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Abstract 

As a promising industrial microorganism, methylotroph is capable of using methane or methanol as the sole car-
bon source natively, which has been utilized in the biosynthesis of various bioproducts. However, the relatively low 
efficiency of carbon conversion has become a limiting factor throughout the development of methanotrophic cell 
factories due to the unclear genetic background. To better highlight their advantages in methane or methanol-based 
biomanufacturing, some metabolic engineering strategies, including upstream transcription regulation projects, are 
being popularized in methylotrophs. In this review, several strategies of transcription regulations applied in methylo-
trophs are summarized and their applications are discussed and prospected.

Keywords:  Methylotrophs, C1 bioconversion, Transcription regulation, Transcription factor, Promoter, CRISPR

Introduction
Methylotrophs are a group of microorganisms that can 
reduce methyl-type one-carbon (C1) compounds, such 
as methane and methanol (Killham et  al. 2007; Chis-
toserdova et  al. 2009), which are potential substrates to 
produce biofuels and chemicals. Bioconversion of C1 
molecules into macromolecular compounds by methy-
lotrophs has aroused researchers’ interest in terms of 
greenhouse gas reduction, biomanufacturing, and bio-
logical mechanism exploring (Hu et  al. 2022). To date, 
many methanotrophic bacteria and methylotrophic 
yeasts belonging to methylotrophic classification (Bagh-
ban et al. 2019; Werten et al. 2019; Fabarius et al. 2021) 
remain unclear genetic background, leading to a block on 
the research of metabolic engineering reform.

It is known that an interpretation of gene behavior is 
particularly critical for expanding the industrial advan-
tages of microbes. Regulation of transcription is the 
key to gene expression, which is a significant strategy 
applied in metabolic engineering aiming to excavate the 

biological metabolic mechanism of target compounds 
and make reasonable gene designs (Deng et al. 2021). Dif-
ferent transcription regulation strategies can be selected 
according to the diverse metabolic engineering require-
ments, which have been widely used in various model 
strains (Nielsen et al. 2016; Deng et al. 2022).

Establishing a library of gene transcription elements, 
such as promoters, is always a rational scheme to express 
heterologous genes (Cheng et  al. 2022). A transcription 
factor (TF) engineering strategy is a feasible approach 
to obtaining a new gene-phenotype by binding spe-
cific DNA motifs to regulate gene expressions. Besides, 
CRISPR-mediated genome editing tools make in  situ 
gene manipulation more convenient, especially CRISPR 
interference (CRISPRi) and CRISPR activation (CRIS-
PRa) systems that have exhibited an indispensable role 
in the upstream reform of metabolic engineering owing 
to their accurate and efficient gene perturbation (Gilbert 
et al. 2014; Konermann et al. 2015; Peters et al. 2016). The 
strategies mentioned above are relatively mature and can 
meet most metabolic needs. However, more tools and 
approaches need to be further developed and optimized 
for C1-based cell factories due to a better understanding 
of methylotrophic biology.
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Due to the global demand for carbon neutralization, it 
is necessary to develop biotechnology that can effectively 
use C1 compounds as raw materials to produce use-
ful products for mankind. To enhance the advantages of 
methylotrophs in the fields of environment and biorefin-
ery, the analysis of gene expression regulatory networks 
is particularly important. Generally speaking, transcrip-
tion regulation is a significant strategy for the enhance-
ment of microbial gene expression. RNA polymerase 
itself has no special affinity for the promoter and cannot 
be transcribed alone resulting in silent genes. Therefore, 
transcription requires many elements and auxiliary tools 
to fulfill various requirements. Thus, more genetic strate-
gies are urgent to be exploited and modified for improv-
ing the industrial availability of methylotrophs from the 
perspective of transcriptional regulations. This paper is 
to summarize research progress and discuss applications 
of several important transcription regulation strategies 
based on methylotrophs.

Promoter engineering
The promoter is a significant element to regulate the 
transcription initiation time and expression intensity at 
the transcription level. The promoter of glyceraldehyde 
3-phosphate dehydrogenase PGAP is the most frequently 
used constitutive promoter which was first identified in 
methylotrophic yeasts (Waterham et  al. 1997, Killham 
et al. 2007). Even so, PGAP is not always the optimal choice 
to meet the needs of metabolic engineering, so research-
ers continued to characterize other possible regions 
which have been summarized more recently. Several 
constitutive promoters have been further found and their 
abilities to regulate gene expression levels were ranked 
by green fluorescence intensity (Wetzel et  al. 2016; Cai 
et al. 2021; Yan et al. 2022a). Interestingly, some promot-
ers showed different magnitudes varied from cultural 
conditions. The PPDH was stronger than PTRI in glucose 
conditions, while the opposite result manifested under 
methanol culture (Yan et al. 2022b) and PGCW14 seemed 
dominant in a glucose nutritional environment (Liang 
et  al. 2013; Zhang et  al. 2013b). Overall, this is ubiqui-
tous in methylotrophic yeasts, which is mostly caused by 
other regulators.

In methylotrophic bacteria, constitutive promoter 
PmxaF of methanol dehydrogenase gene mxaF is known 
as strongest (Puri et  al. 2015). Nevertheless, the appli-
cability of this promoter seems not particularly broad 
especially when it is constructed on an expression vector, 
PmxaF cannot show expectant activity (Garg et al. 2018a; 
Nguyen et al. 2018). This may imply the promoter may be 
strictly regulated by a specific element in the host Methy-
lomicrobium buryatense 5GB1. In contrast, promoter 
Ptac, whose strength is second only to PmxaF, is probably 

more suitable for transcription optimization of metabolic 
engineering in methanotrophs though it is heterologous 
(Amann et  al. 1988). As reported previously, Ptac pro-
moter was the most suitable for gene expression in Meth-
ylomicrobium alcaliphilum 20Z, leading to a double-fold 
gene expression upregulation of budABD gene clus-
ter than its native promoter to produce 2,3-butanediol 
(Nguyen et al. 2018). With further research on methane 
metabolism, various promoters have been identified and 
tested in methane-utilizing strains as shown in Table  1. 
By comprehensive comparison, Ptac is the most gener-
ally used promoter for transcription strengthening of 
bioproduction.

Dynamic regulation of promoters is a lynchpin in 
transcription regulation and inducible promoters play a 
pivotal role throughout the strategy. PAOX1, PDAS, PFDH, 
PFLD, PTPS1, and PSEO1 (Amuel et al. 2000; Park et al. 2007; 
Duan et al. 2018) have been gaining attention due to their 
inducibility. Most of them are mediated by methanol but 
PTPS1, which is driven by nearly 50℃ in Hansenula poly-
morpha. This may be a stress mechanism evolved to cope 
with high temperature. A similar PTPS1 promoter in psy-
chrotolerant yeast Guehomyces pullulans was proved to 
be activated once the survival temperature fluctuates to 
maintain short-term cell homeostasis by synthesizing 
heat stress-related enzymes (Zhang et al. 2013a). Besides, 
a dynamic tetracycline promoter/operator system was 
constructed in M. buryatense for lactate biosynthesis and 
reached a maximum titer of 1.3 g/L (Henard et al. 2016). 
This tool contains a promoter PtetR that only works on 
occasion with anhydrotetracycline, which will release 
the binding restriction of PtetR and RNA polymerase by 
changing the conformation of the tetracycline repres-
sor protein. A promoter derived from PtetR was recently 
assembled to a 3-hydroxybutyrate expression vector in 
Clostridium ljungdahlii and the degree of gene downreg-
ulation under inducing and noninducing conditions was 
reflected by qRT-PCR data (Woolston et al. 2018).

The superior characteristic indicates that PtetR will be 
an important candidate for the dynamic regulation of 
subsequent promoter engineering. Likewise, an expres-
sion system for monitoring the NADH: NAD+ ratio was 
set up in Methylococcus capsulatus (Bath) under the 
control of an arabinose-inducible promoter PBAD (Ishi-
kawa et  al. 2017). As additives for dynamic regulation, 
arabinose holds less toxicity than anhydrotetracycline, 
resulting in a toxicity-free mechanism that needs to be 
coupled under the installation containing Ptet, especially 
in the fermentation process with exacting requirements 
for high-density production.

To balance the core metabolic flux between the target 
products and by-products, selecting and optimizing an 
appropriate promoter is the only goal of the promoter 
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engineering strategy. So far, diversified promoter librar-
ies have been built to evaluate promoter candidates. The 
original method of building a library is to amplify the 
promoters of all genes and detect the interaction with 
proteins by 2D-PAGE, then further screen through fusing 
fluorescent proteins in  vivo (Lee et  al. 2021). However, 
the tedious process greatly increases the time cost in this 
way. To break this barrier, an Error-prone polymerase 
chain reaction (Ep-PCR) with the ability to obtain high-
throughput mutation and inspection has been developed 
and is commonly used in methylotrophs (Blazeck et  al. 
2013). A PGAP mutated library, from which mutagenic 
PGAP with different activities from low to high could be 
selected, was constructed with Ep-PCR in Pichia pasto-
ris (Qin et  al. 2011) to adjust the preference of TFs for 
different mutated sequences of promoters (Nevoigt et al. 
2006). Besides, promoter-predicted platforms will help 
select optimal promoter sequences, and hybridizations 
are contributed to building a mutated library (Vogl et al. 
2018, Cazier et  al. 2021). A computational framework 
was developed to predict promoter regions according to 
RNA-seq data sets in M. buryatense 5GB1 (Wilson et al. 
2021). Given this, metabolic networks based on promoter 
regulation can be easily predicted and established.

As initiation elements in the translation process, pro-
moter engineering strategies have been utilized for 
optimizing single or several genes to achieve reason-
able improvements in metabolic levels. Five expression 

models driven by different synthetic promoter PADH2 var-
iants formed a small library in which SNT5 variant opti-
mized by 2.2-fold compared with the original expression 
element has been screened out. This research indicates 
strong variants are powerful alternatives to the most 
widely used promoters in P. pastoris (Erden-Karaoglan 
et al. 2022). Garg accompanied with his colleagues opti-
mized several heterologous metabolites producing path-
ways by examining the strength among a series of RBS 
variants and diverse promoters in M. buryatense 5GB1C, 
up to 70 mg/L of crotonic acid and 40 mg/L butyric acids, 
were obtained in engineered strain from methane (Garg 
et al. 2018b). Nguyen et al. designed an RBS library cal-
culated by a computational program to address the issue 
that overexpresses E. coli-derived constitutive lysine 
decarboxylase for cadaverine production from lysine in 
Methylosinus trichosporium OB3b, combining with the 
strong promoter Ptac, 2.99  mg/L cadaverine could be 
obtained from methane, which is the first time to pro-
duce amino acids for feed and diamine compound for 
polyamides from methane using engineered methylo-
trophic bacteria (Nguyen et al. 2020).

Transcription factor engineering
TF can target multiple binding sites owing to their similar 
or related functions, which is called the characteristic of 
global regulation, while one gene can also be modulated 
by several regulators (Spitz et al. 2012). Therefore, mining 

Table 1  The intensity of different reported promoters in Methylotrophic bacteria

Promoter Gene product Condition Strength Host References

Ptac Methane Strong M. buryatense 5GB1 (Puri et al. 2015)

PrpoD Sigma 70 factor RpoD Methane Weak M. buryatense 5GB1

Plac Methane Weak M. buryatense 5GB1

PmxaF Methanol dehydrogenase Methane Strong M. buryatense 5GB1

Weak M. trichosporium OB3b (Lee et al. 2021)

PJ23101 Methane Weak M. buryatense 5GB1 (Wilson et al. 2021)

PJ23112 Methane Inactive M. buryatense 5GB1

PJ23117 Methane Inactive M. buryatense 5GB1

PJ23119 Methane Strong M. buryatense 5GB1

PCT5 Methane Strong M. buryatense 5GB1 (Garg et al. 2018a)

PsMMO Soluble methane monooxygenase Methane Strong M. silvestris BL2 (Smirnova et al. 2018)

Methanol Weak M. silvestris BL2

Acetate Inactive M. silvestris BL2 (Theisen et al. 2005)

PectA Ectoine Low salinity Weak M. alcaliphilum 20Z (Mustakhimov et al. 2010)

High salinity Strong M. alcaliphilum 20Z

Ptal Transaldolase Strong Methylomonas sp. DH-1 (Lee et al. 2021)

PDnaA Chromosomal replication initiator protein Weak Methylomonas sp. DH-1

PIntegrase Integrase Weak Methylomonas sp. DH-1

PrpmB 50S ribosomal protein L28 Weak Methylomonas sp. DH-1

Phps Hexulose 6-phosphate synthase Methane Strong Methylomonas sp. strain 16a (Ye et al. 2007)
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TFs and predicting binding motifs will facilitate further 
investigations of the nature of TFs themselves and the 
construction of transcription regulatory networks.

Since the similarity of the transcription regulatory 
networks between methylotrophic yeasts and Saccharo-
myces cerevisiae, TFs in methylotrophic yeast have been 
widely reported and reviewed (Ergun et al. 2021), so the 
research progress is much faster than that of methylo-
trophic bacteria. Due to the limited number of TFs iden-
tified in methylotrophic bacteria (Table 2), the selection 
of mining approaches falls in TFs research.

According to the sequence conservation of the bind-
ing domain and regulatory domain, TFs can be identi-
fied from a series of differentially expressed genes in the 
transcriptome database, which has been widely applied 
in the metabolic analysis of methylotrophs. This database 
can be obtained by comparing the transcripts of different 
strains under the same growth condition. Lactate restric-
tive issue is a main limiting factor in biotransformation 
from methane to lactate. A lactate-tolerant causal regu-
lator watR was screened from the transcriptome level 
between evolved strains and wild-type strains of Methy-
lomonas sp. DH-1 (Lee et al. 2019), revealing the mecha-
nism of acid tolerance and enabling further high-yield 
products. On the contrary, the same strains may show a 
discrepancy in transcription under different culture con-
ditions. Global regulators ssrA and rnpB were identified 
by the transcriptome analysis under the cultural condi-
tions of two carbon sources (methane and methanol), 
thus resolving the stress mechanisms under growth limi-
tation and nutrient restriction in Methylomonas sp. DH-1 
(Nguyen et al. 2019).

More recently, nitrogen fixation of methane-utilizing 
bacteria has received extensive attention. Researchers 
started with TFs to explore the mechanism, and then 
nitrogen-fixing factors nifHDKENX (Carere et  al. 2019) 
and nifA (Guo et  al. 2022) were found to be activated 
under carbon or oxygen-limiting conditions through 
transcriptome analysis; thus, methylotrophic bacteria 
could use nitrogen to synthesize glycogen for energy 
storage. This discovery may further trigger the thinking 
of carbon/nitrogen balance in methane-utilizing strains. 
Besides, some TFs that are not directly related to the 
target metabolic process can also be reflected from the 
transcription level due to the interconnected metabolic 
networks in methylotrophs. Phosphate transport regula-
tory cluster phoBU in M. buryatense 5GB1 was found to 
respond to the methane/oxygen ratio in the headspace, 
confirming an interaction between phosphate transport 
and carbon fixation (Hu et al. 2020). However, there are 
still some housekeeping TFs existing in methylotrophs 
that are unable to exhibit the obvious transcription undu-
lation regardless of the growth conditions.

To break the aforementioned limitations, a total DNA 
sequencing comparison with those strains owning clear 
genetic backgrounds was carried out. A housekeeping 
sigma factor rpoB was mined in methylotrophs by gene 
homology analysis with Escherichia coli and this global 
TF was later applied in the identification of new strains 
(Madhaiyan et al. 2010; Paget 2015; Jia et al. 2020). Based 
on confirming binding sequences, the specifically regu-
lated TFs can be targeted through the characteristic of 
DNA–protein interaction. Unfortunately, although this 
method has been applied in TFs exploring other strains 

Table 2  Transcription factors reported in methylotrophic bacteria

Transcription factor Gene annotation Host References

watR Lactate-tolerant causal regulator Methylomonas sp. DH-1 (Lee et al. 2019)

ssrA tmRNA Methylomonas sp. DH-1 (Nguyen et al. 2019)

rnpB Ribozyme Methylomonas sp. DH-1

nifH Nitrogen-fixing factor Methylacidiphilum sp. RTK17.1 (Carere et al. 2019)

nifD Nitrogen-fixing factor Methylacidiphilum sp. RTK17.1

nifK Nitrogen-fixing factor Methylacidiphilum sp. RTK17.1

nifE Nitrogen-fixing factor Methylacidiphilum sp. RTK17.1

nifN Nitrogen-fixing factor Methylacidiphilum sp. RTK17.1

nifX Nitrogen-fixing factor Methylacidiphilum sp. RTK17.1

nifA Nitrogen-fixing factor Methylacidiphilum sp. RTK17.1

M. buryatense 5GB1 (Guo et al. 2022)

phoB Phosphate transport regulatory M. buryatense 5GB1 (Hu et al. 2020)

phoU Phosphate transport regulatory M. buryatense 5GB1

rpoN Sigma-54 factor M. trichosporium OB3b (Stafford et al. 2003)

ectR Ectoine biosynthesis gene repressor M. alcaliphilum 20Z (Cho et al. 2022)



Page 5 of 10Huang et al. Bioresources and Bioprocessing           (2022) 9:126 	

(Pan et al. 2022), there are no relevant reports on methy-
lotrophic bacteria so far.

The DNA-binding motif is the key to clarify the regula-
tory role of TFs in metabolic pathways. Therefore, efforts 
have been made to identify transcription factor DNA-
binding sites. Upstream DNA fragments will be ampli-
fied to contact with transcription regulators in vitro, and 
the DNA–protein interaction efficiency characterized 
by electrophoretic mobility shift assays (EMSA) will be 
used to evaluate whether there is a TF binding site in the 
fusion (Fig.  1). In methylotrophic yeasts, EMSA experi-
mental evidence has helped explore the working rules 
of TFs. Ferroxidase Fet3 and permease Ftr1, involved in 
iron complexes formation, were both regulated by a sup-
pressor-type factor PpFep1, which was proved to strongly 
bind with a specific 5’-(A/T)GATAA-3’ element. So that 
the coupled regulation between these two enzymes of 
PpFep1 can be further released by substituting or modi-
fying one of the target regions (Miele et  al. 2007). In P. 
pastoris, EMSA is also used to determine promoter 
regions in the meantime. Research showed that metha-
nol expression regulator 1 (mxr1) could target the -141 
to -138 region of glycerol transporter 1 (gt1) to run the 
expression manipulation. These four base pairs were just 
located on PGT1, which has been a known strong pro-
moter in yeasts, inferring that mxr1 may globally regulate 
all genes controlled by PGT1 (Zhan et al. 2017).

Transcription factor engineering has been applied 
for systematically regulation of metabolism in methylo-
trophs. In P. pastoris, Sun et al. found that co-expressing 
the transcription factor Hac1p and α-signal peptide-cut-
ting protease Kex2p could increase the titer of recom-
binant lactoferrin from 121.6  μg/L to 35.6  mg/L, which 
has met the requirements of large-scale production (Sun 
et al. 2019). Liu et al. deleted an oxygen-related transcrip-
tion factor Rox1p to obtain nearly double times improve-
ment in β-mannanase enzymatic yield, realizing efficient 
production of animal feed additives from C1 compounds 
(Liu et  al. 2021). Cho et  al. recognized a MarR-like TF 
ectR in M. alcaliphilum 20Z, which was found to sup-
press the expression of the ectoine biosynthesis gene 
ectD by binding to the putative -10 sequence. Knocking 
out ectR could strengthen the transcription of ectD and 
ectoine production was enhanced 1.6-fold comparing 
the mutants to the original strains, thus solving the prob-
lem of transcription rate limiting in the conversion from 
methane to ectoine (Cho et al. 2022).

CRISPR‑based transcription regulation strategies
With the development of clustered regularly interspaced 
short palindromic repeats (CRISPR) and CRISPR-asso-
ciated (CRISPR-Cas) system, gene editing has become 
more unsophisticated (Czarnek et  al. 2016; Peterson 
2017). To its wide availability, CRISPR-Cas9 has turned 

Fig. 1  Mining strategy of TFs and identification of TFs binding sites
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out to be one of the most mainstream gene tools at pre-
sent, only an endonuclease Cas9 protein and an artificial 
guide RNA (sgRNA) are needed. In terms of transcrip-
tion regulation, CRISPR-mediated strategies without 
genetically altering have been exploited. On one hand, a 
deactivated Cas9 (dCas9), formed by inactivating Cas9 
protein cleavage functional domain and retaining bind-
ing domain activity, is handled on sgRNA to catch hold 
of the target gene so that RNA polymerase cannot work 
normally due to the obstruction of dCas9-sgRNA com-
plex in RNA polymerase binding or elongation leading to 
a noteworthy knockdown of the objective gene (as shown 
in Fig.  2A), that is called CRISPRi. On the other hand, 
by coupling transcription regulators and dCas9 protein, 
sgRNA is used as a guide to locate the upstream region of 
the gene to be manipulated; thus, the repressor or activa-
tor will exercise precise regulation (as shown in Fig. 2B, 
C), this is how CRISPRi and CRISPRa work (Schreiber-
Agus et al. 1995; Fisher et al. 1996; Gilbert et al. 2013).

Despite a growing technology for transcription regu-
lation, tools for gene inhibition and activation are still 
exploring in methylotrophs. CRISPRi and CRISPRa sys-
tems can change the transcription of interesting genes 
that have been widely used in the upstream process of 
metabolic engineering. Schultenkämper et al. first devel-
oped CRISPRi as a tool for gene repression in methy-
lotrophic Bacillus methanolicus (Schultenkamper et  al. 
2019). They fused a lac repressor into the promoter of 
endogenous mannitol-1-phosphate 5-dehydrogenase 

gene mtlD, which might lead dCas9 toxicity in the host 
(Cui et al. 2018) to inhibit its activity, and the accessible 
CRISPRi system was assembled on an expression vector 
for further studies. This tool helped reveal the roles of 
regulatory gene spo0A, metabolic gene mtlD, and detoxi-
fication gene katA in B. methanolicus, as well as helped 
clarify the relationship between biofilm development and 
sporulation. Furthermore, based on the research above, a 
cooperative operation of two fructose-1,6-bisphosphate 
aldolase fbaC, fbaP was identified that the expression of 
these two genes is antagonistic (Schultenkamper et  al. 
2021).

All relevant studies serve to enrich the genetic back-
ground of methylotrophs. Mo et  al. established another 
modified CRISPRi system in Methylorubrum extorquens 
AM1 considering the specificity of genetic elements. 
They amplified strong promoter PmxaF to drive the sgRNA 
and chose an exogenous dcas9 from Streptococcus pyo-
genes with lower GC content rather than the endogenous 
one. The optimal result showed that both dcas9 and 
sgRNA were controlled by strong promoters only when 
would efficiency repression be obtained (Mo et al. 2020), 
which means there is a balance in the regulation of tran-
scription elements. For solving this problem, a sequenc-
ing-based strategy for the selection of appropriate sgRNA 
in a specific host was presented and with huge potential 
to extend to many other microorganisms (Dalvie et  al. 
2020). However, an inevitable issue that the CRISPR-
based system is easy to function on indispensable genes 

Fig. 2  Transcription regulation mechanism of CRISPR-based strategies. A Regulation mechanism of CRISPRi: inhibit transcription process by 
blocking RNA polymerase; B Regulation mechanism of CRISPRi: repress the transcription of target genes by handling a repressor; C Regulation 
mechanism of CRISPRa: activate the transcription of target genes by handling an activator
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remains to bring off-target effect (Yang et al. 2018). Sev-
eral strategies were summarized to deal with this effect 
(Manghwar et  al. 2020), but in methylotrophs, more 
research is devoted to developing controlling strategies at 
the translational level to avoid the occurrence of an off-
target effect (Zhu et al. 2021).

Although not all methylotrophic bacteria have 
developed advanced and efficient genetic manipula-
tion tools, many of them perform the latent ability. For 
example, a CRISPR/Cas9 system was set up in M. cap-
sulatus (Tapscott et al. 2019), indicating that the intracel-
lular environment of M. capsulatus was compatible with 
CRISPR-based regulatory systems. Alternatively, class 
I CRISPR-Cas systems were described when comparing 
the complete genome sequence and taking homology 
analysis among Candidatus Methylacidiphilum kam-
chatkense Kan1, Candidatus Methylacidiphilum fuma-
riolicum SolV, and V4 giving a lot of room for further 
development (Kruse et al. 2019).

Prospective and challenges
Since methylotrophs play a pivotal role in C1 compound 
assimilation, the characteristics of strong robustness 
and less by-product make them receive great attention 
in biomanufacturing. The construction of transcrip-
tion regulatory networks is conducive to the carbon 
flux rearrangement to meet the demands of metabolic 
engineering.

Although many intracellular regulatory promoters 
have been identified in methylotrophs, it is still urgent 
to find more elements to achieve the best combination 
for metabolic optimization. Compared with natural pro-
moters, artificial ones can be freely designed in expres-
sion patterns and expression abundances according 
to different purposes to improve the accuracy of gene 
expression period, location, and condition (de Boer et al. 
1983; Blazeck et al. 2012). Considering that many exog-
enous promoters are hard to reach the expected level in 
methylotrophs, a specific promoter regulation system in 
these strains is expected. Furthermore, artificial promot-
ers could also retain the original promoter regulatory 
domain and reasonably fuse new regulatory sequences, 
which is a promising strategy in methylotrophs.

Obtaining target TFs and binding motifs is the basis 
of TF regulation studies. In previous reports, transcrip-
tome analysis and EMSA are most frequently used in 
methylotrophic metabolic engineering, but these tradi-
tional mining methods are time consuming and labor 
intensive. To reach a higher efficiency screening, more 
high-throughput strategies are needed to be con-
structed in future research. Generally, the combina-
tion of substances must be accompanied by a change 
of energy. Isothermal Titration Calorimetry (ITC) is a 

thermodynamic technique to monitor any chemical 
reaction initiated by the addition of binding compo-
nents which can recognize the interaction among DNA, 
protein, and other biological macromolecules (Du et al. 
2016). DNA fragments of gene upstream regions can be 
set as probes to combine with candidate TFs before ITC 
analysis. All TFs binding results will be reflected from 
thermodynamic analysis in methylotrophs. The collec-
tion of ITC data can be further used to explore the laws 
of combination between TFs and binding regions and 
then to establish a computational database for accurate 
prediction.

In the aspect of transcription regulation tools, 
CRISPR-mediated strategies have been developed 
and applied in many microbial metabolic engineer-
ing (Zhang et al. 2016; Ishikawa et al. 2021; Ameruoso 
et  al. 2022; Li et  al. 2022). But in methylotrophs, few 
CRISPR-based tools have been constructed, which is 
mainly hindered by their genetic characteristics and 
loss of suitable dCas protein. Previous research showed 
an absence of the CRISPR/Cas system in wild-type 
Methylocystis sp. strain SC2 (Dam et  al. 2013), which 
may lead to an incompatibility between heterologous 
CRISPR tools with the host. In addition, a restrictive 
modification system inhibits the direct transformation 
of the vector in M. buryatense 5GB1 (Yan et al. 2016); 
thus, CRISPR system based on plasmid construction 
is also affected. Therefore, constructing CRISPR-based 
platforms on the genome seems to be a universal solu-
tion. According to transcription regulatory features 
of the CRISPR system, dCas proteins from differ-
ent sources can be pooled to form a library through 
codon optimization, where the core and adaptable 
dCas protein will be screened out. With the design of 
sgRNA, precise regulation of the whole genome can be 
achieved.

This review summarized three strategies applied in 
methylotrophs to facilitate research of metabolic engi-
neering. At present, the progress on methylotrophs is 
striving to develop convenient and efficient approaches 
that can clarify the regulatory networks at the experi-
mental level. Therefore, more works related to methy-
lotrophs are required to establish tools for identifying 
global regulatory targets of specific transcription factors, 
methods for discovering all specific promoters and RBS, 
and platforms for optimizing efficient gene expression 
and modification.
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