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Abstract 

Collagen, the highest content protein in the body, has irreplaceable biological functions, and it is widespread con‑
cerned in food, beauty, and medicine with great market demand. The gene encoding the recombinant type III 
human-like collagen α1 chain fragment was integrated into P. pastoris genome after partial amino acids were substi‑
tuted. Combined with promoter engineering and high-density fermentation technology, soluble secretory expression 
with the highest yield of 1.05 g L−1 was achieved using two-stage feeding method, and the purity could reach 96% 
after affinity purification. The determination of N/C-terminal protein sequence were consistent with the theoreti‑
cal expectation and showed the characteristics of Gly-X-Y repeated short peptide sequence. In amino acid analysis, 
glycine shared 27.02% and proline 23.92%, which were in accordance with the characteristics of collagen. Ultraviolet 
spectrum combined with Fourier transform infrared spectroscopy as well as mass spectrometry demonstrated that 
the target product conformed to the characteristics of collagen spectrums and existed as homologous dimer and 
trimer in the broth. This work provided a sustainable and economically viable source of the recombinant type III 
human-like collagen.
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Introduction
Collagen is a functional structural protein widely distrib-
uted in the extracellular matrix (ECM) of the connective 
tissues of humans and animals, accounting for 30% of the 
total protein in the whole body (Muyonga et  al. 2004). 
Three α-polypeptide chains hover around each other 
into the right-handed triple helix, then, assembled by 1/4 
stagger and parallel arrangement to form the supermo-
lecular aggregation structure of collagen–collagen fibril 
(Liu et  al. 2019). The molecular composition of type III 
collagen is homotrimer (Wang et al. 2022), in which the 
(Gly-X-Y)n tripeptide repeat sequence is the main feature 
of the spiral region.

Collagen type III, abundant in blood vessels, gut and 
skin, is up-regulated during the growth and wound heal-
ing of organism (Walimbe et  al. 2019). In the process 
of wound healing, type III collagen induces the migra-
tion of inflammatory cells and fibroblasts to the wound 
site to promote connective tissue formation and recov-
ery (Makuszewska et  al. 2020). Type III collagen is also 
a natural hemostatic material, which can induce platelet 
adhesion and aggregation to the bleeding site and acti-
vate some coagulation factors in coagulation cascade 
reaction (Kuivaniemi and Tromp. 2019; Seon et al. 2017). 
Recently, Wang et  al. (2022) asserted that recombinant 
human type III collagen has a practical effect in promot-
ing ECM remodeling, upregulating the synthesis of type 
I and type III collagen in vivo, and alleviating skin pho-
toaging caused by ultraviolet radiation. Collagen type 
III with unique physiological functions, has been widely 
utilized in food, beauty, and medicine, and the market 
demand is increasing.

Most collagen products on the market are extracted 
from the tissues and organs of mammals, which require 
a lot of raw materials, and there is a risk of pathogen 

contamination in applications such as prions, HIV, 
foot-and-mouth disease virus, etc. (Kotler et al. 2019). 
In addition, religious factors and ethnic differences 
would also be factors restricting the application (Liu 
et al. 2015). So, researchers turn their attention to the 
marine organisms (Subhan et al. 2021). However, some 
shortcomings, such as partial bioactivity loss, complex 
components, solvent residue, immunogenicity, as well 
as excessive content of heavy metals and toxic sub-
stances in raw materials, cannot be overcome (Xiang 
et al. 2021).

The biosynthesis of collagen has ushered in the dawn 
in the twenty-first century. It is a promising option to 
express collagen using animal and plant cells, yeast, 
and Escherichia coli systems, and to conduct large-scale 
preparation with high-density fermentation technol-
ogy (Xiang et al. 2021). Tang et al. (2016) utilized E. coli 
as the host and conducted a small-scale production of 
human-like collagen in a 10-L bioreactor induced with 
0.1  mM isopropyl-β-d-thiogalactopyranoside (IPTG) 
at 28 ℃, and finally obtained the output of 0.26 g  L−1. 
IPTG was toxic to the strain, and an expression strat-
egy using lactose with lower cost as inducer to replace 
it, approximately 0.7 g  L−1 of collagen binding domain 
fusion proteins was finally available in a 3-L fermenter 
(Fruchtl et al. 2016). E. coli serves as the most common 
prokaryotic host, but its poor post-translational modi-
fication ability as well as the high possibility of forming 
inclusion bodies and endogenous pyrogenic have been 
plagued by researchers. While animal and plant cell 
systems are cumbersome to operate and require strict 
culture conditions, there is still a long way to go for 
industrial preparation.

As a safe and popular eukaryotic host in pharmaceu-
tical protein expression, P. pastoris not only possesses 
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complete post-translational modification function, but 
also avoids the formation of inclusion bodies and the 
production of endotoxin. As early as 2006, phospho-
lipase C produced by P. pastoris was granted GRAS 
status by FDA (Vogl et  al. 2013; Werten et  al. 2019). 
Moreover, the biomass of P. pastoris can reach more 
than 400  g  L−1 (wet weight) in the culture process, 
which indicates it is very suitable for high-density fer-
mentation in bioreactors (Cereghino et  al. 2002), and 
has great potential for large-scale production. In 2018, 
the co-expression of human collagen α1 chain and insu-
lin gene in P. pastoris was reported, showing that the 
yield was 300  mg L−1 and the stability of the product 
was improved (Mi et  al. 2018). In addition, the mixed 
carbon fermentation strategy established by Wang et al. 
(2014) also exhibited good effects on collagen expres-
sion. When the GS115 strain was induced by a mixed 
carbon source at ration of 0.8 (glycerol/methanol), the 
highest collagen production can reach 1.27  g  L−1, and 
the fermentation time was reduced by 50%. P. pasto-
ris has been recognized as one of the most promising 
recombinant expression system for the commercial 
manufacturing of gelatin and collagen (Li et al. 2015).

However, since the natural collagen is an insoluble 
fibrin with large molecular weight, a large number of 
Gly-X-Y repeats are present in its sequence, and it is 
subject to strict post-modification regulation and self-
assembly process during synthesis, resulting in the 
difficulty of collagen expression. For proteins that are 
hard to express, strategies such as increasing gene dos-
age, adaptive modification of elements, fusion expres-
sion with soluble tags and so on can promote the yield. 

However, molecular modifications of collagen expres-
sion have been less reported. Therefore, on the basis 
of maintaining the (Gly-X-Y)n skeleton, we selected a 
segment of triple helical domain of type III human col-
lagen α1 chain, and replaced hydrophobic amino acids 
other than Pro (such as Tyr, Phe, Leu, Ile, Val, Met, 
His, etc.) with hydrophilic residues (Asp, Asn, Glu, 
Gln, Lys, Thr, etc.) to improve the hydrophilicity of the 
target protein (gene name col). We integrated the col 
gene into the genome of P. pastoris and achieved high 
productivity through screening for high copy transfor-
mants, promoter engineering, and expanded cultiva-
tion. A series of characterizations were performed to 
explore its application potential after affinity purifica-
tion. Our work provided a practicable approach for the 
preparation of type III human-like collagen (hlCOLIII).

Materials and methods
Strains and plasmids
Table 1 shows the strains and vectors used in our work. 
JM109 (stored in our laboratory) and GS115 (Invit-
rogen, California, USA) strains were used as cloning 
and expression hosts, respectively. GS115 is a histi-
dine (His)-deficient strain, so the transformants can be 
screened in MD medium. The encoding sequence of 
collagen was deposited in our laboratory and employed 
for this study with some modification based on previ-
ous reports (Shi et  al. 2022), while the pPIC9k is the 
expression vector stored in our laboratory.

Table 1  Strains and plasmids in this research

Strains/plasmids Relevant characteristics Applications Sources

Strains

E. coli JM109 High copy number, no modification or restriction on intro‑
duced DNA

Gene cloning host Lab stock

P. pastoris GS115 Histidine-deficient and screened on MD plates Gene expression host Invitrogen

Plasmids

pPIC9K E. coli–P. pastoris shuttle vector carrying α-MF, G418 Gene expression vector Lab stock

pUC57-col pUC57 vector carrying target gene col, Amp Gene cloning vector Synthesized by 
Sangon Biotech

pPIC9K-col pPIC9K carrying col gene and α-MF Recombinant gene expression vector This study

pPIC9K-PADH3-col pPIC9K carrying col gene, DH3 promoter, and α-MF Recombinant gene expression vector This study

pPIC9K-PDAS1-col pPIC9K carrying col gene, DAS1 promoter, and α-MF Recombinant gene expression vector This study

pPIC9K-PDAS2-col pPIC9K carrying col gene, DAS2 promoter, and α-MF Recombinant gene expression vector This study

pPIC9K-PGCW14-col pPIC9K carrying col gene, GCW14 promoter, and α-MF Recombinant gene expression vector This study

pPIC9K-PLRA3-col pPIC9K carrying col gene, LAR3 promoter, and α-MF Recombinant gene expression vector This study

pPIC9K-PSDH-col pPIC9K carrying col gene, SDH promoter, and α-MF Recombinant gene expression vector This study

pPIC9K-PGAP-col pPIC9K carrying col gene, GAP promoter, and α-MF Recombinant gene expression vector This study
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Recombinant vector construction and transformation
Using the pUC57-col as template and the IF/IR-col as 
primers (Additional file 1: Table S1), the target gene was 
amplified under the action of DNA polymerase (Phanta 
Flash Master Mix, Vazyme, Nanjing, China). After the 
objective gene and the pPIC9K were both digested by the 
EcoR I and Not I, the pPIC9k-col was ligated in a molar 
ratio of 7/1 under the catalysis of T4 DNA ligase and 
transformed into the JM109 for cloning.

The pPIC9k-col was extracted from the JM109/pPIC9k-
col and linearized by Sac I. Some 2000  ng of linearized 
plasmid was added into GS115 competent cells and 
moved to electroporation cuvette, shocked at 2000  mV, 
5  ms. 1  mL of precooled 1  M D-sorbitol was added 
immediately, recovered in a 220 rpm shaker at 30 ℃ for 
2 h, and spread on MD plates (1.34% yeast nitrogen base, 
2% glucose, and 2% agar).

Screening of transformants with high gene dosage
The recombinant vector was integrated into the AOX1 
region of the GS115 genome after being linearized, and 
the number of insertions was random, which leads to 
the difference of gene dosage among each transformant. 
Previous reports indicated that the increase of gene 
copy number is associated with elevated target protein 
production (Yang and Zhang. 2018; Zheng et  al. 2014). 
Therefore, it is necessary to screen transformants with 
high gene dosage under the action of a high concentra-
tion of geneticin (G418) to improve protein yield. The 
transformants on the MD plate were picked and inocu-
lated on YPD plates containing 1.0, 2.0, 3.0, 4.0, and 
5.0  mg  mL−1 G418, respectively, cultured at 30℃ and 
selected the strains that grew well.

High gene copy strains were selected and cultured in 
10  mL YPD medium (1% yeast extract, 2% peptone, 2% 
glucose) at 30℃, 220 rpm for 18 h, and then inoculated 
in 25 mL BMGY medium (1% glycerin, 2% peptone, 1% 
yeast extract, 0.4% K2HPO4 3H2O, 1.18% KH2PO4, 1.34% 
YNB) at 30℃, 220  rpm until OD600 is 5. After the cells 
were collected and washed by sterile water, they were 
inoculated into 25 mL fresh BMMY medium (0.5% meth-
anol, 2% peptone, 1% yeast extract, 0.4% K2HPO4·3H2O, 
1.18% KH2PO4, 1.34% YNB) and cultured at 30  ℃, 
220 rpm, and 0.5% methanol was added every 12 h.

Promoter engineering
The promoter is the control site of transcription initia-
tion in the gene expression process. Although it does not 
directly encode a protein, it participates in the expression 
by regulating the transcription of the gene. The genome 
sequence of GS115 was retrieved from the NCBI data-
base, and seven promoters including PADH3 (Karaoglan 
et  al. 2016), PDAS1 (Vogl and Glieder. 2013; Yurimoto 

et  al. 2000), PDAS2 (Duan et  al. 2018; Vogl and Glieder. 
2013), PGCW14 (Liang et al. 2013; Yang and Zhang. 2018), 
PLRA3 (Liu et al. 2016), PSDH (Periyasamy et al. 2013), and 
PGAP (He et  al. 2015; Yang et  al. 2015) were selected. A 
homologous arm (20 bp) was added to the primer (Addi-
tional file 1: Table S1), and the GS115 genome was used 
as the template for PCR. The pPIC9k vector linearized 
by reverse PCR was ligated with the target fragment by 
homologous recombinase (ClonExpressII C112, Vazyme, 
Nanjing, China) and delivered into JM109. The transfor-
mation was carried out as described in 2.2. To ensure 
the same copy number integration of the target gene, 
transformants which grew well on G418 plate with the 
concentration of 1.0–5.0  mg  mL−1 while failed to grow 
at 6.0  mg  mL−1 were selected (Duan et  al. 2019), and 
quantified the gene copy numbers by real-time PCR (RT-
PCR). Transformants with the same copy numbers were 
selected and fermented as described in 2.3.

Quantitative analysis of gene copy level
The genome of the recombinant strain as template was 
extracted by yeast genomic DNA extraction kit (Solar-
bio, Beijing, China). And the glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) was selected as the reference 
gene. The RT-PCR reactions and gene copy numbers cal-
culation were carried out according to Hu et  al. (2013). 
Primers (Additional file  1: Table  S2) were designed by 
Primer-BLAST in NCBI (https://​blast.​ncbi.​nlm.​nih.​gov/​
Blast.​cgi).

Fed‑batch fermentation
The scale-up cultivation was carried out in a 5-L biore-
actor (HuiSen Bioengineering, Wuxi, China). GS115/
pPIC9k-PDAS2-col strain was activated and cultured in 
BMGY until OD600 was around 5, and then inoculated 
into BSM medium [2.67% H3PO4, 0.094% CaSO4·2H2O, 
1.82% K2SO4, 1.49% MgSO4·7H2O, 0.413% KOH, 4% 
glycerol, 0.435% PTM1 (REBIO, Shanghai, China)] with 
4% inoculation quantity, adjusted rotation speed of 
600  rpm  min−1 and ventilation rate of 1  vvm, and cul-
tured at 30 ℃, pH 5. The dissolved oxygen (DO) gradu-
ally decreased to a nadir in the initial stage and then 
rebounded to 80%, indicating that the original glycerol in 
BSM had been exhausted. In the stage of glycerol feed-
ing, the rotating speed was increased to 800 rpm min−1, 
and 50% (w/w) glycerol containing 1.2% (v/v) PTM1 was 
fed at a rate of 18 mL h−1 L−1 until the wet weight of bio-
mass reached some 200  g  L−1, and the DO rebounded 
again to 80% after glycerol depletion. After starving for 
2  h to deplete the carbon source completely, cells were 
subjected to the methanol induced feeding phase at pH 
6.0, which was performed by enlarging the ventilation 
and rotation speed to 2–3  vvm and 1000  rpm  min−1, 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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respectively, and feeding methanol containing 1.2% (v/v) 
PTM1 for induction. Within the initial 4 h of induction, 
the cells experienced an adaptive process to methanol, 
and the feeding interval is controlled to supplement 1  s 
every 100 s (0.22 mL  s−1). Afterward, the feeding speed 
was gradually increased according to the pulse feeding 
strategy that feeding was performed when the DO rose 
back to 40%. The DO remained above 20% in the whole 
induction stage, and the fermentation ended after 96 h.

SDS‑PAGE and western blotting
The expression of hlCOLIII was analyzed by SDS-PAGE 
using 12% Tris-Gly resolving gels according to Laemmli 
(1970), stained with Coomassie Brilliant Blue G250. The 
densitometric value of the desired band in the destained 
treated gel were analyzed by ImageJ software, and com-
pared to the protein ladder (BBI, Shanghai, China) with 
known concentration (Alonso Villela et  al. 2020; Peng 
et al. 2014; Wang et al. 2014). The protein on the gel was 
migrated onto polyvinylidene fluoride (PVDF) by wet 
electrophoretic transfer and blocked with 5% bovine 
serum albumin (BSA) for 2  h. After extensive wash-
ing with TBST (150  mM NaCl, 20  mM Tris–HCl, 0.1% 
Tween-20), the PVDF was incubated with the primary 
antibody (anti-6 × His tag antibody) and secondary anti-
body (HRP-conjugated goat anti-mouse lgG) sequentially 
at room temperature. Finally, the membrane for immu-
noblotting was developed with ECL reagents (Ther-
moFisher Scientific, MA, America).

Purification
Ni2+ would chelate with the imidazole ring in the His 
tag, and the purpose of protein elution is achieved by 
replacing the 6 × His tag with an analog (glyoxaline) 
(Wang et al. 2009). The supernatant of the fermentation 
broth was treated by a 0.22 μm filter membrane and then 
immobilized metal ion affinity chromatography (IMAC) 
was carried out by AKTA protein purification system 
with a nickel column (His Trap HP 1  mL). After a lin-
ear gradient of glyoxaline (0–500  mM) at a flow rate of 
1 mL min−1, samples at the peak position were collected 
and verified by SDS-PAGE. The purified fraction was 
desalted in PBS (pH 7.4) by dialysis bag (MW: 1000 Da) 
to obtain the pure hlCOL.

Characterization of hlCOLIII
Sequencing of N/C‑terminal amino acids
The samples were treated with 10  mM dithiothreitol 
(DTT) and 50  mM iodoacetamide (IAA) for reductive 
alkylation, and then digested by trypsin and staphylococ-
cus Glu-C to obtain peptide fragments, which were sub-
jected to determination by hybrid ion trap-orbitrap mass 

spectrometer (Orbitrap Elite™, ThermoFisher Scientific, 
MA, America) combined with capillary high-perfor-
mance liquid chromatography (Ultimate 3000, Ther-
moFisher Scientific, MA, America). Data analysis was 
performed using the PEAKS Studio software.

Amino acid analysis
The lyophilized sample of pure hlCOLIII was neutral-
ized with NaOH after hydrolysis with 6 M HCl at 120 ℃ 
for 22 h. Samples were analyzed for the content of each 
amino acid with the automatic amino acid analyzer 
(S433D, sykam, Munich, Germany) after co-derivatiza-
tion by o-phthalaldehyde (OPA) and fluorenyl chlorofor-
mate (FMOC-Cl). The content of each amino acid were 
calculated according to the area of the corresponding 
peak.

Ultraviolet spectrum scanning
200 μL of hlCOLIII aqueous solution (1  mg  mL−1) was 
injected into 96-well quartz plate, and a full scan in the 
wavelength range of 200–400  nm was performed using 
a Multi-Mode Microplate Reader (SpectraMax M2e, 
Molecular Devices, San Francisco, America) at room 
temperature. SoftMax Pro 6.3 software provides data 
acquisition and analysis.

Molecular weight determination
1  μL of hlCOLIII aqueous solution and 1  μL of matrix 
solution (saturated α-cyano-4-hydroxycarboxylic acid, 
50% acetonitrile, 0.1% trifluoroacetic acid, 10% acetone) 
were mixed and spotted onto a steel MALDI plate. After 
drying, the relative molecular weights were measured by 
matrix-assisted laser desorption ionization time-of-flight 
mass spectrometry (MALDI-TOF-MS, ultrafleXtreme, 
Bruker Daltonics, America). The mass-to-charge ratio 
(m/z) was set within the range of 5000–50000, and 200 
collection peaks were superimposed per sample.

Analysis of Fourier transform infrared spectroscopy
The hlCOLIII is detected by Fourier transform infrared 
spectroscopy (FTIR) (Nexus, Thermo Nicolet, America) 
after being milled in a 1:100 ratio in pure KBr. The sam-
ple was put into the sample slot for tableting and scanned 
32 times. The spectrum in the wavelength range of 4000–
400 cm−1 was then collected at room temperature.

Statistical analysis
All measurements were executed in triplicate and the 
data were analyzed by Microsoft Excel, expressed as 
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mean ± standard deviation (SD). p < 0.05 was recognized 
as statistically significant.

Results and discussion
Construction of recombinant strains
The target gene was inserted into the multi-cloning site 
of the pPIC9K vector by double digestion (EcoR I and Not 
I), and the recombinant vector was electro-transformed 
into GS115 and integrated into its genome after lineari-
zation. Integrated expression can be inherited stably and 
save cost by eliminating the utilization of antibiotics in 
industrial production compared with episomal plasmid 
expression. The transformants were inoculated on a plate 
containing a high concentration of G418 to screen the 
multicopy clone strains. Figure 1A shows the basic pro-
cess of recombinant strain construction. The genome 
of the target strain was extracted for PCR and sequenc-
ing verification, both of which were consistent with the 
expected results, indicating the recombinant strains were 
constructed successfully.

Expression of hlCOLIII
Nine strains were selected from the 5.0  mg  mL−1 G418 
plate and cultured in shake flasks. SDS-PAGE gel of the 
fermentation broth supernatant revealed a clear band at 
27 kDa (Fig. 1B, Additional file 1: Fig. S1), and strain 2# 
displayed the highest protein expression of 0.031  g  L−1 
after 72 h of induction.

The apparent molecular weight of the target band is 
larger than its theoretical value (11.3 kDa), which is com-
mon in other related studies on recombinant expression 
of collagen (Butkowski et al. 1982; Li et al. 2015). A rea-
sonable explanation is that there are many hydrophilic 
residues in collagen, which leads to the weak binding 
ability between protein and SDS, and the negative charge 
load on the target protein decreases, so the migration 
rate slows down and the migration distance becomes 
shorter (Toshihiko and Yutaka 1980). In addition, the 
yeast has a complete post-modification system, and the 
glycosylation, phosphorylation as well as hydroxylation of 
some residues are also the reasons for the increase of the 
apparent molecular weight. We performed western blot-
ting to verify whether this band was the target protein. In 
Fig. 1C, there was no development in the control group, 

while a band appeared at 27  kDa in the experimental 
groups, proving that this was the target band.

Improving the expression level with promoter modification
To increase the expression of hlCOLIII, we performed 
double-driving by attaching a new promoter to the 
back of the PAOX1. Among the promoters we selected, 
PGCW14 and PGAP are constitutive promoters, which can 
be driven by only methanol when combined with PAOX1, 
whereas PADH3 and PLRA3 need to be induced by ethanol 
and rhamnose, respectively, on the basis of methanol. 
On the basis of consistent gene copy level (Additional 
file 1: Fig. S2), we screened a promoter with good effect, 
PDAS2, which driven with PAOX1 together, and made the 
output of hlCOLIII reach 0.086  g  L−1, which was 2.7 
times higher than that of the original strain (Fig. 1D). We 
selected the strain GS115/pPIC9k-PDAS2-col for the fur-
ther investigation.

High‑density fermentation
High-density fermentation is one of the most effective 
means to improve the output of the target product. Com-
bined with the outstanding potential of P. pastoris in this 
regard, we carried out the lab-scale production using 
GS115/pPIC9k-PDAS2-col strain in a 5-L fermenter. The 
whole fermentation cycle was 96 h, the original glycerol 
in the medium was exhausted and the wet weight of the 
cells reached as high as 142 g L−1 at 24th h. The stage of 
glycerol supplementation began.

Glycerol is a strong inhibitor of the PAOX1, so the cells 
were starved for 2  h to completely deplete the residual 
glycerol as well as the acetate and other metabolites pro-
duced at the early stage. Subsequently, methanol was fed 
into the fermenter as both inducer and carbon source, 
but the content needs to be strictly controlled in the 
whole cycle, the toxic effect of excessive methanol can be 
detrimental to the whole fermentation system. Accord-
ing to the DO-stat, we performed pulse feeding to make 
methanol become the limiting factor. While the hlCOLIII 
was not expressed before induction, the yield reached 
the highest value of 1.05 g L−1 after at 66 h, when the cell 
wet weight was 270 g L−1 (Fig. 2A, B). After that, the bio-
mass was still increased, but the expression of the target 
product began to decline, because the partial cell rupture 

(See figure on next page.)
Fig. 1  A The construction process of hlCOLIII high-yielding strain. The target gene after hydrophobic amino acid substitution was inserted into 
the pPIC9K expression vector and introduced into GS115. The transformants grown on the MD screening plate were subjected to screening 
for multicopy strains on plates containing high concentrations of G418. B SDS-PAGE analysis of 9 recombinant strains selected from the plate 
containing high concentration of G418 (5 mg mL−1). Lanes 1–9 were the expression levels of recombinant strains 1#–9# (loading volume 20 μL, 3 
times concentrated by trichloroacetic acid), respectively, as well as lanes M1 and M2 were standard molecular weights. C Western blotting analysis 
of the expression products of 2# recombinant strain. Lane 1 was the blank control group (GS115/pPIC9K), lane 2 was the experimental group 
(2# GS115/pPIC9K-col), and lane M was standard molecular weights. D The expression levels of hlCOLIII were driven by 7 different promoters in 
cooperation with PAOX1. Taking the recombinant strain GS115/pPIC9K-col (2#) as the starting strain (control)
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Fig. 1  (See legend on previous page.)
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caused the outflow of the contents, and the target pro-
tein was degraded by protease. The biomass began to 
decrease gradually after 72 h, and we decided to end the 
fermentation at 96 h.

Within 30  h after inoculation, the target product was 
not expressed, because PAOX1 and PDAS2 promoters both 
need methanol induction to initiate transcription, and 
the purpose at this stage is increase the biomass in prepa-
ration for subsequent induction.

Special attention should be paid to the methanol flow 
rate and the change of DO value during the induction 
phase. In the early stage of induction, it takes an adap-
tation process for yeast to change from glycerol feeding 

to methanol. At this stage, the consumption of metha-
nol is extremely low, and the growth of biomass is slow 
at this stage, even the wet weight is slightly reduced due 
to toxic effects. Accordingly, the corresponding pro-
tein expression level was also relatively low over the 
30–36th  h period. However, dissolved oxygen dropped 
rapidly and fluctuated widely during this phase, requir-
ing an increase in ventilation or revolution. The pulse 
feeding stage required adjusting the feeding rate accord-
ing to the growth status and oxygen consumption of the 
cells. As biomass rose stepwise, methanol consumption 
also increased, and the expression speed reached its 
maximum at 36–48 h, whereas biomass decreased at 6 h 

Fig. 2  A High-density fermentation culture of recombinant strains was carried out in a 5-L bioreactor. Glycerol feeding for some 4 h after 24th hour 
of inoculation and methanol was fed at 30th h after 2 h of starvation treatment. B SDS-PAGE analysis of broth supernatant after 36 h of inoculation. 
Lanes 1–9 were cultured 36, 42, 48, 54, 60, 66, 72, 78, and 84 h (loading volume 20 μL, not concentrated), respectively, lanes M1 and M2 were protein 
ladder. C Affinity purification of expression products. D The purified product exhibited a single band verified by SDS-PAGE. Lane 1 was supernatant 
of broth before purification, lane 2 was purified product, and lane M was standard molecular weights
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thereafter, and little change in protein production might 
be caused by methanol overfeeding. After 66 h, due to the 
accumulation of ethanol, acetic acid and dead cells in the 
culture medium, the state of the cells was not optimal, 
and then the intracellular protease leaked from the bro-
ken cells, the protein accumulation gradually decreased.

Purification
The supernatant of the broth was filtered by a 0.22  μm 
membrane and purified by the 6 × His tag. The purified 
product were collected and identified by SDS-PAGE 
(Fig. 2C, D). There was only one obvious electrophoretic 
band at 27 kDa in the whole track, the size of which was 
consistent with the previously validated, and there was 
no other miscellaneous band basically. The result of anal-
ysis suggested that the purity of the product up to about 
96%, which greatly saves the process cost of downstream 
processing.

Characterization
Sequencing of N/C‑terminal amino acids
The results of protein sequencing at the N-terminal and 
C-terminal of the expressed product showed that the 
sequences of both were completely consistent with the 
theory (Fig. 3A, Additional file 1: Figs. S3, S4). The N-ter-
minal sequence showed the Gly-X-Y tripeptide repeat 
sequences start from the 6th amino acid, and several 
amino acids before that were the sequence of restriction 
enzyme cleaving site between the signal peptide that has 
been excised and the target gene. Gly-X-Y also appeared 
in the first half of the C-terminal sequences, while the 
consecutive 6 histidine are the 6 × His tag that we added.

Amino acid analysis
The amino acid sequence in the triple helix region of col-
lagen is characterized by repeating short peptides (Gly-
X-Y)n, so, the levels of Gly and Pro should be high, which 
is also a distinct feature of collagen relative to other pro-
teins. The composition and content of each residue in the 

Fig. 3  A The protein sequences of N-terminal and C-terminal of the expressed product. B The ultraviolet full-scan spectrum of hlCOLIII in the range 
of 200–400 nm. The absorption peaks occur at 223.2 and 278.8, respectively, due to the electronic transitions of the different groups

Table 2  Amino acid analysis of hlCOLIII

a, b Asn and Gln will generate Asp and Glu, respectively, after acid hydrolysis 
treatment, so the values in the table are Asn + Asp and Gln + Glu

Composition Abbreviate Assay 
(g/93 g)

Molar 
content 
(%)

Content
(residues/1000 
residues)

Aspartic acid Asp (D) 8.26a 7.69a 77a

Asparagine Asn (N)

Glutamic acid Glu (E) 20.82b 17.60b 176b

Glutamine Gln (Q)

Serine Ser (S) 4.42 5.20 52

Histidine His (H) 5.97 4.71 47

Glycine Gly (G) 16.38 27.02 270

Threonine Thr (T) 1.35 1.40 14

Arginine Arg (R) 1.26 0.89 9

Alanine Ala (A) 1.85 2.60 26

Tyrosine Tyr (Y) 1.07 0.73 7

Cysteine Cys (C) 0.00 0.00 0

Valine Val (V) 1.68 1.77 18

Methionine Met (M) 0.00 0.00 0

Phenylalanine Phe (F) 1.48 1.11 11

Isoleucine Ile (I) 0.00 0.00 0

Leucine Leu (L) 0.00 0.00 0

Lysine Lys (K) 6.30 5.33 53

Proline Pro (P) 22.27 23.92 239
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expressed protein can be determined by the automatic 
amino acid analyzer. Table 2 lists the molar content and 
residue number of each component of hlCOLIII after 
acid hydrolysis. The Gly and Pro account for 27.02% and 
23.92%, respectively, which accords with the sequence 
characteristics of collagen basically. The detection of Asp 
with Asn and Glu with Gln were reflected in their sum, 
so the content is high, and the existence of His was due to 
the 6 × His tag added in the gene design process.

Ultraviolet spectrum scanning
Among the 20 amino acids involved in protein synthesis, 
the side chain groups of aromatic amino acids (Tyr, Phe, 
Trp) have a photoabsorption capacity in the near ultra-
violet region (200–400 nm) of electromagnetic spectrum 
due to the existence of benzene ring conjugated π bond 
system, and most proteins have absorption peak in the 
wavelength range of 250–280  nm (Naderi Gharaghesh-
lagh et  al. 2020). Figure  3B shows the ultraviolet spec-
trum of hlCOLIII in the near ultraviolet region, with two 
absorption peak at 223 and 278 nm, respectively, which 
is similar to the spectrum of natural collagen (Wu et al. 
2019). The hlCOLIII contains only a small amount of Tyr 
and Phe (Table 2), so the absorption peak at 280 nm con-
tributed by the transition of π → π* in the benzene ring 
is relatively weak. The absorption peak at 210–230 nm is 
obviously due to the n → π* transition of many functional 
groups such as –C=O, –COOH, –CONH– in the α chain 
of hlCOLIII (Li et al. 2020).

Mass spectrometry analysis
Mass spectrometric identification of the purified product 
was performed using MALDI-TOF-MS to determine the 
actual molecular mass. It can be seen from Fig. 4A that 
the molecular mass of the α1 chain of the recombinant 
collagen is 11.3  kDa, which is consistent with the theo-
retical (11.3  kDa). It is worth mentioning that there is 
a small peak at the mass-to-charge ratio of 22643 and 
33901, whose molecular weight is twice and three times 
that of the α1 chain, respectively. It is speculated that the 
dimer and trimer were formed by two or three α1 chains, 
and the reason for the low content may be caused by the 
depolymerization of dimer and trimer in the mass spec-
trometric experiment. In order to verify the correctness 
of the hypothesis, the expression products were subjected 
to active PAGE electrophoresis analysis, in other words, 
the depolymerization effect of SDS on the protein was 
removed during electrophoresis, and the active expres-
sion products were directly separated in Native-PAGE. 
Two bands were concentrated at approximately 55 and 
80  kDa (Fig.  4B, Additional file  1: Fig. S5), which were 
twice and three times as large as the band size in SDS-
PAGE (27  kDa), respectively, indicating that hlCOLIII 
existed as α1 dimer and trimer in supernatant. Several 
other small peaks in Fig. 4A are caused by ion fragments.

Analysis of Fourier transform infrared spectroscopy
Natural collagen spirals three α chains into a triple helix 
structure through the action of inter and intra-chain 
hydrogen bonds, and its amide A, amide I, and amide III 

Fig. 4  A MALDI-TOF-MS analysis of hlCOLIII shows that there are three peaks with decreasing intensity appeared at 11313.4, 22643.0 and 33901.2, 
respectively, and the m/z values of three were in an integral multiple relationship. B Native PAGE analysis of hlCOLIII. Lanes 1–3: hlCOLIII samples, 
with one band at 55 kDa and one between 70 and 100 kDa, respectively; Lane M: protein ladder
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display distinct spectral characteristics. Figure  5 shows 
the FTIR chromatogram of hlCOLIII. The spectral char-
acteristics and wavenumber of amide A and amide B 
bands in the hydrogen bond region, amide I as well as 
amide II in the double bond region, and amide III band 
located in the fingerprint region are close to those of 
natural collagen (Ashraf et  al. 2022). Hence, hlCOLIII 
has similar structural features with natural collagen. The 
amide A band is sensitive to conformational changes in 
the triple helical structure of collagen, and its peak posi-
tion correlates with the strength of hydrogen bonds. The 
amide A band generally appears in the range of 3330–
3325  cm−1, which results from the stretching vibration 
of N–H bonds, and the peak position shifts to lower 
wavenumbers when N–H bonds participate in hydro-
gen bond formation. We found an amide A band around 
3283.8  cm−1, proving that hlCOLIII has more N–H 
bonds involved in hydrogen bond formation than native 
collagen, which may affect triple helix formation.

The amide I band (1600–1700 cm−1) is the most clearly 
peptide bond vibration, which can generate a strong sig-
nal and is sensitive to protein secondary structure, but 
is influenced by water bending mode easily (Stani et  al. 
2020). The amide I band of hlCOLIII is near 1629.1 cm−1, 
which is mainly contributed by C=O bond stretching 
vibration, coupled C–N stretching as well as C–H bend-
ing. The amide II (1600–1500  cm−1), is mainly affected 
by N–H bending vibration as well as C–N stretching 
vibration in amide bonds, but less sensitive to protein 
conformational changes. The existence of the predomi-
nant band at 1550  cm−1 was attributed to natural triple 
helix collagen (Sizeland et al. 2018), whereas amide II was 
found near 1537.1  cm−1 in hlCOLIII. The resolution of 
the collagen amide III band is currently incomplete. Stani 

et al. (2020) reduced the amide III band of collagen to a 
narrower range of 1300–1175 cm−1 and clarified that its 
characteristic peaks were distributed in the three main 
peaks around 1280, 1240, and 1202 cm−1, with the peak 
of 1240  cm−1 being the most intense. The hlCOLIII has 
three characteristic peaks at 1279, 1239, and 1205 cm−1, 
and the absorption peak near 1239.5  cm−1 is the most 
intense, which was caused by N–H stretching vibration.

Conclusions
To sum up, the soluble secretory expression of hlCOLIII 
was successfully performed by using the P. pastoris sys-
tem in our research, which greatly simplified the down-
stream process and could achieve a yield of 1.05 g L−1. A 
series of characterization experiments suggested that the 
target protein had the structural characteristics of colla-
gen and existed in the form of dimer and trimer in the 
medium supernatant. The recombinant expression of 
collagen in P. pastoris could represent a sustainable and 
economically viable source of the polymer, and this work 
laid a foundation for the industrial production of recom-
binant collagen.
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