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Abstract 

Gazania rigens (L.) Gaertn. (Asteraceae) is a medicinal plant with high ornamental potential and use in landscaping. 
The therapeutic potential of sesquiterpene lactones (SLs) as plant natural products for pharmaceutical develop‑
ment has gained extensive interest with costunolide (chemical name: 6E,10E,11aR-6,10-dimethyl-3-methylidene-
3a,4,5,8,9,11a-hexahydrocyclodeca[b]furan-2-one) used as a popular herbal remedy due to its anti-cancer, antioxidant, 
anti-inflammatory, anti-microbial, anti-allergic, and anti-diabetic activities, among others. In the present study, two 
explant types (leaf, stem) and four 2,4-dichlorophenoxy acetic acid (2,4-D) concentrations (0, 0.5, 1 and 2 mg/L) were 
tested for callusing potential. The results showed that stem explants treated with 1.5 mg/L 2,4-D exhibited higher cal‑
lus induction percentage (90%) followed by leaf explants (80%) with 1 mg/L 2,4-D, after a 4-week period. Cell suspen‑
sion cultures were established from friable callus obtained from stem explants following a sigmoid pattern of growth 
curve with a maximum fresh weight at 20 days of subculture and a minimum one at 5 days of subculture. In the 
following stage, the effects of elicitation of cell suspension cultures with either yeast extract (YE) or methyl jasmonate 
(MeJA), each applied in five concentrations (0, 100, 150, 200 and 250 mg/L) on cell growth (fresh and dry biomass) 
and costunolide accumulation were tested. After 20 days of culture, YE or MeJA suppressed cell growth as compared 
to the non-elicited cells, while costunolide accumulation was better enhanced under the effect of 150 mg/L MeJA fol‑
lowed by 200 mg/L YE, respectively. In the subsequent experiment conducted, the optimal concentration of the two 
elicitors (200 mg/L YE, 150 mg/L MeJA) was selected to investigate further elicitation time (0, 5, 10, 15 and 20 days). 
The results revealed that YE biotic elicitation stimulated cell growth and costunolide production, being maximum 
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Introduction
Gazania rigens (L.) Gaertn. (Asteraceae family) is a her-
baceous perennial plant, native to South Africa that 
grows better in warm and sunny locations (Xie et  al. 
2013). Gazania rigens plants have colorful flowers, a pro-
longed flower life and flowering season, are resistant to 
adverse environmental conditions, such as drought, heat, 
and moderate cold temperatures, and well-adapted to 
poor soils (Li 2011). Gazania rigens is easily propagated 
by cuttings, plant division, and tissue culture and pre-
sents high ability of creating colonies in roadbed land-
scapes (Wang 2013).

Many studies have pointed out the beneficial effects 
and the biological properties of the essential oils and 
their major components including terpenes and ter-
penoids (mostly monoterpenes and sesquiterpenes) 
(Stephane and Jules 2020). The therapeutic potential of 
sesquiterpene lactones (SLs) as plant natural products 
for pharmaceutical development has gained extensive 

interest and investigated thoroughly the recent past years 
(Muschietti and Ulloa 2016). The majority of SLs have 
been reported from the Asteraceae family (de Kraker 
et al. 2002); however, there are variations in their struc-
ture and their backbones are constrained to a limited 
set of core skeletons, such as germacranolide, eudes-
manolide and guaianolide (Van Beek et al. 1990), where 
costunolide is the common precursor (de Kraker et  al. 
2002). Costunolide, a well-known SLs is used as a popu-
lar herbal remedy due to its anti-cancer activities (Rasul 
et  al. 2012) with numerous other therapeutic effects 
including antioxidant, anti-inflammatory, anti-microbial, 
anti-allergic, anti-diabetic, bone remodeling, prevention 
of neurodegenerative disease, inhibition of alopecia, and 
prevention of lung disease (Kim and Choi 2019). Cos-
tunolide (6E,10E,11aR-6,10-dimethyl-3-methylidene-
3a,4,5,8,9,11a-hexahydrocyclodeca[b]furan-2-one) is 
a colorless crystalline powder with molecular formula 
of C15H20O2 and molecular weight of 232.318  g/mol 

on day 20 for fresh biomass, on day 5 for dry biomass and on day 15 for the bioactive compound. Accordingly, cell 
growth parameters were maximized under the effect of abiotic elicitation with MeJA for 15 days, while highest 
costunolide content was achieved after 10 days. Overall, MeJA served as a better elicitor type than YE for biomass 
and costunolide production. Irrespective of elicitor type, elicitor concentration and elicitation time, maximal response 
was obtained with 150 mg/L MeJA for 10 days regarding costunolide accumulation (18.47 ppm) and 15 days for cell 
growth (fresh weight: 954 mg and dry weight: 76.3 mg). The application of elicitors can lead the large quantity of 
costunolide to encounter extensive range demand through marketable production without endangering of G. rigens.

Keywords:  Biomass yield, Callus induction, Cell suspension cultures, Costunolide, Elicitors, Gazania, Medicinal plants, 
Plant tissue culture, Secondary metabolites, Sesquiterpene lactones

Graphical Abstract



Page 3 of 14Mahood et al. Bioresources and Bioprocessing           (2022) 9:100 	

(Rasul et  al. 2012). Structurally, costunolide (Fig.  1) is a 
monocarboxylic acid having three double bonds which 
by catalytic hydrogenation generates hexahydrocostu-
nolide and partial hydrogenation of costunolide produces 
dihydrocostunolide (Rao et  al. 1960). The bioactivity of 
costunolide is mediated through its functional moiety, 
α-methylene-γ-lactone, which can react with the cysteine 
sulfhydryl group of various proteins, thereby altering 
intracellular redox balance (Rasul et al. 2012).

Secondary metabolites (SMs) are necessary for main-
taining plant life cycle and environmental adaptation 
reasons (Park et al. 2020). The increase in world popula-
tion and the reduction in cultivable available land (Rao 
and Ravishankar 2002) along with environmental and 
geopolitical instabilities as well as rapid depletion of 
medicinal plants from their natural habitat are limiting 
factors in the production of plant-derived compounds 
(Mulabagal and Tsay 2004), because large-scale crop 
cultivation is needed for their extraction on a commer-
cial basis (Kieran et al. 1997). A wide range of uses have 
been proposed for SMs but mainly as drugs, flavorings, 
fragrances, pigments, bio-pesticides, and food additives 
(Murthy et al. 2014). Plant genetics, environmental con-
ditions, climate, season, growth period, plant parts, pre- 
and post-harvest processes, extraction methods (Açıkgöz 
2020), cultivation practices (Nagella and Murthy 2011) 
as well as the age of the plant (Nasim et  al. 2010) are 
among the factors that affect the biosynthesis of SMs, 
increasing the cost of their production (Rao and Ravis-
hankar 2002). The in  vitro culture of plant cells, tissues 
and organs has been associated with higher production 
of SMs than the field grown plants (Nasim et  al. 2010). 
Plant tissue culture has been an effective and alternative 
method in the production of SMs because of its reliability 
and predictability as the effect of the main external fac-
tors (e.g., geographical, seasonal and environmental) is 
nullified, the unwanted taste can be altered or eliminated 
(Abd El-Salam et  al. 2015), thus production rapidity of 
high quality and standard products are guaranteed (Rao 

and Ravishankar 2002). Cell suspension culture is the 
best in vitro plant tissue culture system to fulfill the ever 
escalating industrial demand for increased production 
of SMs (Rani et al. 2020), due to the fast growth rate of 
cells in suspension (Chan et al. 2010). Elicitation has been 
the most commonly used technique (easy, high efficiency, 
low expenses) (Murthy et al. 2014) for the successful pro-
duction of SMs by triggering their biosynthetic pathway 
(Cai et al. 2012).

2,4-Dichlorophenoxy acetic acid (2,4-D) is a very effec-
tive plant growth regulator of the auxins group in stimu-
lating the formation of calli cells and produces crumb or 
friable callus (Mahadi et  al. 2016). The 2,4-D hormone 
also has more stable properties compared to the other 
types of auxin, because it is not easily decomposed by 
enzymes released by explants or by heating during the 
sterilization process (George et al. 2008). The friable cal-
lus is needed as a raw material for cell suspension so that 
the callus can be easily separated from each other so that 
it will be easy to be suspended into liquid media, into a 
single cell and then elicited (Damayanti et al. 2020). The 
exogenous application of elicitors (abiotic, biotic based 
on their nature or form) along with a plant membrane 
receptor is involved in the activation of specific genes, 
enhancing the accumulation of targeted SMs (Thiruven-
gadam et al. 2015). Yeast extract (YE) has been used as a 
biotic elicitor, while plant growth regulators, such as sali-
cylic acid, jasmonic acid, and methyl jasmonate (MeJA) 
as abiotic elicitors (Baenas et al. 2014). SMs biosynthensis 
in cell or hair root cultures have been strengthened after 
elicitation with YE and MeJA (Krstić-Milošević et  al. 
2017). YE, rich in vitamins of the B-complex and other 
essential components such as chitin, N-acetyl-glucosa-
mine oligomers, β-glucan, glycopeptides and  ergosterol 
(Boller, 1995) is actively participates in the propulsion of 
the metabolites synthesis and initiation of plant defense 
responses (Cai et al. 2012). MeJA acts as a signaling mol-
ecule in the phenylpropanoid pathway by triggering the 
effective stress response (Thiruvengadam et al. 2015; Ho 
et al. 2018). An efficacious tool to augment parthenolide 
(PN) (a sesquiterpene lactone compound) production 
could be the use of elicitors such as YE and MeJA due to 
their non-destructive nature for plant tissues related to 
terpene accumulation (Majdi et al. 2011).

The previous studies about in  vitro culture of gazania 
have focused on the production of plants only during 
the common micropropagation culture stages. There-
fore, this study was carried out to establish an efficient 
callus regeneration protocol of the G. rigens plant, using 
different explant types (leaves, stems) cultured in liq-
uid nutrient medium supplemented with different 2,4-D 
concentrations. Besides, the study also aimed to quantify 
biomass yield production and total costunolide content 

Fig. 1  Chemical structure of costunolide (Rasul et al. 2012) as the 
target secondary metabolite



Page 4 of 14Mahood et al. Bioresources and Bioprocessing           (2022) 9:100 

of cell suspension cultures derived in  vitro from stem-
calluses under the effect of different elicitor types (yeast 
extract, methyl jasmonate), elicitor concentrations and 
elicitation exposure times. To the best of our knowledge, 
there is no report for elicitation in the genus Gazania; 
therefore, the original aspect of the present work is that 
for the first time an elicitor-enhanced metabolites pro-
duction in G. rigens is reported.

Materials and methods
Plant material and sterilization
The garden of Diwaniya city in Iraq provided 2-month-
old Gazania plantlets grown in a greenhouse. Leaf and 
stem explants were surface sterilized with 70% (v/v) etha-
nol for 30 s and three times washed with sterile distilled 
water, then 10  min in 5% (v/v) of sodium hypochlorite 
solution (containing 5.25% of Cl2) and three times washed 
with sterile water. The explants were placed in 250  mL 
flask with 50 mL of Murashige and Skoog medium (MS) 
(Murashige and Skoog 1962) supplemented with 30  g/L 
sucrose, 8 g/L agar, and 2,4-D as a plant growth regulator 
in different concentrations (0, 0.5, 1, and 1.5 mg/L).

Callus induction
For callus induction, a two-factor multifactorial design 
was employed. The first factor was the explant type, 
which was separated into two categories: leaf explants 
and stem explants. The second factor  was 2,4-D, which 
had four levels: 0, 0.5, 1, and 1.5  mg/L. The explants 
were preserved in the previous section’s media and incu-
bated at 25  °C with a 16-h photoperiod. Each treatment 
was replicated three times with ten explants per repli-
cate (total 30 explants per treatment). As a control, the 
explants were cultured without plant growth regulators. 
After 4 weeks, percentage of callus formation (%) was 
recorded.

Establishment of cell suspension cultures
Gazania rigens cell suspension cultures were established 
from friable callus obtained from stem explants. A pas-
sage of calli (500  mg) was re-cultured into a 120  mL 
Erlenmeyer flask containing 25  ml of MS liquid culture 
medium supplemented with 1.5  mg/L of 2,4-D. Then 
cultures were incubated on a rotary shaker (110 rpm) at 
25 ± 2 °C under a photoperiod of 16 h/8 h (light/dark) at 
a light intensity of 1000 lx. Cell suspension cultures were 
sub-cultured at 2-week intervals. To maintain the cell 
cultures, the experiments were carried out in MS liquid 
culture medium supplemented with the same concentra-
tion of 2,4-D, pH, 5.8. After 5, 10, 15, 20, 25 and 30 days 
of culture, fresh cell weight was measured as described by 
Farjaminezhad and Garoosi (2021). For this purpose, the 
cells were collected by Whatman No. 1 filter paper using 

Büchner funnel under vacuum conditions for 30  s and 
weighed immediately.

Treatment with elicitors
YE and MeJA used as biotic and abiotic elicitors, respec-
tively. The cell suspension cultures were transferred into 
100 mL Erlenmeyer flasks containing 25 mL of liquid MS 
medium supplemented with 1.5  mg/L of 2,4-D with an 
initial callus of 500 mg. The stock solution of YE (Merck, 
Germany) was prepared by dissolving yeast extract 
in distilled water and then filtering it using a 0.22  μm 
syringe filter. Different concentrations of YE including 
0, 100, 150, 200 and 250  mg/L, or different concentra-
tion of MeJA including 0, 100, 150, 200 and 250  mg/L 
were added to cell suspension cultures. The cultures were 
kept on a rotary shaker at 110 rpm and 25 ± 2  °C in the 
dark, and sampling was done by recording fresh and dry 
weights after 20 days of each treatment depending on the 
previous results.  Optimal concentration of elicitors was 
selected to investigate elicitation time (5–20  days). The 
addition of elicitors at the beginning of cell culture was 
used as the control. The cells were also harvested after 
20 days of culture to evaluate the growth and costunolide 
accumulation.

Preparation of sample solution from extracts
The ethanolic extracts of callus and cell suspension were 
obtained according to the method of Tshabalala et  al. 
(2016). Callus and cell suspension from three replicates of 
each treatment were undergo drying at 40 °C to constant 
weights in an oven. They were subsequently pulverized 
into a fine powder using Waring Commercial Labora-
tory electric blender and stored at 4  °C. The powdered 
sample of 50 g was extracted with 500 mL of ethanol and 
in lidded 2 L flasks at 110  rpm for 24 h were shaken at 
25 °C using an orbital shaker. The resulting infusion was 
filtered and evaporated to dryness in a rotary evaporator 
(Cole Parmer SB 1100, Shangai, China) and stored as dry 
extract at 20  °C until use. The individual concentrated 
extracts were diluted with methanol and injected onto 
HPLC system for the estimation of costunolide.

Preparation of standard solution and quantification 
of costunolide content
Accurately weighed amount of 10 mg of costunolide was 
dissolved in 10 mL methanol in volumetric flask. Calibra-
tion standards were prepared by diluting the appropri-
ate volume of stock solution with methanol to obtained 
concentration levels of 1, 2, 5, 10, 20, 50 and 100 μg/mL. 
Samples analyses were carried out on a HPLC system 
consisted of a Waters 600 HPLC with a 486 UV detector 
and 717 Autosampler. Chromatographic separation was 
performed on a Thermo BDS HYPERSIL C18 column 
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(4.6 mm × 100 mm, 2.4 μm). The mobile phase was deliv-
ered at a flow rate of 0.5 mL/min consisting methanol–
water solution (70:30 v/v). The column temperature was 
maintained at 25  °C and the effluent was monitored at 
225 nm.

Statistical analysis
Analysis of variance (ANOVA) was performed with the 
SPSS 17.0 statistical package and mean separation with 
Duncan’s Multiple Range Test. Significance was recorded 
at p ≤ 0.05. The experimental layout was completely 
randomized.

The callus induction experiment was a 2 × 4 factorial 
one with two types of explants (stem, leaf ) and four con-
centrations of 2,4-D (0, 0.5, 1.0, 1.5 mg/L), thus included 
eight treatments each replicated three times with 10 
explants per replicate (30 explants/treatment). The main 
effect of factors (2,4-D concentration, explant type) and 
their interaction was determined by General Linear 
Model/two-way ANOVA. In addition, one-way ANOVA 
used for the comparison of means derived from the four 
2,4-D concentrations for each explant type separately.

In the experiment related to the effect of elicitors on 
biomass cell growth parameters and costunolide accumu-
lation, the means were subjected to one-way ANOVA for 
each elicitor type separately, regardless of elicitor’s con-
centration. In addition, the main effect of factors; elici-
tor type, elicitor concentration and their interaction was 
determined by General Linear Model/two-way ANOVA. 
The experiment was a 2 × 5 factorial one with two elici-
tors types (YE, MeJA) each applied at five concentrations 

(0, 50, 100, 150, 200  mg/L), thus consisted of 10 treat-
ments (3 replicates × 10 explants/replicate = 30 explants/
treatment).

In the experiment regarding the effect of elicitation 
time combined with either 200  mg/L YE or 150  mg/L 
MeJA on cell growth biomass and costunolide accumu-
lation, the means were subjected to one-way ANOVA 
for each elicitor type separately, regardless of elicitation 
time. In addition, the main effect of factors; elicitor type, 
elicitation time and their interaction was determined by 
General Linear Model/two-way ANOVA. The experi-
ment was a 2 × 5 factorial one with two elicitors types 
(YE, MeJA) and five elicitation periods (0, 5, 10, 15, and 
20 days), thus 10 treatments (3 replicates × 10 explants/
replicate = 30 explants/treatment).

Results
Explant sterilization and callus induction
Leaf- and stem-explants had different responses in steri-
lization percentage. The highest sterilization % were 
obtained in leaves with 90% and stems with 80%. How-
ever, the survival percentage of the explants after sterili-
zation was 95% for leaf- and 90% for stem explants.

In the case of leaf explants as a single factor, 2,4-D 
gave similar callus induction percentages (70–80%) 
to the control (60%) without a significant difference 
(p = 0.330 > 0.05). As concerns stem explants, callus 
induction was considerably stimulated (80–90%) with 
1 and 2  mg/L 2,4-D, in relation to the control (50%) 
(p = 0.013 < 0.05) (one-way ANOVA) (Table 1).

Table 1  Effect of explant type and 2,4-D concentration on callus induction (%) after 4 weeks of growth

Means (n = 30) ± standard error (S.E.) with the same letter in a column are not statistically significant different from each other according to the Duncan’s multiple 
range test at p ≤ 0.05. ns p > 0.05; *p ≤ 0.05; **p ≤ 0.01. Superscript small letters—differences between four 2,4-D concentrations for each explant type (either stem or 
leaf ) separately (one-way ANOVA). Superscript capital letters in parenthesis—differences between samples from the combined effect of two explant types (leaf, stem) 
and four 2,4-D concentrations (two-way ANOVA)

Origin of callus 2,4-D (mg/L) Callus induction (%)

Stem 0.0 50.0 ± 5.8b(C)

Stem 0.5 70.0 ± 0.0ab(B)

Stem 1.0 80.0 ± 10.0a(AB)

Stem 1.5 90.0 ± 5.8a(A)

p values (one-way ANOVA) (stem explants, 2,4-D concentration) 0.013*

Leaf 0.0 60.0 ± 5.8a(BC)

Leaf 0.5 70.0 ± 5.8a(B)

Leaf 1.0 80.0 ± 5.8a(AB)

Leaf 1.5 70.0 ± 10.0a(B)

p values (one-way ANOVA) (leaf explants, 2,4-D concentration) 0.330 ns

p values (two-way ANOVA/general linear model)

 2,4-D concentration (A) 0.006**

 Explant type (B) 0.045*

 (A)*(B) 0.020*
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Based on two-way-ANOVA and General Linear Model, 
the main effect of factors involved [2,4-D concentration 
(p = 0.006), and explant type (p = 0.045)] and their inter-
action (p = 0.020 < 0.05) had a significant effect on callus 
induction percentage. The increase in callus induction % 
was more pronounced in the case of stem explants (50–
90%), whereas non-significant differences were recorded 
among treatments in the case of leaf explants (60–80%). 
Therefore, stems treated with 1.5  mg/L 2,4-D followed 
by leaves with 1.0  mg/L 2,4-D were the two treatments 
yielding higher callus induction, 90% and 80%, accord-
ingly without significant difference (Table 1).

After 4  weeks of incubation and growth, the explant 
type, either leaf or stem, and 2,4-D concentration had an 
effect on the type and morphology of callus formation. 
The callus formed from the stem was friable, white–yel-
low colored and fast-growing (Fig. 2a), whereas the cal-
lus formed from the leaf was green, hard, and compact 
(Fig. 2b). Calluses obtained without 2,4-D were phenoli-
zated (Fig. 2c), whereas calluses obtained with 2,4-D were 
no penalized areas (Fig. 2a, b). As a result, 2,4-D played a 
critical role in the induction of callus in gazania.

Cell suspension cultures growth curve
During the first 5  days of cell suspension, fresh weight 
(mg) was recorded and started to grow for the subse-
quent  30  days of culture (Fig.  3). The maximum fresh 
weight (980  mg) occurred 20  days after the exponential 
growth phase. Then started to decline after 20 days. This 
was most likely due to the depletion of nutrients in the 
liquid MS medium, leading to cell death. This indicates 
that the optimum subculture interval for cell suspension 
cultures of gazania is 20 days, at this point the cells reach 
the progressive deceleration stage. In the present study, a 
sigmoid pattern of growth curve was observed in gazania 

with a maximum growth curve at 20 days of subculture 
and a minimum growth curve at 5 days of subculture.

Effect of YE or MeJA elicitation on cell growth 
and custonolide accumulation (20‑day culture)
The fresh biomass (730.7 and 748.0  g) was significantly 
higher in cell suspension cultures elicited with YE at a 
concentration of 200  mg/L and in the control-non-elic-
ited treatment, respectively, showing non-significant 
difference. However, the growth of the dry biomass was 
significantly reduced after elicitation with YE, causing a 
1.5–2-fold  decrease (39.0–49.0  mg) as compared to the 
control (78.0  mg). Costunolide accumulation of 2.56–
3.47 ppm in YE (100–250 mg/L) elicited cell suspension 
cultures were considerably higher than non-elicited ones 
(1.70 ppm). Specifically, 200 mg/L YE exhibited the high-
est costunolide accumulation differing significantly from 
the other treatments. There was a noticeable decline in 
cell growth of fresh biomass and costunolide content 
with 250 mg/L YE (one-way ANOVA) (Table 2).

a b c 

Fig. 2  Callus obtained from Gazania rigens explants after 4 weeks of incubation: a callus from stem explant with 1.5 mg/L 2,4-D, b callus from leaf 
explant with 1.0 mg/L 2,4-D, and c callus from control treatment (2,4-D-free)

Fig. 3  Cell suspension growth curve of Gazania rigens based on 
measurement of fresh weight for 30 days
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A significant and gradual decrease in the fresh and 
dry biomass of G. rigens cell suspension cultures was 
achieved in medium supplemented with increasing con-
centrations of MeJA (100, 150, 200, 250  mg/L) as com-
pared to the control. Cell growth parameters (748.0  g 
fresh mass and 78.0 g dry mass) were the highest in the 
control treatment, while MeJA elicitation had a negative 
effect (decrease by 1.8–5.8 and 1.3–18.6 times in fresh 
and dry mass, respectively). Even though, MeJA elicita-
tion adversely influenced cell growth, costunolide accu-
mulation was enhanced by 100–200  mg/L MeJA. The 
largest increase in costunolide accumulation (5.50 ppm) 
was achieved on day 20 in medium fortified with 
150 mg/L MeJA, being 3.2 times higher than in the non-
elicited cells (1.70 ppm) (one-way ANOVA) (Table 2).

According to two-way ANOVA and General Linear 
Model, the effect of the main factors (elicitor type, elici-
tor concentration) and their interaction on cell growth 
parameters (fresh and dry biomass) and costunolide 
accumulation was significant (p = 0.000 < 0.05). Between 
the two elicitors and irrespective of their concentration, 
YE exhibited significantly higher fresh biomass yields in 
all concentrations tested than MeJA; however, both elici-
tors significantly suppressed fresh biomass. In the case of 
dry biomass, under the lowest concentration of 100 mg/L 
MeJA gave higher dry weight than YE, similar dry weight 
values were obtained by YE and MeJA when applied at 

150  mg/L, whereas YE enhanced better dry biomass 
accumulation compared to MeJA at higher concentra-
tions (200 and 250 mg/L) (Table 2).

Effect of elicitation time combined with either 200 mg/L 
YE or 150 mg/L MeJA on cell growth and costunolide 
accumulation
The maximum costunolide accumulation (7.37 ppm) and 
fresh biomass yield (932.0 mg) of G. rigens from cell sus-
pension cultures achieved after 15 and 20  days, respec-
tively, of elicitation with 200  mg/L YE, being 2.12 and 
1.28 times higher than the control on day 0 (3.47  ppm 
costunolide and 730.7  mg fresh mass), accordingly. Cell 
growth depicted by the dry biomass appeared to peak at 
day 5, whereas there was not a significant further increase 
in dry weights between the 5th and 20th day of elicitation 
(68.3–74.0 mg) (one-way ANOVA) (Table 3).

Considering the weight of cells after each 5-day inter-
val in medium supplemented with 150  mg/L MeJA, we 
observed that the cells grew well for 20  days and their 
fresh weight increased significantly with incubation time. 
Fresh mass of cells was maximum (951.0 mg) after elicita-
tion with MeJA and 20 days of culture, being 3.15 times 
higher compared with elicited-cells on day 0 (302.0 mg). 
Among the different elicitation exposure periods, the 
day 15 was the optimum time for dry biomass accumula-
tion (76.3 mg), being 2.1-fold higher than on day 0. The 

Table 2  Effect of YE or MeJA concentration on cell growth parameters and costunolide accumulation

Means (n = 30) ± standard error (S.E.) with the same letter in a column are not statistically significant different from each other according to the Duncan’s multiple 
range test at p ≤ 0.05. ***p ≤ 0.001. Superscript small letters—differences between five concentrations for each elicitor type (either YE or MeJA) separately (one-way 
ANOVA). Superscript capital letters in parenthesis—differences between samples from the combined effect of two elicitor types and five elicitor concentrations (two-
way ANOVA)

Treatments Fresh weight (mg) Dry weight (mg) Costunolide (ppm)

YE (mg/L)

 0 748.0 ± 1.5a(A) 78.0 ± 0.6a(A) 1.70 ± 0.15d(E)

 100 536.0 ± 5.0c(D) 43.0 ± 1.5bc(DE) 1.73 ± 0.01d(E)

 150 364.0 ± 3.1d(F) 39.0 ± 1.7c(EF) 2.56 ± 0.01c(D)

 200 730.7 ± 5.2a(B) 47.0 ± 3.1b(CD) 3.47 ± 0.01a(B)

 250 670.7 ± 10.3b(C) 49.0 ± 3.5b(C) 3.02 ± 0.01b(C)

p values (one-way ANOVA) [YE concentration] 0.000*** 0.000*** 0.000***

MeJA (mg/L)

 0 748.0 ± 0.6a(A) 78.0 ± 0.6a(A) 1.70 ± 0.2d(E)

 100 420.0 ± 1.5b(E) 58.0 ± 0.6b(B) 3.30 ± 0.6b(B)

 150 301.7 ± 0.9c(G) 36.0 ± 0.0c(F) 5.50 ± 0.6a(A)

 200 220.0 ± 3.6d(H) 28.0 ± 0.6d(G) 2.60 ± 0.2c(D)

 250 130.0 ± 0.0e(I) 4.2 ± 0.2e(H) 1.60 ± 0.6d(E)

p values (one-way ANOVA) [MeJA concentration] 0.000*** 0.000*** 0.000***

Two-way ANOVA/general linear model

 Elicitor type (A) 0.000*** 0.000*** 0.000***

 Elicitor concentration (B) 0.000*** 0.000*** 0.000***

 (A)*(B) 0.000*** 0.000*** 0.000***
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treatment of MeJA (150  mg/L) to G. rigens suspension 
cell cultures led to a significant increase in custonolide 
accumulation over the experimental period (5–20  days) 
relative to control. In particular, the largest custonolide 
content was obtained with 150  mg/L MeJA for 10  days 
(18.47 ppm), being 3.36 times higher compared to day 0 
(one-way ANOVA) (Table 3).

According to two-way ANOVA and General Linear 
Model, the effect of the main factors (elicitor type, elicita-
tion time) and their interaction on fresh biomass and cos-
tunolide accumulation was significant (p = 0.000 < 0.05). 
In the case of dry biomass, the elicitation time as a single 
factor and its interaction with elicitor type showed sig-
nificant effect (p = 0.000 and 0.026 < 0.05) in contrast to 
the non-significant effect of the elicitor type as a single 
factor (p = 0.266 > 0.05). The comparison between the 
two elicitors and irrespective of elicitation culture period 
clearly showed that cells elicited with YE for 0–10  days 
gave higher fresh weights than did with MeJA; however, 
MeJA drastically increased fresh weight much higher 
as compared to YE at longer elicitation periods (10–
20 days). Under the same elicitation time, no substantial 
differentiations were observed in dry weights between 
the two elicitors (YE, MeJA) tested; however, dry weight 
was maximized after elicitation with either YE or MeJA 

for 10–20 days. MeJA exhibited significantly higher cos-
tunolide content than YE for all elicitation periods, while 
its accumulation was maximized after treatment of cells 
with 150 mg/L MeJA for 10 days (Table 3).

Discussion
Callus induction
In the present study with G. rigens, the type of explant 
and 2,4-D concentration had an effect on the type and 
morphology of callus formation. Alterations in the color 
of callus in G. rigens under study can be attributed to 
interactions performed among the level of endogenous 
and exogenous plant growth regulators, different explant 
types (leaf, stem) and micro-environment during cul-
ture including temperature, photoperiod duration and 
light intensity (Ellias et  al. 2014). The different reaction 
of explant types to callus induction would be ascribed 
to the balance of endogenous hormones inside plant 
tissues, since segments taken from the leaf base have 
more juvenile and lower number of differentiated cells, 
exhibiting higher meristematic activity and callusing 
potential (Asghari et al. 2012) as well as higher number 
of receptors for the growth regulator present in the cul-
ture medium (Close and Gallagher-Ludeman 1989), as 
compared to the leaf apex and middle segments. Auxins, 

Table 3  Effect of elicitation time combined with 200  mg/L YE or 150  mg/L MeJA on cell growth parameters and costunolide 
accumulation

Means (n = 30) ± standard error (S.E.) with the same letter in a column are not statistically significant different from each other according to the Duncan’s multiple 
range test at p ≤ 0.05. ns p > 0.05; *p ≤ 0.05; ***p ≤ 0.001. Superscript small letters—differences between five elicitation times for each elicitor type (either YE or 
MeJA) separately (one-way ANOVA). Superscript capital letters in parenthesis—differences between samples from the combined effect of two elicitor types and five 
elicitation times (two-way ANOVA)

Treatments Fresh weight (mg) Dry weight (mg) Costunolide (ppm)

YE elicitation time (days)

 0 730.7 ± 5.2d(E) 47.0 ± 3.1b(D) 3.47 ± 0.01e(J)

 5 796.0 ± 2.5c(D) 68.3 ± 1.3a(BC) 4.98 ± 0.01d(I)

 10 823.3 ± 3.5b(C) 70.0 ± 2.5a(ABC) 5.94 ± 0.01b(F)

 15 784.7 ± 9.8c(D) 72.7 ± 1.3a(ABC) 7.37 ± 0.01a(D)

 20 932.0 ± 0.6a(B) 74.0 ± 2.3a(AB) 5.60 ± 0.00c(G)

p values (one-way ANOVA) [YE, Elicitation 
time]

0.000*** 0.000*** 0.000***

MeJA elicitation time (days)

 0 302.0 ± 0.6d(G) 36.0 ± 0.0c(E) 5.50 ± 0.06e(H)

 5 543.0 ± 1.5c(F) 66.0 ± 2.1b(C) 13.94 ± 0.01b(B)

 10 732.0 ± 1.2b(E) 72.7 ± 2.9ab(ABC) 18.47 ± 0.02a(A)

 15 954.0 ± 2.3a(A) 76.3 ± 3.2a(A) 10.29 ± 0.01c(C)

 20 951.0 ± 2.6a(A) 73.0 ± 1.2ab(ABC) 7.11 ± 0.01b(E)

p values (one-way ANOVA) [MeJA, Elicita‑
tion time]

0.000*** 0.000*** 0.000***

Two-way ANOVA/general linear model

 Elicitor type (A) 0.000*** 0.266 ns 0.000***

 Elicitation time (B) 0.000*** 0.000*** 0.000***

 (A)*(B) 0.000*** 0.026* 0.000***
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especially 2,4-D play an important role in callus induc-
tion (Baskaran et al. 2006), especially of soft/friable cal-
lus by increasing the size of vacuoles (Borejsza-Wysoki 
and Hrazdin 1994). The increase of 2,4-D concentra-
tion in the medium was accompanied by an analogous 
increase in callusing response (Hassan et al. 2009); how-
ever, higher 2,4-D concentrations have been reported to 
be associated with reduced callogenic responses (%) in 
different explant types depended on plant species (Ali 
and Afrasiab 2014; Dangash et  al. 2015). Stem explants 
of the studied G. rigens treated with 1.5 mg/L 2,4-D fol-
lowed by leaf explants with 1 mg/L 2,4-D were the most 
effective treatments for callus induction (90% and 80%, 
respectively). Similarly, high percentages of friable cal-
lus induction (82.5–100%) after culture of stem explants 
in MS medium containing 2,4-D (0.5–0.75  mg/L) have 
also been reported in other Asteraceae species, including 
Artemisia annua L. (Dangash et al. 2015) and Achyrocline 
flaccida (Weinm.) DC. (Bonnecarrère et al. 2009). On the 
contrary, leaves served as better explants than stems for 
callus induction under the effect of 2,4-D either alone 
in other plant species including Ocinum tenuiflorum 
(Sharan et al. 2018) and safflower (Carthamus tinctorius) 
(Ali and Afrasiab 2014) or combined with thidiazuron 
(TDZ) in feverfew (Tanacetum parthenium) (Mahood 
et al. 2022). In the studied G. rigens, callus quality (color, 
texture, growth rate) was superior when calli derived 
from stem explants (friable, white–yellow, fast-growing). 
It has been shown that the friability of callus positively 
affects the successful response of cell suspension cultures 
based on the fact that the cream colored friable callus 
undergo successive sub-cultures results in the formation 
of fine cells appropriate for suspension culture (Bhojwani 
and Razdan 1996).

Cell suspension cultures growth curve
In the present study, G. rigens cell suspension cultures 
were established from friable callus derived from stem 
explants treated with 1.5  mg/L 2,4-D based on the fact 
that higher cell division rates can be obtained in cell 
suspension cultures as compared to cell callus cultures 
(Mustafa et al. 2011). The knowledge on cell suspension 
growth curve has been reported to be an essential step 
for logarithmic growth maintenance (Bona et  al. 2012) 
with 2,4-D to be the most common used auxin for the 
establishment of cell suspension cultures (Szabados et al. 
1991). Our results are partly in agreement (explant type, 
2,4-D concentration) with those reported in Achyro-
cline flaccida, where cell suspension cultures established 
from friable callus originated from leaf explants on MS 
medium containing 0.5 mg/L 2,4-D (Bonnecarrère et al. 
2009).

In this study, a sigmoid pattern of growth curve was 
observed in gazania with a maximum growth curve at 
20  days of subculture and a minimum growth curve 
at 5  days of subculture, as shown by fresh weight val-
ues, indicating that 20 days is the critical point the cells 
reach the progressive deceleration stage. Similar growth 
curve sigmoid pattern to the G. rigens under study has 
been reported for Ocinum tenuiflorum cells (lag phase: 
0–5  days, logarithmic phase: 5–20th day, stationary 
phase: 20–25th day) (Sharan et al. 2021). In Achyrocline 
flaccida, the exponential phase of cell suspension cul-
tures in DKW medium enriched with 2,4-D was longer 
(10  days) and the fresh weight at the end of the period 
higher (Bonnecarrère et  al. 2009). Possible explanations 
for the decline in cell biomass and deceleration in growth 
of cell suspension cultures of G. rigens after the 20th 
day can be the growth reduction because of cell signal-
ing and accumulation of toxic substances, cell death 
linked to oxygen depletion, limited air availability and gas 
exchange, nutrients consumption, smaller physical area 
(Bona et al. 2012) as well as the changes in the pH value 
of the spent medium during different growth phases of 
suspension cell culture, which is species-depended (San-
tos et al. 2010).

The maximum fresh weight of gazania cells suspension 
cultures occurred 20  days after the exponential growth 
phase and then started to decline. In three different spe-
cies of the genus Ocinum, the maximum fresh weight 
accumulation was observed on day 14 for O. basilicum, 
on day 32 for O. sanctum and on day 28 for O. gratissi-
mum (Mathew and Sankar 2012). The fresh weight of 
the cell suspension culture in two Calendula species (C. 
officinalis and C. arvensis, also Asteraceae) reached the 
maximum and at the same time constant value between 
the 25th and the 30th day, wherein a significant decrease 
in biomass accumulation was recorded after the 30th 
day and until the end of the 40th-day culture period (lag: 
0–5  days, log: 5–25  days, and death phase: 25–30  days) 
(Kaya 2019). Different growth curve than that presented 
in this study with gazania was recorded in the case of 
Iphiona mucronate, where the peak in fresh weight 
was noticed on day 9 (lag: 2  days, exponential phase: 
2–6  days, stationary: 6–9  days and death phase: after 
15 days with browning of suspension cultures) (Al-Gendy 
et  al. 2015). During the progress of growth phases, the 
decline in pH of the medium could be the outcome of the 
uptake of ammonium (NH4

+) and the liberation of H+ 
ions, whereas the increase in pH is ascribed to the rather 
higher assimilation of nitrate (NO3

−) by the cultures than 
the NH4

+ (Santos et al. 2010), leading cell suspension cul-
tures to growth inhibition, browning and finally to cell 
death.
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Effect of YE elicitation on cell growth and custonolide 
accumulation (20‑day culture)
The accumulation of valuable SMs with commercial 
application potential to the bio-industry can be enhanced 
via the use of in vitro stress factors called elicitors (Mur-
phy et  al. 2007), as signaling molecules triggering the 
formation of bioactive compounds (Açıkgöz et al. 2019), 
activating the plant’s defense response (Jiao et  al. 2016) 
and initiating the complex signal transduction network 
involving regulation of gene expression responsible for 
biosynthesis of targeted SMs (Savitha et al. 2006). There 
are several factors influencing the efficacy of elicitation in 
plants including the elicitor’s specificity, concentration, 
and exposure time, culture conditions (nutrient compo-
sition of the medium, growth regulators, light) and cell 
culture growth stages (Wiktorowska et al. 2010). The cell 
biomass is an essential factor to measure growth rate, 
and the concentration of the selected elicitor species-
depended of paramount significance, since concentra-
tions higher than the optimum can lead to hypersensitive 
response and cell death (Park et al. 2020). Elicitors such 
as YE stimulate the production of specific and targeted 
SMs, presumably by mimicking a pathogenic fungal 
infection (Li and Barz 2006).

In the present study with G. rigens, the fresh biomass 
and costunolide accumulation was higher in cell sus-
pension cultures elicited with 200  mg/L YE and in the 
non-elicited cells. The stimulating effect of yeast extract 
elicitation on cell growth and biomass production has 
been reported in several plant species including Gentiana 
dinarica (Krstić-Milošević et al. 2017), Stevia rebaudiana 
(Bayraktar et  al. 2016), Salvia castanea (Li et  al. 2016), 
Ophiorrhiza mungos (Deepthi and Satheeshkumar 2016), 
and Panax vietnaminis (Trong et al. 2017). However, the 
application of YE (50–200 mg/L) in gazania had an inhib-
itory effect on dry biomass after a 20-day period. Con-
tradictory results to ours in gazania have been reported 
in date palm, since cell suspension cultures elicited with 
YE (50–150  mg/L) performed increased dry biomass 
yield with the increase in the elicitor’s concentration (Al-
Khayri and Naik 2020).

It is clearly supporting the concentration-dependent 
effect of elicitors on biomass and bioactive compounds 
production (Ho et  al. 2018). Costunolide accumulation 
in YE (100–250 mg/L) elicited cell suspension cultures of 
gazania were considerably higher than non-elicited ones. 
In Ocimum tenuiflorum L., YE at 50  mg/L was optimal 
for inducing significantly higher accumulation of the tar-
geted bioactive compound (Sharan et  al. 2021). Taking 
into consideration the simultaneous maximum increase 
in cell growth/fresh biomass and costunolide accumula-
tion of cell suspension cultures of gazania under study, 
200  mg/L YE was the optimum concentration after a 

20-day period. YE is the water-soluble portion of autol-
yzed yeast and it can provide essential vitamins, nitro-
gen, amino acids, peptides, carbohydrates, and some 
growth regulators (Mosser et  al. 2011), functioning as a 
bio-enhancer of plant growth or the biosynthesis of plant 
pigments and other bioactive compounds (Złotek 2017) 
related to FPS gene expression and mediated by reactive 
oxygen species signaling and jasmonic acid signal trans-
duction (Rahimi et  al. 2015). The stimulating effect of 
YE on biomass and SMs in in vitro cultures can also be 
explained by the presence of some cations such as Ca2+, 
Co2+ and Zn2+ in YE exerting abiotic elicitors action 
(Sharan et  al. 2018) and the complex YE-induced stress 
response in the cultures, such as lipid peroxidation and 
metabolic pathways activation (Sánchez-Sampedro et al. 
2005).

Effect of MeJA elicitation on cell growth and custonolide 
accumulation (20‑day culture)
In the current study employing cell suspension cultures 
of gazania, elicitation with MeJA (100–250 mg/L) nega-
tively affected cell growth parameters (fresh and dry bio-
mass) after a 20-day period. In line with our findings, the 
increase in MeJA concentration showed a clear repres-
sion of cell growth and gradual decrease in accumu-
lated biomass for three species of the genus Ocinum (O. 
basilicum, O. sanctum and O. gratissimum) (Mathew and 
Sankar 2012), in Panax ginseng (Ali et al. 2007), Mentha 
piperita (Krzyzanowska et  al. 2012) and Ginkgo biloba 
(Kang et al. 2006), which was proportional to the applied 
concentration of MeJA. In all these studies, the decline 
in biomass accumulation may be due to toxicity stress 
induced by high concentrations and prolonged exposure 
of MeJA (Veerashree et  al. 2012), leading to cell death 
(Rijhwani and Shanks, 1998). Our results corroborate the 
studies conducted in Changium smyrnioides (Cai et  al. 
2017) and Mentha piperita (Krzyzanowska et  al. 2012), 
where suspension cells elicited with MeJA and jasmonic 
acid (JA), respectively, showed inhibition of biomass 
accumulation and suppressed cell growth. In contrast to 
our results in gazania, MeJA elicitation has been illus-
trated to have a stimulating effect on cell growth and 
biomass production in other Asteraceae species includ-
ing Lavandula vera MM (Georgiev et al. 2007), Achillea 
gypsicola (Açıkgöz et al. 2019), and Helichrysum stoechas 
(Gourguillon et al. 2022).

According to Jong-Joo and Yang (2003), MeJA is com-
petent of upregulating genes participated in jasmonate 
biosynthesis, secondary metabolism, cell wall biosyn-
thesis and tolerance to biotic and/or abiotic stress condi-
tions. Even though, MeJA elicitation adversely influenced 
cell growth of gazania suspension cultures, costunolide 
accumulation was enhanced by 100–200  mg/L MeJA, 
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being maximum at 150 mg/L. Based on the observations 
of Suzuki et  al. (2005), there is an inverse relationship 
between biomass and secondary metabolites production, 
as MeJA application resulted in cell growth inhibition 
due to toxicity and excited the accumulation of bioactive 
compounds due to inability to activate the genes involved 
in the phenylpropanoid/flavonoid pathway. Similarly, 
explants after elicitation with MeJA showed considerably 
higher scavenging free radical activity as compared to the 
non-elicited ones (Shilpha et  al. 2015). Consistent with 
our results in gazania regarding costunolide accumula-
tion, the positive effect of MeJA elicitation on targeted 
secondary metabolites in other Asteraceae species has 
been reported including 3,5-diCQA (main phenolic acid) 
in Helichrysum stoechas cells (Gourguillon et  al. 2022), 
and artemisinin, artemisinic acid, dihydroartemisinic 
acid, and other sesquiterpenoids as well as triterpenoids 
in Artemisia annua L. (Wang et al. 2009).

Effect of elicitation time combined with either 200 mg/L 
YE or 150 mg/L MeJA on cell growth and costunolide 
accumulation
There are various factors that enhance the effective role 
of elicitors on cell growth, culture viability, biomass and 
secondary metabolites production, such as the age of 
the cell culture, elicitation time, elicitor type (biotic or 
abiotic), elicitor concentration and growth stage of the 
cultures (Açıkgöz 2020). In this study, costunolide accu-
mulation and cell growth (fresh biomass) were substan-
tially enhanced after 15 and 20  days of elicitation with 
200  mg/L YE, respectively. The stronger stimulation of 
secondary metabolites by fungal elicitor (e.g., YE) often 
occurs in the late exponential growth stage and early 
stationary phase (Kitamura et  al. 1998). In accordance 
with our findings, the highest increase in biomass pro-
duction of Ocinum tenuiflorum was noted when suspen-
sion cultures exposed to 50 mg/L YE for 4 days (Sharan 
et  al. 2021). Dry biomass of gazania cells elicited with 
YE reached their maximum competence after 5  days of 
culture, which remained constant until the end of the 
experimental period (20 days). Similarly, in other Aster-
aceae species, YE elicitation of cell suspension cultures 
in different exposure times has been linked to increased 
biomass and secondary metabolites production includ-
ing Silybum marianum (L.) Gaertn (Asteraceae) showing 
maximum cell dry weight with 80 mg/L YE for 24 h and 
highest silymarin content (flavonolignans) with 120 mg/L 
YE for 72  h (Rahimi Ashtiani et  al. 2009) and Iphiona 
mucronata showing highest flavonoids and phenolics 
production with 10  mg/l YE for 12  h (Al-Gendy et  al. 
2015).

Among the 5 different elicitation exposure periods 
to MeJA, day 10, day 15 and day 20 gave the highest 

costunolide content, dry biomass and fresh biomass pro-
duction of gazania cell suspension cultures, accordingly. 
Therefore, it is clearly illustrated that the biosynthesis 
of many secondary metabolites such as sesquiterpe-
nes (e.g., costunolide) is triggered by MeJA application 
to the culture medium (Matkowski 2008). In feverfew 
(Tanacetum parthenium) hairy root cultures, all applied 
elicitors (2.5  mg/L YE, 20–25  mg/L MeJA, YE + MeJA) 
increased parthenolide (PN) (a sesquiterpene lactone 
compound) production, being maximum after treat-
ment with YE + MeJA for 48  h (Pourianezhad et  al. 
2019a,b). Among the wide range of elicitors, YE and 
MeJA have been extensively used due to their ability to 
induce the biosynthesis of plant pro-health compounds, 
such as vitamins, plant pigments, essential oils, or phe-
nolic compounds (Złotek et  al. 2016). In several other 
Asteraceae species, MeJA concentration, elicitation time 
as well as their interaction play a key role exerting dif-
ferent responses related to cell growth parameters (bio-
mass yields) and targeted bioactive compounds which are 
species-specific- and genotype-depended. In particular, 
MeJA was found to enhance accumulated cell biomass in 
three different Ocinum species, including O. basilicum 
(25 μM MeJA, 12 h), O. sanctum (25 μM MeJA, 48 h) and 
O. gratissimum (50 μM MeJA, 8 h) (Mathew and Sankar 
2012). Concerning secondary metabolites accumulation 
in cell suspension cultures, increased rhamnetin produc-
tion in Vernonia anthelmintica (L.) Willd. was obtained 
after treatment with 180  mg/L MeJA for 6  days (Rajan 
et al. 2020), while flavonoids and phenolics level in Iphi-
ona mucronata (Forssk.) Asch. & Schweinf was highest 
with 150 μM MeJA for 6 h (Al-Gendy et al. 2015).

Conclusions
It this study with G. rigens, the type of explant, and the 
concentration of 2,4-D had an effect on the type, mor-
phology and callus induction percentage. Stem explants 
proved to be the best source for further establish-
ment of cell suspension cultures. Cell suspension cul-
ture appears to be a promising technique for in  vitro 
accumulation of valuable secondary metabolites and 
elicitation a proven strategy for improving their pro-
duction yields. The results recommend the use of elici-
tation (MeJA or YE) as an effective method to raise 
costunolide content and biomass accumulation in cell 
suspension cultures of G. rigens based on the better 
understanding of how elicitors affect bioactive com-
pounds in an attempt to select elicitors for enhancing 
production of sesquiterpene lactones, e.g., costunolide 
at industrial scale. Biomass cell growth and costunolide 
production was seen to be depended on elicitor type, 
elicitor concentration, and elicitation time as well as on 
their interaction effects. Particularly, MeJA was more 
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effective elicitor type than YE after 20 days of culture, 
regardless of concentrations applied. In particular, the 
optimum concentration for each elicitor type was dif-
ferent; 150 mg/L for MeJA and 200 mg/L for YE. Tak-
ing into consideration the elicitation time as well, cell 
growth was better enhanced after 15 days of culture in 
liquid medium enriched with 150 mg/L for MeJA, while 
elicited cells for 10  days exhibited the highest costu-
nolide accumulation. To the best of our knowledge, 
there is no report for elicitation in the genus Gaza-
nia; therefore, the original aspect of the present work 
is that for the first time an elicitor-enhanced metabo-
lites production in G. rigens is reported. The results of 
the present study demonstrated that by optimizing the 
concentrations of the elicitors and the exposure time 
of elicitation, it is possible to produce the desired sec-
ondary metabolites of G. rigens in in  vitro laboratory 
conditions. Further research is needed to optimize the 
best and reproducible protocols for scale-up culture in 
bioreactors for increased accumulation of secondary 
metabolites. In this context, understanding the meta-
bolic pathways leading to the production of targeted 
bioactive compounds and their regulation is indispen-
sable. The acquisition of further referential information 
on the enzymes and genes involved as well as the tran-
scription factors controlling these pathways could be an 
extra advantage in the development of more efficient 
elicitation strategies of G. rigens secondary metabolism.
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