-
tent of antinutritional factors (Fig.  2). Glucosinolates, 
phytic acid, tannin, sinapine (SE), cellulose, and lignin 
are the main antinutritional factors of RSM, can 
reduce nutrient absorption of RSM as animal feed.

GLS
GLS comprise a group of secondary metabolites that 
are widely accumulated in Brassica plants, especially in 
the reproductive organs (Grubb and Abel 2006). GLS 
themselves are nontoxic; they play an important role 
in defence mechanisms of plants against diseases and 
have been used in antioxidant applications for humans. 
In the animal gastrointestinal tract, exogenous myrosi-
nase catalyses the hydrolysis of GLS into glucose and 
an unstable intermediate, β-aglycone, which spontane-
ously transforms to isothiocyanate (ITC), oxazolidine 
thione (OZT), thiocyanate (TC), and nitriles (RCN), 
depending on the environment (Sonderby et  al. 2010; 
Roberta et  al. 2003); of these compounds, nitrile is 
the most toxic, ~ 5–10 times more toxic than OZT. 
TC and ITC are similar in shape and size to iodine; 
when present in excess levels in the blood, they com-
pete with iodine for uptake in the thyroid gland and 
inhibit iodine transport into the thyroid follicular cells; 
while OZT too has similar characteristics. In animals, 
these compounds may cause diarrhoea, haemorrhagic 
gastroenteritis, and goitre, and, in extreme cases, liver 
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haemorrhage and liver necrosis, thereby endangering 
health and hindering growth (Schone et al. 1997; Tanii 
et  al. 2004). Heat treatment can effectively remove 
GLS from RSM, but the method is limited by its high 
specificity for heat-sensitive factors.  In addition, heat 
treatment can trigger a Maillard reaction between 
lysine and starch and reduce the nutritional properties 
of other substances.

Phytic acid
Phytic acid (cyclohexanol-β-phosphate), a strong 
chelating agent, is an important antinutritional fac-
tor in RSM; its content is generally 2–5%. Phytic acid 
firmly chelates positively charged divalent or polyva-
lent metal ions, such as zinc, calcium, copper, magne-
sium, manganese, and iron, to form insoluble phytates, 
thereby reducing the biological efficiency of some 
essential mineral elements. In addition, it binds to pro-
teins to form insoluble complexes, greatly reducing the 
biological potency and digestibility of proteins. In ani-
mals, phytic acid affects a series of digestive enzymes, 
such as proteases, amylases, and lipases, and thereby 
impacts digestion and nutrient absorption (Ravin-
dran et  al. 2000). Due to its relatively stable chemical 
properties, phytic acid cannot be degraded by physi-
cal treatments, such as heating, and there is no corre-
sponding animal enzyme system to digest and degrade 

it. At present, phytase is being widely used to break 
down phytic acid.

Phenolic compounds (including tannins and SE)
Tannin is mainly distributed in the rapeseed hull. Its 
average content amounts to ~ 3.65%, and is responsi-
ble for the bitter taste and poor palatability of rapeseeds 
(Butler et al. 1984). Tannin binds to enzymes in the diges-
tive tract to form inactive compounds, and to dietary 
proteins, forming insoluble compounds, thereby affect-
ing the digestion of proteins and other nutrients (Reddy 
et al. 1985). In addition, it interferes with the bioavailabil-
ity of mineral elements by facilitating the precipitation of 
various metals, such as ionized calcium, iron, and zinc, 
thus reducing their utilization rate, which in turn affects 
animal growth and feed conversion. Tannin is easily oxi-
dized and polymerized under neutral or alkaline condi-
tions, resulting in the black colour and bad odour of hulls 
(Amarowicz et  al. 2000). Some studies have identified 
microbes that can degrade tannins. For example, Nelson 
et  al. (1997) reported that diplococci bacteria degraded 
tannins under anaerobic conditions, at a rate of 30  g/L 
of tannins in ~ 3–4 h. Osawa et al. (2000) isolated tannin-
degrading bacteria from human faeces. Mcsweeney et al. 
(2001) found that Clostridium botulinum could use tan-
nin as the sole carbon source.

Fig. 2 Antinutritional factors and toxicity mechanism of rapeseed meal
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Obied et  al. (2013) analysed the composition of phe-
nolic antinutritional substances in Canadian RSM and 
found that the SE content was the highest, accounting 
for ~ 80% of the total phenolic content in rapeseed. Such 
large amounts of SE are responsible for the bitterness of 
cake meal. Landero et  al. (2012) demonstrated that the 
bitterness of cake meal affected food intake by pigs, thus 
directly influencing average daily feed intake and weight 
gain. Degradation of SE involves cleavage of its ester 
structure through the enzymatic action of polyphenol 
oxidase, tannase, and tyrosinase. Hu et al. (2004) showed 
that laccase significantly reduced SE content in solid-
state fermentation. It has been pointed out that the poly-
phenol oxidase produced by white-rot fungi fermentation 
can decompose > 98% of SE and sinapic acid in aqueous 
solutions (Lacki and Duvnjak 1998).

Crude fibre
Crude fibre in RSM is mainly found in the shell, where 
its content ranges from 9–20%. The presence of crude 
fibre, which cannot be digested and absorbed by ani-
mals, may prevent contact between intracellular nutri-
ents and enzymes in the gastrointestinal tracts of animals 
and reduce the digestibility of feed. This is considered 
the primary reason for the low digestibility and meta-
bolic energy of RSM (Bell 1993). Removal of crude fibre 
is commonly achieved through treatment with enzymes 
and microorganisms.

Comparison of methods to improve RSM quality
In recent years, the value of RSM as a feed additive has 
drawn considerable attention. Elimination of antinutri-
tional factors and improvement of the nutritional value 
of RSM have become primary research directions. At 
present, rapeseed detoxification is mainly achieved using 
physical, chemical, genetic (breeding-based), and bio-
logical methods. Different detoxification methods are 
associated with specific technological characteristics and 
effects (Table 1).

Chemical methods include acid or alkali treatments. 
These can be supplemented with ammonium sulfate rea-
gents and methanol, ethanol, isopropyl alcohol, ethane, 
and other dehydration solvents for precipitation or 
extraction separation. Several studies have reported data 
on protein isolation and removal of antinutritional fac-
tors. For example, Berot and Briffaud (1983) treated RSM 
with 60% (v/v) ethanol or isopropanol, with a resulting 
increase in the protein concentration of dry matter to 
63 g and removal of 97% of polyphenols and 99% of GLS. 
Chabanon et al. (2007) were successful in removing 75% 
of GLS from RSM using ethanol extraction. Over 90% of 
GLS can be separated using the reverse micellar method, 

but the process is complicated and requires introduc-
tion of a surfactant (such as Triton-X100 and Twin-85). 
Alkali extraction combined with membrane filtration can 
reduce the content of GLS, phytic acid, and other sub-
stances; however, the membrane filtration equipment is 
expensive and difficult to maintain (Aider and Barbana 
2011). Moreover, the functional tertiary structure of pro-
teins is inevitably damaged after treatment with acids or 
alkali, leading to loss of biological activity and reducing 
the bioavailability of RSM and its application value as 
feed and functional food (Baker and Charlton 2020).

Physical methods primarily adopt extrusion, ultra-
sonication, hulling and other strategies to process RSM. 
Extrusion can increase the solubility of non-starch poly-
saccharides and the accessibility of enzymes, but has no 
obvious effect on the digestion of fibrous polysaccharides 
and effects of processing on glucosinolates and myrosi-
nase activity were minor (Vries et al. 2014). Hulling treat-
ment can reduce the content of cellulose in RSM, but 
cannot reduce the content of antinutritional factors such 
as GLS and sinapine (Kracht et al. 2004). These processes 
are primarily characterized by low efficiency and single 
effect, reducing the protein quality of RSM and leading to 
denaturated and deactivated beneficial substances. Heat 
treatment is a popular method aimed at removing anti-
nutritional factors. Although > 70% of GLS in RSM can be 
degraded using this method, heat treatment can also lead 
to decomposition products similar to those catalysed by 
myrosinase, affecting feed quality (Campbell and Slomin-
ski 1990). Overall, the detoxification range and environ-
mental effects of the physical and chemical methods for 
the removal of antinutritional factors from RSM are not 
optimal. In addition, the palatability of rapeseed cake is 
negatively impacted, which seriously reduces the utili-
zation rate and nutritional characteristics of rapeseed 
protein (Vig and Walia 2001). Therefore, physical and 
chemical techniques for the mass industrial production 
of high-quality RSM are still lacking. Kumar and Sharma 
(2017) indicate that the choice of pretreatment depends 
completely on the application and types of waste. For 
example, compared with the traditional single-pretreat-
ment technology, the processing of lignin involves a com-
bination of two or more pretreatment processes. Thus, an 
integrated strategy is not only beneficial in minimizing 
the production of harmful inhibitors but also in reduc-
ing the number of processing steps. Biochemical trans-
formation begins with a low degree of thermochemical 
pretreatment to partially destroy cell walls and expose 
cellulose and hemicellulose components to improve 
enzyme accessibility (Kumar and Sharma 2017).

Currently, biological detoxification appears to be the 
most researched approach for improving RSM quality, 
locally and internationally. Due to its wide detoxification 



Page 6 of 18Yang et al. Bioresources and Bioprocessing           (2022) 9:103 

range and high detoxification rate, biological methods 
show potential for effectively enhancing the palatability 
and improving the nutritional value of RSM products. 
Importantly, biological approaches are considered opti-
mal for improving the quality of RSM and are consistent 
with green, pollution-free, and sustainable development. 
Thus, in the following sections, we focus on the various 
biological detoxification methods, such as enzyme addi-
tion and microbial fermentation.

Improving RSM quality using biological methods
Enzymolysis
Compared with traditional physicochemical methods, 
enzyme-assisted methods for the removal of antinu-
tritional factors have attracted considerable attention 
because of their high efficiency, benign sustainability, 
and ecological friendliness (Table  2). Enzymatic extrac-
tion relies on the characteristics of enzymes and is highly 
specific. In addition, it shows characteristics of regional 
selectivity and reaction under mild conditions, while 
preserving the potency of biological compounds (Nadar 
et  al. 2018). Currently used enzymes comprise alkaline, 
neutral, and acidic proteases, trypsin, papain, enzymes 
that mediate the production of flavour compounds, lac-
case, oxidative polyhydrogenase, and cell wall polysac-
charide-degrading enzymes. Alkaline protease is the 

most commonly used enzyme, with a good hydrolytic 
capacity; its activity is matched by enzymes enhanc-
ing flavour compounds that can improve the degree of 
hydrolysis and peptide yield of RSM, eliminate the bitter-
ness of RSM, and increase palatability.

Niu et  al. (2015) suggested that laccase is efficient at 
digesting SE in RSM. Tie et  al. (2020) reported that the 
GLS degradation rate and changes in trichloroacetic acid-
soluble protein content were associated with changes 
in endoglucanase activity. It is speculated that endoglu-
canase destroys the cellulose network structure of RSM, 
leading to the loss of protection and degradation of GLS 
and plant proteins embedded in its core. This suggests 
that endoglucanase plays an important role in improving 
RSM quality. Nibedita et  al. (2007) found that the tan-
nin removal rate from RSM was 61.25% under moisture 
content of 41.22%, temperature of 82.5 ℃, and extrusion 
speed of 90 rpm. Bacillus subtilis catalases CotA and Yjqc 
are resistant to  H2O2, and function as synergistic cata-
lysts for the degradation of sinapic acid and sinapine in 
RSM (Zhang et al. 2016a). Myrosinase activity peaked on 
the third day of rapeseed germination stage. The crude 
extract of 0.90 g myrosinase could be obtained from 1 g of 
B. napus sprouts by precipitation with 20–60% saturated 
ammonium sulfate. Treatment with 9.63  μg/g ascorbic 
acid and 26.68 μg/g EDTA resulted in a degradation rate 

Table 1 Comprehensive evaluation of different processes and their efficacy in rapeseed detoxification

Modes of action Technology Description of methods Effectiveness evaluation References

Physical detoxification Heat Degradation by high tem-
perature

Not obvious Jensen et al. (1995)

Radiation Inactivate myrosinase by 
radiation and decompose 
part of phytic acid and 
tannin

Not obvious Maheshwari et al. (1980)

Extrusion and expansion The raw materials are 
expanded by steam, electric-
ity, or sudden decompres-
sion after being heated by 
extrusion friction

Obvious Nibedita et al. (2007)

Hulling Break and peel Not obvious, but it improves 
nutrition

Kracht et al. (2004)

Chemical detoxification Acid–base treatment Soak or heat the rapeseed 
meal with acid–base solution

Obvious, but the feeding 
nutritional value is reduced

Bhatty and Sosulski (1972) 
Manashi et al. (2014)

Salt treatment Chelation of free cations 
in salt with hydrolysate of 
antinutritional factors

Obvious, but the nutrition 
and palatability are reduced

Das and Singhal (2005)

Biological detoxification Genetic breeding Using different techniques to 
improve rapeseed quality at 
gene level

Obvious, the nutrition is 
improved

Hannoufa et al. (2014)

Enzyme addition Added directly Obvious, the nutrition is 
improved

Xue et al. (2009b)

Microbial fermentation Using the complex enzyme 
system secreted by microor-
ganism itself

Obvious, and the nutri-
tional value is significantly 
improved

Wang et al. (2012)
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of > 80% for GLS (Xie et al. 2022). The nitrilase BnNIT2, 
extracted from B. napus, can convert nitriles from GLS 
to carboxylic acid and  NH3. Under the conditions of pH 
5.0 and  Fe2+, the degradation rate of nitriles from GLS 
reached ~ 80% (Zhang et al. 2022).

At present, the effect of enzyme combinations on 
detoxification and quality improvement of RSM appears 
to be superior to that of single enzymes. Moreover, 
enzymatic detoxification can be further enhanced using 
physical treatments, such as ultrasound, expansion, and 
extrusion (Nibedita et  al. 2007; Jin et  al. 2016). RMS 
samples were pretreated using four methods (extrusion, 
hot water, dilute acid, and dilute alkali) and three fungi 
(pullulan brachyderm Y-2311–1, Fusarium venenatum 
NRRL-26139, and Trichoderma reesei NRRL-3653). The 
optimal combination on cold-pressed RSM was pretreat-
ment using extrusion and Fusarium venenatum NRRL-
26139 fermentation. This method resulted in a protein 
content of 54.4%, and a decrease of neutral detergent 
fibre (NDF), GLS, and residual sugar content to 11.6%, 
6.7  µmol/L/g, and 3.8%, respectively. This approach not 
only reduced GLS (up to 98%) and NDF (up to 65%) in 
RSM, but also increased protein content in RSM (up 
to 45%) (Croat et  al. 2017). RSM contains 16–22% (wt/
wt) pectin polysaccharides, cellulose, hemicellulose, and 
other non-starch polysaccharides (NPA). The effects of 
acid extrusion and commercial pectinase on NPA fer-
mentation in RSM were compared. It was found that the 
addition of enzymes in raw RSM significantly increased 
the fermentation of NPA (38%) compared with acid treat-
ment (Pustjens et  al. 2014). Thus, the fermentability of 
RSM polysaccharides can be improved using different 
physical or chemical pretreatment methods combined 
with enzymatic hydrolysis. Pustjens et  al. showed that 
weak acid pretreatment and commercial pectin hydrolase 
treatment resulted in the best digestion effect on RSM 
carbohydrates, yielding a total carbohydrate content of 
only 32% (Pustjens et al. 2012).

Microbial fermentation
The microbial method refers to the use of naturally prop-
agated microorganisms or artificially added microbial 
preparations that secrete related enzymes to effectively 
decompose antinutritional factors and other macromo-
lecular substances through fermentation. Addition of just 
10% of raw RSM in the diet can reduce the weight and 
egg quality of laying ducks; antinutritional factors in RSM 
are the main obstacle to increase the content of rapeseed 
as a feed additive (Tan et al. 2022). Ashayerizadeh et al. 
(2017) examined the effect of fermented soybean meal 
(FRSM) and RSM as feed additives for broilers. Com-
pared with RSM, feeding FRSM significantly reduced the 

colonization of chicken organs by Salmonella enterica 
serovar Typhimurium and the heterophil/lymphocyte 
ratio, and significantly increased weight gain and the feed 
conversion rate of the broilers. Compared with lettuce 
meal, FRSM after solid-state fermentation by Aspergillus 
niger improved growth performance and nutrient digest-
ibility in pigs and is a promising alternative protein in the 
pig industry (Shi et  al. 2016). Red snapper was fed dif-
ferent contents of A. oryzae-fermented RSM instead of 
fish meal; it was found that at 25–50% rapeseed content, 
the replacement of fish meal by fermented rapeseed pro-
moted the growth and utilization of nutrients, resulted in 
increased immune responses and antioxidant effects, and 
significantly enhanced the lysozyme, bactericidal, and 
peroxidase activities of red snapper (Dossou et al. 2018).

The microbial fermentation method mainly uses 
strains, such as B. subtilis, Saccharomyces cerevisiae, A. 
niger, and Lactobacillus. B. subtilis, A. niger, and yeasts 
are the most commonly used organisms (Table  2). Fer-
mentation of RSM by these organisms, either singly or in 
combination, can significantly improve protein hydroly-
sis, resulting in higher peptide yields and better detoxifi-
cation effects. Microbial fermentation of RSM is usually 
divided into solid and liquid fermentation. Generally, the 
effect of multi-bacterial fermentation is more prominent 
than that of single bacterium. In addition to bacterial liq-
uid, microbial fermentation usually requires the addition 
of other substrates, such as  KH2PO4. Generally, aerobic 
fermentation is performed first, followed by facultative 
anaerobic fermentation. In some studies, enzymes were 
added following bacterial fermentation to facilitate enzy-
molysis. Combined fermentation of RSM and wheat bran 
not only further improves the degree of protein hydroly-
sis in RSM, but also enhances the solubility of protein and 
phosphorus (Poulsen and Blaabjerg 2017; Xu et al. 2012). 
Some authors have used combined microbial fermen-
tation with enzymatic hydrolysis to effectively remove 
antinutritional factors from RSM, leading to a further 
increase in nutritional value and palatability (Chen et al. 
2019; Tie et al. 2020).

Studies on high‑value applications of RSM
The rich nutritional components of RSM have led to the 
development of many high-value products using the lat-
est biotechnological developments. Further, these pro-
cesses add value to the agricultural industrial wastes.

Development of value‑added products as fermentation 
raw materials
In 1990, Gattinger et  al. (1990) reported that the yield 
of xylanase produced from RSM was similar to or better 
than that produced from other substrates. In 1994, Ebune 
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et al. (1995) used RSM as raw material to produce 5000 
U/kg of phytase via solid-state fermentation by Aspergil-
lus ficuum NRRL 3135. Thereafter, Imandi et  al. (2013) 
used RSM as a medium substrate to produce lipase by 
solid-state fermentation with the marine yeast Yarrowia 
lipolytica NCIM 3589, whereby lipase activity reached 
57.89 U/gds after 4 days of fermentation. Freitas et  al. 
(2013) used RSM as a culture medium to produce pro-
tease via solid-state fermentation with A. oryzae, where 
the derived protease activity was 5.8-fold higher than that 
under the initial conditions. The effects of supplementing 
culture medium with RSM on the production of impor-
tant enzymes for biotechnology has been examined in 
cultures of the white-rot fungi Cerrena unicolor. In the 
presence of 3.5% wt/v RSM, the activities of chitinase, 
β-glucosidase, and laccase were increased by 4.1, 8.4, and 
3.9 times, respectively. These results indicate that liquid 
deep fermentation of RSM is an inexpensive and effective 
method to produce chitinase, β-glucosidase, and laccase 
by C. unicolor (Jaszek et al. 2016).

As a culture medium, RSM not only promotes enzyme 
preparation, but also produces other high-value biologi-
cal products. In general, the high content of proteins, car-
bohydrates, and minerals in RSM cannot be absorbed by 
most microorganisms, such as industrial bacteria, yeasts, 
and microalgae. However, these nutrients can be made 
available to microorganisms by short-term solid fungal 
fermentation of RSM followed by enzymatic hydrolysis 
(Kiran et  al. 2012). RSM hydrolysate was prepared by 
solid fermentation and fungal autolysis using A. oryzae, 
Penicillium oxalate, and Neurospora crassa. Alternative 
fermentation media with RSM hydrolysate and molasses 
were developed to produce omega-3 docosahexaenoic 
acid (DHA) at levels comparable to those of commercial 
media containing expensive glucose and yeast extracts. 
The total cost of DHA production can be greatly reduced 
by fermenting bacteria on this inexpensive and environ-
ment-friendly medium (Gong et  al. 2015). Chen et  al. 
(2011) used RSM as raw material to produce succinic acid 
using Actinobacillus succinogenes, in combination with 
pretreatment using dilute sulfuric acid and simultaneous 
pectinase saccharification. The best effect resulted in suc-
cinic acid concentrations of 23.4 g/L and 11.5 g/100 g dry 
matter, which translated to a productivity of 0.33 g/L/h. 
Yao et al. (2012) used RSM as raw material to synthesize 
5.3 g/kg of iturin A and 51.3 g/kg of poly-c-glutamic acid, 
via solid-state fermentation with B. subtilis. Tadi et  al. 
(2021) used RSM as culture medium to produce poly-
(3-hydroxybutyrate) via fermentation with Bacillus meg-
aterium, reducing production costs and improving the 
utilization rates of RSM. Solid-state fermentation based 
on rapeseed can yield probiotic-rich polymers, such as 
levan, that have the potential to replace antibiotics. These 

are novel compounds with a promising potential in the 
context of a growing functional food market and can pro-
mote animal health and the ban of antibiotics (Konkol 
et al. 2019).

Rapeseed proteins as food sources
Rapeseed proteins are considered potential food addi-
tives that mainly exist in embryos as storage proteins, 
accounting for 80% of the total protein content. Napin 
(a 2 S albumin) and cruciferin (a 12 S globulin) are the 
two main protein storage families (Hoglund et al. 1992). 
Napin has good foaming performance and cruciferin 
acts as a gel agent. Oleosin content in rapeseed protein is 
21.8%. It is a low-molecular weight (15–26 kDa) alkaline 
protein (Huang 1992). Rapeseed proteins are efficient in 
water absorption and retention, which can improve the 
water-binding ability of food and enhance flavour reten-
tion. The good emulsification (EC) property of rapeseed 
proteins is an important factor in their application in the 
food industry, with uses that include the manufacturing 
of milk and meat products, and stabilizing emulsions in 
salad dressings and mayonnaise. The EC value, foaming 
ability, and stability of RSM proteins were significantly 
higher than those of soybean meal and flaxseed meal; 
however, heat treatment denatured proteins and reduced 
these parameters (Khattab and Arntfield 2009). As a 
potential and promising source of bioactive compounds, 
RSM proteins can supply active peptides that inhibit 
angiotensin-I-converting enzyme (ACE). However, the 
content of this active peptide in treated RSM proteins is 
significantly lower than that in nontreated RSM proteins 
(Wu et al. 2009).

Functional substances
Bioactive peptides in rapeseed proteins
Evidently, hydrolysis of rapeseed proteins produces pep-
tides—with relatively small molecular weight—with bio-
logical activity. The components of these peptides are 
complex, and their biological activity is related to amino 
acid composition, structure, sequence, and molecular 
weight (Elias et  al. 2008). The crude rapeseed peptides 
obtained by the digestion of rapeseed protein with Alcal-
ase 2.4 L showed antithrombotic activity and a noticeable 
inhibitory effect on fibrinogen-induced coagulation cata-
lysed by thrombin. When the concentration of peptide is 
30–50 mg/mL, the inhibitory effect reaches 90% (Zhang 
et  al. 2008). The antihypertensive peptide Arg-Ile-Tyr is 
obtained using the B. subtilis protease rapakinin, which 
can also inhibit the activity of ACE (at IC50 = 28  µM) 
(Yamada et al. 2010). The antitumour effects of rapeseed 
protein hydrolysates (RSCH), derived from RSM, were 
confirmed in vivo using the S180 tumour-bearing mouse 
model. The presence of RSCH may lead to improved 
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immune function in mice by reducing the formation of 
free radicals and oxidative stress responses; importantly, 
death or growth retardation in mice were not observed 
when RSCH was administered at 150 mg/kg/d (Xue et al. 
2009a, b). Wang et  al. (2016) used solid-state fermenta-
tion of RSM to obtain the antitumour active peptide 
RSP-4-3-3, which significantly alters the morphological 
characteristics of HepG2d tumour cells in vitro, thereby 
inducing apoptosis and inhibiting their proliferation. 
Cobs-Rosas et al. (2015) found that pectin extracted from 
RSM showed antiproliferation activity against tumour 
cells; however, antiproliferative activity varied depending 
on pectin type and extraction process. The use of micro-
organisms to transform biomass and obtain derivatives of 
medicinal value is common. For example, Yu et al. (2017) 
obtained two artemisinin derivatives (1-deoxyartemisinin 
and alpha hydroxy 4-1-deoxyartemisinin) by the bio-
transformation of artemisinin using Aspergillus terreus.

Phenolic antioxidants
Rapeseed contains more phenolic compounds than any 
other oilseed plant, and most of the phenolic compounds 
remain in the RSM; as a result, the antioxidant activity 
of phenols is retained when RSM is used as feed. Several 
studies have confirmed the excellent antioxidant prop-
erties and great potential of phenolic compounds in the 
development of functional foods. The antioxidants in SA 
help prevent cardiovascular disease and inhibit histone 
deacetylase activity that has been associated with the 
development of diabetes (Senawong et  al. 2013; Silam-
barasan et al. 2015, 2016; Cherng et al. 2013). Marta et al. 
(2018) reported that high concentrations of polyphenols 
extracted from RSM significantly reduced free advanced 
glycation end products. Elias et  al. (2008) used A. ory-
zae and Basidiomycetes squamae, combined with green 
chemistry, to gently and effectively obtain high-value 
canolol from RSM. In addition, studies have verified that 
SA may play a role not only in the treatment of hyperten-
sion but also in the prevention and treatment of hyper-
tension-related diseases, such as vascular hypertrophy, 
retinal diseases, and stroke (Harlan et al. 2015). Currently, 
existing synthetic ACE inhibitors, such as captopril and 
enalapril, have various side effects, including cough, rash, 
and vomiting. Therefore, SA from natural food sources 
has great potential for medical applications. In recent 
studies, SA has shown a potential synergistic effect with 
captopril. Such synergistic effect does not result from the 
inhibition of ACE but through endogenous vasodilators 
(Wang et al. 2020). At present, the strategies for extract-
ing phenolic acids, including SA, often refer to the meth-
ods published by Naczk et al. (1992) methanol, propanol, 
and water (7: 7: 6) are used as solvents for free and esteri-
fied phenolic acid extraction. To improve the extraction 

of phenolic acids from RSM, accelerated solvent extrac-
tion and other technologies have also been used .

Phenolic substances in RSM have wide applications as 
antioxidants in the food industry, biodiesel production, 
and cosmetics. High-performance liquid chromatogra-
phy methods (HPLD-DAD and HPLC–ESI–MS) have 
been used to identify the protein phenolic compounds 
of RSM that were converted to myrosinic acid (SA) by 
hydrolysis. Using DPPH and ABTS colorimetric tests 
revealed that SA had better antioxidant performance 
than sinapine(SP), even better than that of vitamin C 
(Le et al. 2012). These phenolic compounds in rapeseed 
have the potential to be used as natural antioxidants in 
the food industry. Vuorela et  al. (2004) separated phe-
nolic compounds from RSM using different methods 
and found that these compounds enhanced the scaveng-
ing of free radicals, inhibited the formation of liposomes 
and low-density lipoproteins, and showed superior anti-
oxidant effects; thus, it is reasonable to consider them as 
new products in the food and cosmetic industries. Iguchi 
et  al. (2021) found that high purity SE (100 wt%) could 
be obtained by preparative thin-layer chromatography 
and cation-exchange resin with adsorption and catalytic 
functions, using only ethanol and water as solvents; thus 
prepared, SE showed substantial antioxidant effect in oil 
preservation (Iguchi et al. 2021). The polyphenol mixture 
in RSM was extracted using 0.2%  HClO4 in methanol/
acetone (1: 1 v/v); the solvent extract could significantly 
inhibit the oxidation reaction and microbial growth of 
biodiesel, and delay the degradation and oxidation of 
biodiesel without affecting the main quality parameters 
(Manashi et  al. 2013). Dry distillation is a promising 
alternative to solvent-assisted process and suitable for 
concentrating protein cellulose, lignin, and polyphenols 
from many agricultural resources. Compared with solid 
liquid fractionation, it has a higher energy efficiency and 
reduced environmental impact and can produce enrich-
ment fractions with natural function. Oscar et al. (2018). 
recovered high protein and phenolic fractions from RSM 
and sunflower meal using two separate techniques based 
on particle charge (electrostatic separation) and density 
(turbine separation), with an overall recovery of 30%.

Production of bioenergy
In recent years, increased attention to the safety of 
energy supplies, climate change, and environmental pro-
tection, has stimulated interest in the use of biomass to 
produce bioenergy (Luo et  al. 2011). Kiran et  al. (2013) 
found that the solid-state fermentation of RSM by A. ory-
zae and autolysis by filamentous fungi can be used as a 
low-cost method for the production of microbial bio-oil 
by the Rhodosporidium toruloides yeast. This method 
offered a better carbon and nitrogen balance for lipid 
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accumulation, and the derived, highly unsaturated lipids 
could be used for biodiesel production. Production of 
polyhydroxyalkanoate (PHA) based on RSM hydrolysates 
may replace expensive carbon sources, nutritional sup-
plements, and precursors for copolymer production, 
integrating the bioconversion and production of PHA 
into existing bio-oil production. The method has the 
potential to enhance the feasibility and sustainability 
of the first-generation biorefineries. García et  al. (2013) 
used RSM hydrolysate to supplement PHA production, 
although glycerol was the main substrate. Wongsirichot 
et  al. (2020) used RSM hydrolysates as the PHA pro-
duction medium for Pseudomonas putida. The authors 
showed that nitrogen-rich RSM and short-term oxy-
gen supply could effectively induce PHA accumulation. 
Qian et al. (2013), using methanol and NaOH to perform 
in situ alkaline transesterification reaction on RSM, man-
aged to produce biodiesel at a 98% conversion rate and, at 
the same time, reduce the content of GLS in the remain-
ing RSM to 0.07%. Thus, considering biodiesel produc-
tion and RSM detoxification, the overall cost of biodiesel 
production can be reduced and the problem of protein 
feed shortage can be alleviated (Qian et al. 2013).

Environmental biological repair and protection
RSM-based applications are diversifying, not only in the 
fermentation sector but also in energy production, medi-
cal, and other fields. Moreover, RSM shows potential for 
applications in biological repair, environmental protec-
tion, food, cosmetics, and the production and develop-
ment of new materials. Zhou et  al. (2015) showed that 
soil pH, soluble organic carbon, and organic nitrogen 
can be improved by planting Sedum plumbizincicola 
in polluted acidic soils, followed by the planting of rice 
and the application of RSM. This practice substantially 
reduced the content of heavy metals in brown rice crops 
and increased yields, thereby providing a new strategy 
to ensure safety in food production and bioremediation. 
Mazurek et  al. (2021) pyrolysed RSM under anoxia and 
973.15  K for 2  h to produce biochar, the specific sur-
face area (166.99  m2/g) of which was superior to most 
reported biochar. Biochar can successfully separate Cu 
(II) and Zn (II) in industrial wastewater and shows excel-
lent adsorption capacity (52.2 mg/g) for Cu (II) in a short 
equilibrium time (Mazurek et  al. 2021). Biofumigation 
has attracted increasing interest as a method of control-
ling agricultural pests. In biofumigation, glucosinolate-
rich plants are used as cover crops in the field; these 
release toxic secondary glucosinolate-rich byproducts 
that can lead to the reduction of pest, disease, and weed 
occurrence in cultivated and horticultural crops (Ngala 
et al. 2015; Bellostas et al. 2007). Regarding the extraction 
of GLS, cold methanol extraction is as effective or better 

than other methods in extracting GLS: it does not require 
the use of freeze dryers or boiling methanol, and thus it is 
less harmful and costly (Doheny-Adams et al. 2017).

Other applications
Damian et  al. found that the bioconversion of RSM 
using bacteria and yeast produces polymers and biosur-
factants with high added value. These polymers can lead 
to the broad use of probiotics as substitutes for antibiot-
ics in animal feed and are suitable for use in cosmetics 
due to excellent moisturizing properties. Biosurfactants 
display strong antibacterial effects and can be used to 
preserve feed (Konkol et al. 2019). Zhu and Wu (2009) 
extracted two main polysaccharide components from 
RSM: WPS-1 and APS-2. Polysaccharides, which are 
mainly formed from the polymerization of galactose, 
arabinose, and glucose, exert a strong scavenging effect 
on superoxide and hydroxyl radicals (Zhu and Wu 2009). 
Rivera et  al. (2015) hydrolysed RSM using protease to 
obtain short-chain bioactive peptides that displayed 
good antioxidant, anti- wrinkle, and anti-inflammatory 
activities; the peptides were safe, nontoxic, and com-
patible with skin fibroblasts, thereby showing good 
application potential in skin care. Paciorek-Sadowska 
et  al. (2019) used rapeseed cake as a biofiller in the 
production of rigid polyurethane–polyisocyanurate 
foams, which are considered the best polymer materi-
als for heat insulation. Although the apparent density 
of foam material treated with rapeseed-cake grinds is 
higher than that without the biomaterial foam, its water 
absorption and compressive properties are improved, 
and it is less brittle and flammable (Paciorek-Sadowska 
et  al. 2019). Rapeseed protein can also be used as a 
source of a new type of polymer membrane that exhib-
its thermoplasticity due to vitrification in the presence 
of plasticizers, such as glycerol, polyethylene glycol, and 
sorbitol. Rapeseed proteins have comparable mechani-
cal properties and moisture resistance to other plant 
protein-based bioplastics and great potential in food 
packaging applications (Zhang et al. 2016b).

Conclusions and future prospects
Currently, a satisfactory detoxification process that is 
suitable for use at the level of industrial production is 
lacking. The available data indicate that future research 
must focus on the effects of enzyme addition and micro-
bial fermentation on the removal of antinutritional fac-
tors. Enzyme systems and microbial fermentation have 
shown outstanding effects on the removal of antinutri-
tional factors and are considered potential strategies for 
RSM commercial feed production. With the develop-
ment of rapeseed genetics, breeding, and biotechnology, 
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it is expected that the antinutritional factors of RSM will 
be reduced more effectively; however, this route is rela-
tively long. Domestication and culture of relevant strains 
as well as screening and development of more effective 
enzyme systems should be given priority. In parallel, gen-
erally recognized as safe (GRAS) bacteria and enzymes 
for rapeseed fermentation do not always yield the desired 
results, and the production costs and unresolved safety 
issues still need to be addressed.

The high-value applications of RSM is another impor-
tant aspect of RSM resource development. Through 
biotransformation and advanced extraction technology, 
the added value of agro-industrial waste can be effec-
tively increased, and products of high added value can 
be developed, providing new pathways for the applica-
tion of RSM. Many published reports have highlighted 
the value of these substances, but there is no relatively 
mature technology for the effective extraction and 
preparation of active substances yet. Therefore, it is 
necessary to further study and identify effective meth-
ods for the extraction and preparation of materials that 
are conducive to promoting the high application value 
of active ingredients in the industry. It is expected to 
promote the high-value industrial application of RSM 
active ingredients by effective and advanced technol-
ogy research aimed at the extraction and preparation of 
highly efficient active substances.

In the future, rapeseed products with high nutritional 
value and low toxicity are expected to play a greater 
role and make important contributions to alleviate the 
lack of protein resources in the global feed industry. 
Meanwhile, further development of technologies asso-
ciated with RSM-based applications will enable RSM 
resources to be fully utilized and valued in many fields.
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