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Abstract 

Ulva is one of the main green algae causing green tide disasters. Ulvan is the primarily component polysaccharide 
of the cell wall of Ulva and its complex structure and monosaccharide composition resulted in various biologi-
cal activities. However, the high-value and effective utilization of extracted ulvan have been obstructed by limita-
tions ranging from large molecular weight and low solubility to poor bioavailability. Ulva oligosaccharide obtained 
by degrading ulvan can not only ideally retain the various biological activities of ulvan very well but also effectively 
solve the problems of low solubility and poor bioavailability. The preparation and biological activity studies of ulvan 
and Ulva oligosaccharides have become a hot spot in the field of marine biological resources development research. 
At present, the comprehensive reviews of ulvan and Ulva oligosaccharides are still scarce. What are overviewed 
in this paper are the chemical composition, structure, extraction, and purification of ulvan and Ulva oligosaccharides, 
where research progress on the biological activities of ulvan and Ulva oligosaccharides is summarized and pros-
pected. A theoretical and practical basis has been provided for further research on ulvan and Ulva oligosaccharides, 
as well as the high-value development and effective utilization of marine algae resources.
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Introduction
Since 2008, ecological disasters such as green tides have 
frequently occurred in the Yellow Sea in China, and Ulva 
is one of the main algae that form green tides (Chen 
et al. 2022b; Wang et al. 2015; Ye et al. 2011; Zheng et al. 
2022). Ulva (Ulva sp.) belongs to the Ulva family in the 
Ulva genus of Chlorophyta, and the common types of 
Ulva include U. prolifera, U. pertusa, and U. compressa 
(Beer 2023; Van Alstyne et  al. 2015; Wang et  al. 2015). 
Ulva has a high nutritional value, such as sulfated poly-
saccharides, lipids, proteins, dietary fibers, and vitamins, 
which support their use in medical applications (Cadar 
et  al. 2023; Kidgell et  al. 2019). Therefore, it has a wide 
range of application prospects in health food, agricultural 
feed, and fish–shrimp farming (Kidgell et al. 2019). Ulvan 
is the main water-soluble sulfated polysaccharide exist-
ing in the cell wall of Ulva algae (Ning et al. 2022; Zheng 
et al. 2022). It was found that ulvan was mainly composed 
of rhamnose, iduronic acid, xylose, glucuronic acid, and 
a small amount of galactose, and the composition of the 
monosaccharide and the degree of sulfation varied with 
the species, harvest season, cultivation methods, growth 
environment, and extraction methods of Ulva sp. (Kidgell 
et al. 2019; Ning et al. 2022; Olasehinde et al. 2019; Ols-
son et al. 2020). Ulvan, as the main active component of 
Ulva sp., has a variety of biological activities, such as anti-
inflammatory (Kidgell et al. 2020), anticoagulant (Faggio 
et al. 2016), anti-tumor (Pradhan et al. 2020), antioxidant 

(Pradhan et  al. 2022), anti-hyperlipidemia (Yuan et  al. 
2018), immune regulation (Fernández-Díaz et  al. 2017), 
and plant growth-promoting activities (Shefer et  al. 
2022). Therefore, ulvan has application prospects in bio-
medicine, cosmetics, food, health products, and other 
industries (Berri et  al. 2017; Cindana Mo’o et  al. 2020; 
Morelli et al. 2019; Ning et al. 2022; Samah and Hadear 
2019; Yaich et  al. 2017). However, the high-value devel-
opment and utilization of ulvan resources have been lim-
ited by their large molecular weight, poor solubility, and 
low bioavailability. On the contrary, the Ulva oligosac-
charide obtained from the degradation of ulvan not only 
retains the biological activities of the original polysaccha-
ride well but also improves the defects of the insolubility 
of ulvan in water and the low bioavailability, which makes 
the preparation of Ulva oligosaccharide and the research 
on its biological activity a hot spot in the field of the 
development and research of marine biological resources 
(Ning et al. 2022; Paulert et al. 2021).

At present, the research reports related to ulvan and its 
oligosaccharide are increasing, but there are no relevant 
papers to summarize and discuss the current research 
progress. In this paper, the chemical composition, struc-
ture, extraction, purification, and biological activities 
research reports of ulvan are systematically summarized, 
and the preparation methods of Ulva oligosaccharides 
and the activities of Ulva oligosaccharides are reviewed 
and analyzed. At the end of the paper, the main problems 
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as well as technical bottlenecks, and application pros-
pects in various fields in the development and utilization 
of ulvan are analyzed and prospected, providing a theo-
retical basis and research basis for promoting the effec-
tive utilization of ulvan, a kind of marine green biomass 
resource.

Chemical composition of ulvan
Ulvan is structurally more complex than other algal 
polysaccharides due to the complexity of their mono-
saccharide composition, glycosidic bonding, and group 
modifications. The chemical composition of ulvan will be 
affected by the type of Ulva sp. as the extraction source, 
the harvest season, and the extraction and purification 
methods of ulvan, so its composition is more complex 
(Table  1). Kidgella et  al. analyzed the monosaccharide 
composition of the ulvan from blade (U. australis, U. 
rigida, U. sp. B, and Ulva sp.) and filamentous (U. flexu-
osa, U. compressa, U. prolifera, and U. ralfsii) species 
of cultivated Ulva and found that there was a large dif-
ference in the monosaccharide composition of them 
(Kidgell et al. 2021). Among them, the ulvan from blade 
species of cultivated Ulva mainly consists of rhamnose 
(~ 49 mol%), followed by glucuronic acid (~ 23.83 mol%), 
and the proportion of xylose and iduronic acid varies 
with the different types of Ulva sp. Ulvan from filamen-
tous species of cultivated Ulva are quite different. The 
content of rhamnose in the ulvan from U. prolifera and 
U. flexuosa can reach 56 mol% and 60 mol%. Conversely, 
the content of rhamnose in the ulvan from U. ralfsii and 
U. compressa is about 43 mol%. However, the proportion 
of iduronic acid in ulvan from filamentous species of cul-
tivated Ulva (~ 7 mol%) is generally lower than that from 
blade species of cultivated Ulva (~ 14  mol%). In addi-
tion, the content of iduronic acid in ulvan from U. rigida 
is the highest, reaching 18 mol%, and the proportion of 
galactose in ulvan from U. ralfsii reached 16 mol%, which 
was far more than that of ulvan from other Ulva sp. 

Samarasinghea et al. analyzed the monosaccharide com-
position of Ulva harvested at different months and found 
that the main composition of ulvan was not different, but 
the content of different types of monosaccharides was 
quite different (Samarasinghe et  al. 2021). For example, 
the dry matter contents of rhamnose, xylose, galactose, 
glucose, and uronic acid in ulvan harvested in June were 
3.65, 0.43, 0.41, 0.32, and 0.62 g/100 g, respectively; the 
dry matter contents of rhamnose, xylose, galactose, glu-
cose, and uronic acid in ulvan collected in August were 
0.84, 0.33, 0.22, 0.75, and 1.92  g/100  g, respectively. It 
can be clearly seen that the ulvan harvested in August 
has a higher content of glucose and uronic acid than 
the ulvan harvested in June. Furthermore, when Olsson 
et al. studied the effect of cultivation conditions (such as 
temperature, irradiance,  pCO2, nitrogen, and phosphate) 
on the monosaccharide composition of ulvan, and they 
found that low sulfate concentration and high tempera-
ture could promote the increase of monosaccharide con-
tent, while increasing irradiance and temperature could 
increase the concentration of rhamnose and iduronic acid 
in the ulvan(Olsson et al. 2020). Guidara et al. extracted 
ulvan from Ulva lactuca by acid extraction (CA) and 
enzymatic chemical extraction (EE), respectively, and 
analyzed their monosaccharide components (Guidara 
et al. 2020). The results showed that the content of rham-
nose and xylose in ulvan CA1 obtained by CA was higher 
than that of ulvan EE extracted by EE, and the content 
of uronic acid and glucose in EE was higher than that in 
CA1. The above research results show that the chemical 
composition of ulvan varies with Ulva sp., growth envi-
ronment, harvest time, and extraction method, and this 
phenomenon is also common in the composition analysis 
of other algal polysaccharides (Benslima et al. 2021).

Table 1 The summary of the chemical composition for each Ulva sp

Sources Monosaccharide (mol%)

U. australis Rhamnose(51) Glucuronic acid(18) Xylose(22) Iduronic acid(7)

U. rigida Rhamnose(49) Glucuronic acid(26) Xylose(6) Iduronic acid(18)

U. sp. B Rhamnose(48) Glucuronic acid(31) Xylose(7) Iduronic acid(11)

Ulva sp. Rhamnose(47) Glucuronic acid(20) Xylose(19) Iduronic acid(10)

U. flexuosa Rhamnose(56) Glucuronic acid(21) Xylose(15) Iduronic acid(6)

U. compressa Rhamnose(47) Glucuronic acid(24) Xylose(17) Iduronic acid(7)

U. prolifera Rhamnose(60) Glucuronic acid(17) Xylose(15) Iduronic acid(7)

U. ralfsii (cult.) Rhamnose(38) Glucuronic acid(24) Xylose(16) Iduronic acid(4) Galactose(16)

U. ralfsii (wild) Rhamnose(43) Glucuronic acid(26) Xylose(14) Iduronic acid(6) Galactose(10)
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The structure of ulvan and Ulva oligosaccharide
The complex monosaccharide composition, different 
connection modes between monosaccharides, the exist-
ence of complex and diverse group modifications, and 
branched structures make the structure of ulvan far more 
complex than that of other algal polysaccharides such as 
alginate, carrageenan, and agarose (Stender et  al. 2019). 
Therefore, it is difficult to elucidate the structure of ulvan. 
Lahaye et al. studied the structure of ulvan from U. rigida 
(Lahaye and Robic 2007). Six sample structures from the 
Canary Islands, namely, Δ(1 → 4)α-l-Rha3S(1 → 4)β-d-
Xyl2S(1 → 4)l-Rha3S, Δ(1 → 4)α-l-Rha3S(1 → 4)β-d-
Xyl(1 → 4)α-l-Rha3S(1 → 4)β-d-Xyl(1 → 4)l-Rha3S, 
Δ(1 →  4)α-l-Rha3S(1 →  4)β-d-Xyl2S(1 →  4)α-l-
R h a 3 S ( 1  →  4 ) β - d - X y l ( 1  →  4 ) l - R h a 3 S , 
Δ (1 →  4)α-l-Rha3S (1 →  4) β-d-Xyl2S(1 →  4) α-l-
Rha3S(1 →  4)β-d-Xyl(1 →  4)α-l-Rha3S(1 →  4)β-d-
Xyl(1 → 4)l-Rha3S, Δ(1 → 4)l-Rha3S, and 
Δ(1 → 4)α-l-Rha3S(1 → 4)β-d-Xyl(1 → 4)l-Rha3S, were 
determined. And four structures of sample from the Brit-
tany, Δ(1 → 4)α-l-Rha3S(1 → 4)β-d-GlcA(1 → 4)l-Rha3S, 
Δ(1 → 4)α-l-Rha3S(1 → 4)β-d-Xyl2S(1 → 4)l-Rha3S, 
Δ(1 →  4)[β-d-GlcA(1 →  2)]α-l-Rha3S(1 →  4)β-d-
Xyl(1 → 4)l-Rha3S(20), and Δ(1 → 4)[β-d-
GlcA(1 → 2)]α-l-Rha3S(1 → 4)β-d-Xyl2S(1 → 4)l-Rha3S, 
were also found, along with the same oligosaccharide 
structure as the previous sample, Δ(1 → 4)l-Rha3S 
and Δ(1 → 4)α-l-Rha3S(1 → 4)β-d-Xyl(1 → 4)l-Rha3S, 
where Δ refers to the unsaturated uronic acid 

4-deoxy-l-threo-hex-4-enopyranosiduronic acid at 
the non-reducing end. The main disaccharide repeat 
structures of ulvan are  A3s [→ 4)β-d-GlcA(1 → 4)-α-l-
Rha3S(1 →] and  B3s [→ 4)α-l-IdoA(1 → 4)-α-l-
Rha3S(1 →] from different Ulva sp. samples. In addition, 
the analysis of these structures shows that there are 
another two repeating disaccharide units,  U3s [→ 4)β-d-
Xyl(1 → 4)-α-l-Rha3S(1 →] and  U2’s,3s [→ 4)β-d-
Xyl2S(1 → 4)-α-l-Rha3S(1 →]. Thanh et  al. extracted 
highly purified ulvan and analyzed its structure by IR, 
NMR, SEC-MALL, and ESI–MS(Thanh et al. 2016). The 
study found that there were repeat disaccharide units of 
 A3s [→ 4)-β-d-GlcA-(1 → 4) -α-l-Rha3S-(1 →], GlcA-
(1 → 2)-Xyl and GlcA-(1 → 2)-Rha in the ulvan extracted 
from Ulva sp., of which  A3s [→ 4)-β-d-GlcA-(1 → 4)-α-l-
Rha3S-(1 →] was the main disaccharide repeat unit. 
Chi et  al. used ulvan lyase to cleave ulvan from U. 
clathrata through β elimination reaction and obtained 
three degradation products with different molecular 
weights, UO-1, UO-2, and UO-3, and carried out struc-
tural analysis on them, respectively (Chi et  al. 2020a). 
UO-1 and UO-2 have lower molecular weights and are 
disaccharides, D-ΔGlcA-(1 → 4)-α/β-L-Rha3S, and tet-
rasaccharides, D-ΔGlcA-(1 → 4)-α-l-Rha3S-(1 → 4)-β-d-
Xyl-(1 → 4)-α/β-l-Rha3S, respectively. The study of the 
UO-3 structure with a large molecular weight found that 
it was mainly composed of  A3s type and  U3s type disac-
charide repeat units, and there were also  U2’s, 3s type 
disaccharide repeat units. It can be seen that ulvan is a 

Fig. 1 The structures of main disaccharide units in ulvan
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complex polysaccharide mainly composed of  A3s or  B3s 
type disaccharide repeat units and a small number of 
 U3s or  U2’s, 3s type disaccharide repeat units (Fig. 1), and 
the content of different disaccharide repeat units will be 
affected by different sources of Ulva sp. Therefore, the 
research on the structure of ulvan will help strengthen 
the high-value development and utilization of ulvan 
resources.

Preparation of ulvan and its oligosaccharide
The preparation of ulvan can be divided into two steps: 
extraction and purification, and there are many reported 
methods for extracting and purifying ulvan. According 
to the extraction and purification process, we classify 
the extraction methods into the following three catego-
ries: solution extraction, physical-assisted extraction, and 
enzyme-assisted extraction. Similarly, the purification 
methods of ulvan can also be classified into three catego-
ries: dialysis, ultrafiltration, and column chromatography, 
of which column chromatography can be further divided 
into ion exchange chromatography and gel filtration 
chromatography.

Extraction methods of ulvan
The extraction method of ulvan is very similar to that 
of other algae polysaccharides, mainly using solution 
extraction and two auxiliary extraction methods based 
on it, namely, physical-assisted and enzyme-assisted 
extraction. Source, extraction method, and yield of ulvan 
extracted from different Ulva sp. are shown in Table 2.

Solution extraction
Solution extraction can be further subdivided into hot 
water extraction, pressurized hot water extraction, acid 
extraction, and weak alkaline extraction. Hot water 
extraction is a traditional polysaccharide extraction 
method and using that method the solubility of polysac-
charides in water will rise with the increasing tempera-
ture. And the ratio of material to liquid, the temperature 
of hot water, extraction time, the extraction times, and 
other factors will affect the yield of polysaccharide. Pank-
iewicz et al. stirred and extracted ulvan for 7 h in a hot 
water bath at 75–85 ℃ according to the ratio of material 
to liquid of 1:30, centrifuged and filtered the supernatant 
rich in polysaccharide, and concentrated it (Pankiewicz 

Table 2 The summary of extraction methods for ulvan

Extraction methods Source Extraction 
Time (min)

Temperature (oC) Yield (%) Refs.

Hot water extraction (Tempera-
ture below 100 °C)

Cladophora glomerata 420 75–85 16.23 (Pankiewicz et al. 2016)

U. pertusa Kjellm 180 90 17.8 ± 0.6 (Chen et al. 2021)

U. lactuca 180 90 11 ± 3 (Wahlström et al. 2020)

U. rigida 60 90–100 7 (Paradossi et al. 1999)

U. clathrata 120 100 11.27 (Chi et al. 2020a)

Ulva intestinalis 90 100 15.2 (Klongklaew et al. 2021)

Pressurized hot water U. fasciata 60 110 19.5 (Paulert et al. 2021)

U. Rigida 30 130 24.3 (Toskas et al. 2011)

Acid extraction U. ohnoi, U. tepida, U. prolifera 180 37 3.5, 3.9, 6.7 (Glasson et al. 2022)

U. rotundata 60 85 20.3 (Robic et al. 2009)

U. ohnoi 60 85 8.1 ± 1.0 (Glasson et al. 2017)

U. lactuca 60 80 13.06 (Yaich et al. 2014)

U. lactuca 240 90 18 ± 2 (Wahlström et al. 2020)

U. lactuca 180 90 32.67 (Yaich et al. 2013)

U. sp. (foliose),
U. sp. (filamentous)

240 90 41 ± 2.2, 39 ± 1.9 (Manikandan and Lens 2022)

Weak alkali extraction U. ohnoi 60 85 4.3 ± 0.5 (Glasson et al. 2017)

Enzyme-assisted extraction U. pertusa Kjellm 180 50 25.3 ± 1.3 (Chen et al. 2021)

U. armoricana 195 50 35.3 ± 0.3 (Hardouin et al. 2016)

Ultrasonic-assisted extraction U. pertusa Kjellm 180 90 20.6 ± 1.2 (Chen et al. 2021)

Microwave-assisted extraction U. ohnoi, U. meridionalis 60 85 36.5 ± 3.1,40.4 ± 3.2 (Tsubaki et al. 2016)

U. prolifera 15 120 36.38 ± 0.94 (Yuan et al. 2018)

Enzymatic and chemical extrac-
tion

U. lactuca 300 50 17.14 (Yaich et al. 2014)

Ultrasound and enzyme-assisted 
extraction

U. pertusa Kjellm 180 50 26.7 ± 0.9 (Chen et al. 2021)
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et  al. 2016). The yield of polysaccharide was 16.23%. 
Wahlström et al. first mixed with 70% ethanol according 
to the feed-to-liquid ratio of 1:10, then extracted at room 
temperature at 300  rpm for 8  h, centrifuged to obtain 
the polysaccharide sediment, and washed it with ethanol 
three times (Wahlström et al. 2020). Then, according to 
the material-to-liquid ratio of 1:16, add it to the hot mixer 
of ultrapure water to extract for 3 h at 90 ℃ and 750 rev-
olutions. Collect the supernatant and extract it twice at 
the material-to-liquid ratio of 1:14 and then freeze dry it. 
The yield of ulvan is 11 ± 3%. Chen et al. extracted ulvan 
for 3  h in a 90 ℃ water bath using a material-to-liquid 
ratio of 1:20. After centrifugation and concentration, 95% 
ethanol was used for alcohol precipitation, and then 95% 
ethanol was used for repeated washing three times and 
dried in a vacuum oven at 50 ℃ for 1 h to achieve con-
stant weight (Chen et al. 2021). The yield was 17.8 ± 0.6%. 
Gaio et al. selected the ratio of material to liquid of 1:10 
to extract for 1  h in hot water at 90–100 ℃, repeated 
once, recovered the supernatant, and precipitated it in 
1 volume of mixed water/ethanol at a ratio of 1:1 (v/v), 
and the polysaccharide yield was 7% (Paradossi et  al. 
1999). Chi et  al. selected a material-to-liquid ratio of 
1:30 to extract for 2 h in hot water at 100 ℃, centrifuged 
the supernatant, concentrated it, dialyzed it in cellulose 
membranes, and then precipitated it with 95% ethanol 
(Chi et  al. 2020a). The polysaccharide yield was 11.27%. 
Klongklaewad et  al. boiled for 90  min in the autoclave 
according to the feed-to-liquid ratio of 1:100, filtered the 
solid residues to retain the supernatant, and freeze-dried, 
and the polysaccharide yield was 15.2% (Klongklaew 
et al. 2021). However, hot water extraction has disadvan-
tages, including a low extraction yield and a long extrac-
tion time. Pressurized hot water extraction is regarded as 
a green and efficient technique to extract solid samples 
with liquid water (Plaza and Marina 2019). This method 
intensified the destruction of the cell structure of Ulva 
sp. under higher temperature and pressure and increased 
the content of dissolved polysaccharides, thus improving 
the yield. Paulertab et al. selected a material/liquid ratio 
of 1:40 to extract ulvan for 1 h in pressurized hot water 
at 110 ℃. The recovered water extract was concentrated 
and then precipitated with ethanol, with a yield of 19.5%. 
Similarly, Toskasa et al. used pressurized hot water with 
a material-to-liquid ratio of 1:20 at 130 ℃ to extract for 
30 min, filter it, and recover the hot water solution. After 
concentrating the hot water solution, use 95% ethanol for 
alcohol precipitation, then use 95% ethanol for repeated 
washing three times, and then dry it at 80 ℃. The aver-
age yield can reach 24.3%. Compared with the traditional 
hot water extraction method, the high-pressure hot water 
extraction method has the characteristics of a short 
extraction time and a high yield. However, the exorbitant 

temperature will cause the self-degradation of ulvan, 
which will lead to a decrease in its yield (Podolean et al. 
2022). Therefore, it is helpful to optimize the hot water 
extraction scheme of ulvan according to the needs of the 
follow-up study of ulvan.

On the basis of hot water extraction, the extraction 
process of ulvan can be improved by adjusting the pH 
value of the extraction solution. Yaich et  al. used the 
acid extraction method with a material-to-liquid ratio of 
1:16.7 to extract ulvan (Yaich et al. 2013). Through mul-
tifactorial and multi-level experiments, they optimized 
the three factors, pH value, extraction temperature, 
and extraction time, and obtained the best extraction 
process, which is a pH value of 2, an extraction tem-
perature of 90 ℃, and an extraction time of 3  h. The 
yield of ulvan under this process is 32.67%. Wahlström 
et al. added 0.01 M HCl (pH 2.0) according to the feed-
to-liquid ratio of 1:25, heated it to 90 ℃, and extracted 
it for 4 h (Wahlström et  al. 2020). The supernatant was 
recovered by centrifugation, dialyzed for 48 h, and then 
ethanol precipitated the dialysate. The precipitated part 
was collected and freeze-dried. The yield of ulvan was 
18 ± 2%. Glasson et  al. added the pretreated Ulva sp. to 
1L of 0.05 M HCl, heated it to 85 ℃, extracted it for 1 h, 
then vacuum filtered it, adjusted the pH to 7 with 1  M 
NaOH, concentrated it, and freeze-dried it (Glasson et al. 
2017). The polysaccharide yield was 8.1 ± 1.0%. Christo-
pher et al. added 0.05 mol/L HCl solution adjusted to pH 
2 by 1 M NaOH into U. Ohnoi, U. tepida, and U. prolifera 
from three different sources at a ratio of 1:25 to extract 
for 3 h at 37 ℃, filtered and recovered the extract, then 
filtered the extract in vacuum, concentrated by ultra-
filtration, and freeze-dried after dialysis (Glasson et  al. 
2022). The final yield of ulvan was 3.5%, 3.9%, and 6.7%, 
respectively. In addition to HCl, Manikandan et  al. also 
tried to use citric acid, a green chemical, to extract ulvan 
from foliose Ulva sp. and filamentous Ulva sp. and opti-
mized it (Manikandan and Lens 2022). The polysaccha-
ride extraction rates of foliose Ulva sp. and filamentous 
Ulva sp. were 0.41 (± 0.022) g/g and 0.39 (± 0.019) g/g, 
respectively, When the extraction temperature was 90 °C, 
the extraction time was 4 h, the minimum Ulva sp. load 
was 3 wt%, and the citric acid concentration was 1 wt%. 
Conversely, Christopher et al. tried to extract ulvan with 
sodium oxalate, but the yield was only 4.3 ± 0.5% and the 
content of protein was higher than that extracted by HCl 
(Glasson et  al. 2017). Compared with hot water extrac-
tion, chemical extraction also improves the yield of ulvan 
by increasing the temperature and prolonging the extrac-
tion time, but its extraction conditions are more strin-
gent. This is not only bad for industrial production but 
will also greatly increase the environmental maintenance 
costs in the production process.
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Physical‑assisted extraction
The physical-assisted extraction method mainly uses 
physical methods other than heating to help destroy the 
cell wall structure of Ulva sp., making it easier to extract 
polysaccharides from Ulva sp., thereby shortening the 
extraction time and improving the yield of ulvan. Chen 
et  al. used the ultrasonic-assisted method to extract 
ulvan, mixed it according to the material-to-liquid ratio 
of 1:20, first treated it with ultrasonic for 30  min, and 
then extracted it in a 90 ℃ water bath for 2.5 h, with an 
extraction rate of 20.6 ± 1.2% (Chen et  al. 2021). How-
ever, Tsubaki et  al. used microwave-assisted technology 
to extract ulvan at 100 ℃ to 180 ℃ after mixing accord-
ing to the material-to-liquid ratio of 1:20 (Tsubaki et al. 
2016). At 160 ℃, the extraction rates of ulvan reached 
40.4 ± 3.2% (U. meridionalis) and 36.5 ± 3.1% (U. ohnoi). 
Yuan et al. mixed the mixture in a 0.01 M HCl solution 
according to the feed–liquid ratio of 1:20 and received 
microwave irradiation at 120 ℃ for 15  min (Yuan et  al. 
2018). The yield of ulvan was 36.38 ± 0.94%. The cell wall 
of Ulva sp. was greatly damaged by the method of phys-
ical-assisted extraction, which greatly improved the effi-
ciency of the next hot water extraction. In particular, the 
yield of microwave-assisted extraction is about 2–3 times 
that of traditional hot water extraction.

Enzyme‑assisted extraction
Enzyme-assisted extraction is a new method to improve 
the yield of polysaccharides based on hot water extrac-
tion and enzyme technology. Before reaction, add 
cellulase and pectinase that can degrade cellulose, hemi-
cellulose, and pectin in the cell wall of Ulva sp., and 
release more ulvan by destroying the structure of the 
cell wall (Fernandes et al. 2019). Chen et al. prepared the 
solution according to the material-to-liquid ratio of 1:20 
and added 1 M HCl to adjust the pH value to 4.5 (Chen 
et al. 2021). First, they reacted with cellulase and the mix-
ture in a water bath at 50 ℃ for 2.5 h, then raised the tem-
perature to 90 ℃, and inactivated the enzyme for 30 min. 
The yield of ulvan was 25.3 ± 1.3%. Hardouin et al. added 
six enzymes including protease and cellulase into the 
mixture of Ulva sp. and ultrapure water to react at 50 ℃ 
for 3  h, heated to 90 ℃, and inactivate the enzyme for 
15 min. The yield of polysaccharide was 35.3 ± 0.3%. It is 
obvious that the temperature and pH value required for 
the reaction can be greatly reduced by using the high 
efficiency and mildness of the enzyme, making the reac-
tion environment milder. In addition, the yield of the 
enzyme-assisted extraction method is higher than that 
of the solution extraction method, which can make full 
use of marine biomass resources, and it is a method that 
can effectively use marine green biomass resources such 
as ulvan.

To sum up, the main extraction methods of ulvan are 
based on hot water extraction, and various extraction 
methods are derived by adding different auxiliary tech-
nologies at different stages, but there are some advan-
tages and disadvantages of each method. Yaich et  al. 
tried to combine the enzyme-assisted extraction method 
with the solution extraction method and compared them 
with the solution extraction method. The results showed 
that the yield of ulvan increased from 13.06 to 17.14% 
by the organic combination of the two methods. In like-
wise, Chen et al. combined ultrasonic-assisted extraction 
with enzyme-assisted extraction, and compared it with 
hot water extraction, enzyme-assisted extraction and 
ultrasonic-assisted extraction, respectively. The results 
showed that the yield of ultrasonic-assisted extrac-
tion and enzyme-assisted extraction was 26.7 ± 0.9% 
higher than that of the other three extraction methods. 
Therefore, by organically combining different extrac-
tion methods, the yield of ulvan can be improved and 
the extraction cost reduced, thus promoting follow-up 
research on ulvan.

Purification methods of ulvan
The crude ulvan obtained by hot water extraction and 
other methods contains non-polysaccharide impuri-
ties such as protein and other small molecules. It needs 
to be further purified to obtain high-purity polysaccha-
ride samples that can be used for structure and activ-
ity studies. The isolation and purification methods of 
ulvan mainly include dialysis, ultrafiltration, and col-
umn chromatography, of which the latter is divided into 
ion exchange column chromatography and gel column 
chromatography.

To achieve the purpose of purification, dialysis primar-
ily employs the selective permeability of membranes to 
remove salt and low-molecular-weight impurities from 
the crude extract of ulvan via a dialysis bag with appro-
priate molecular weight retention (Wang et  al. 2016). 
Similarly, ultrafiltration also uses the same principle to 
separate the salt and small molecular solute in the crude 
extract through the membrane, and it also has many 
advantages including low cost, high efficiency, environ-
mental protection, and continuous operation (Zhang 
and Wang 2016). The ultrafiltration dialysis tube and 
membrane filter have various filtering pore diameters 
or molecular weight cutoffs (MWCO). For dialysis, the 
selection of pore size is based on the molecular size of 
ulvan. However, the selection of pore size for ultrafil-
tration is not only based on the molecular size of ulvan 
but also depends on the elution amount (which decreas-
ing with the pore size). In order to balance the influence 
of elution amount and pore size, the MWCO of about 
10 kDa was generally selected (Glasson et al. 2022, 2017).
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Nevertheless, many extracts of ulvan contain more 
impurities, and it is difficult to further refine and classify 
them only through dialysis and ultrafiltration. As ulvan is 
a water-soluble anionic polysaccharide, it is suitable for 
further purification by ion exchange chromatography 
(IEC) or gel filtration chromatography (GFC). As shown 
in Table 2, although the separation columns are quite dif-
ferent, they are gradient eluted and purified with NaCl as 
the mobile phase. Among them, Glasson et  al. purified 
ulvan from U. ohnoi, U. tepida, and U. prolifera, respec-
tively, and the final polysaccharide yields were 1.45, 1.29, 
and 2.8% (Glasson et al. 2022). Li et al. gradient purified 
the ulvan from U. pertusa, collected the components 
eluted by 0, 0.5, and 1.0  M NaCl, and then measured 
the polysaccharide content by the phenol–sulfuric acid 
method and determined that the main polysaccharide 
fraction was at 1.0  M elute (Li et  al. 2020a). Through 
chromatography, we can obtain purer ulvan, which ena-
bles us to further study the conformation, structure, 
activity, and structure–activity relationship of ulvan.

Preparation of Ulva oligosaccharide
Degraded ulvan, also known as Ulva oligosaccharide, is 
more bioavailability and soluble. Therefore, the degra-
dation and preparation of Ulva oligosaccharides have 
attracted more and more attention. According to the 
preparation of Ulva oligosaccharides, they can be classi-
fied into chemical degradation, physical degradation, and 
enzymatic degradation.

Preparation of Ulva oligosaccharide by chemical and physical 
degradation
The chemical degradation method is used to prepare 
Ulva oligosaccharides by destroying the glycosidic bond 
in ulvan with strong acidic or strong oxidizing chemi-
cal reagents. In the process of extracting ulvan by Hela 
Yaicha et  al., they found that a large number of low-
molecular-weight components existed in the alcohol 
precipitated products under lower pH conditions, which 
provided a basis for the subsequent preparation of oli-
gosaccharides through strong acids (Yaich et  al. 2013). 
After that, Liu et al. and Roberta Paulert et al. degraded 
ulvan with  H2SO4, HCl, and trichloroacetic acid and pre-
pared oligosaccharides with molecular weights less than 
3000 Da and non-sulfated dimers, respectively (Liu et al. 
2019; Paulert et al. 2021). In addition, ulvan can also be 
degraded by strong oxidants. For example, Zhang et  al. 
and Joel T. Kidgella et  al. used  H2O2 to degrade ulvan 
into oligosaccharide with 10.6  kDa and 6.8  kDa molec-
ular weights, respectively (Kidgell et  al. 2020; Zhang 
et  al. 2008). Wu et  al. combined  H2O2 with ascorbic 
acid to degrade ulvan, and the molecular weight of its 

oligosaccharide is 956.71 Da, which is lower than before 
(Wu et al. 2020).

However, there are few studies on the physical degrada-
tion of ulvan, and only Yu et  al. degrade ulvan through 
microwave and high pressure (Pengzhan et al. 2003). Fur-
thermore, Simona et  al. demonstrated that ulvan would 
self-hydrolyze in hot water solution at high tempera-
ture, and that by controlling the optimal temperature, 
78.7% of the rare sugar rhamnose, glucuronic acid, and 
other minor degradation products could be recovered 
(Podolean et al. 2022). However, the physical degradation 
method requires a lot of energy to destroy the glycosidic 
bond in ulvan to prepare Ulva oligosaccharides, which 
has the same problems as the chemical method, such as 
harsh reaction conditions and a long degradation time 
(Tang et al. 2021).

Preparation of Ulva oligosaccharide by enzymatic 
degradation
Compared with chemical and physical methods for the 
degradation of ulvan, enzymatic degradation of ulvan has 
the advantages of mild reaction conditions, good prod-
uct specificity, and environmental friendliness, which has 
attracted the extensive attention of researchers (Li et al. 
2023; Tang et al. 2023). At present, the enzymes mainly 
used to degrade ulvan are PL24, PL25, PL28, and PL40 
family ulvan lyases, which are the enzyme that specifi-
cally degrades ulvan. As shown in Table 3, LOR_107 from 
Alteromonas sp. LOR (Kopel et al. 2016), AsPL from Alte-
romonas sp. (AsPL) (Qin et  al. 2020), PLSV from Pseu-
doalteromonas sp. strand PLSV (Qin et  al. 2018), Uly1 
from Catenovulum maritimum (Xu et al. 2021), LOR_29 
from Alteromonas sp. LOR (Xu et  al. 2021), FaUL from 
Formosa agariphila KMM 3901 (Konasani et al. 2018b), 
and FaPL28 from Formosa agariphila KMM 3901T 
(Reisky et  al. 2018) have the highest activity between 
30 and 45  ℃. And PLSV from Pseudoalteromonas sp. 
PLSV_3875 (Kopel et  al. 2016), ALT3695 from Altero-
monas sp. A321. ALT3695 (Gao et al. 2019), and NLR42 
from Nonlabens ulvanivorans NLR42 (Nyvall Collén et al. 
2011) showed the best activity at 50 ℃, while TsUly25B 
from Thalassomonas sp. LD5 reached 60 ℃ (Wang et al. 
2022). The optimal pH of all ulvan lyases are between 7.5 
and 9, showing high catalytic activity in a weak alkaline 
environment, which may be the adaptive evolution of 
marine bacteria to a weak alkaline seawater environment 
(Reisky et  al. 2018). Ulaganathan studied the structure 
and degradation mechanism of PL24, PL25, and PL28 
family ulvan lyase, respectively. Ulvan lyase primarily 
cleaved the β-(1 → 4)-glycosidic bond between L-rham-
nose-3-sulfate (Rha3S) and D-glucuronic acid (GluA) 
or L-iduronic acid (IduA) via the β-elimination mecha-
nism, producing two and four degrees polymerized (Dp) 
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oligosaccharides (Ulaganathan et al. 2018a, 2018b, 2017). 
This is also the reason that almost all the degradation 
products of ulvan lyases are even oligosaccharides of DP2 
and DP4. In addition, the β-elimination mechanism can 
effectively preserve the structural characteristics of rare 
sugars during the ulvan degradation, laying the ground-
work for their high-value development. Furthermore, 
besides ulvan lyase, there are Cdf79930 from Formosa 
agariphila KMM 3901 (Konasani et  al. 2018a), a lyase 
with broad spectrum activity, and P29_PDnc (Bäumgen 
et  al. 2021), a dehydrating enzyme also from the same 
strain, which can participate in the degradation and fur-
ther degrade the product into monosaccharide (Tables 4, 
5, and 6). It provides different ideas for the enzymatic 
degradation of ulvan (Li et al. 2020b).

Biological activity of ulvan and Ulva 
oligosaccharide
Biological activity of ulvan
In recent years, with the continuous development of the 
extraction and purification technology of ulvan, more 
and more researchers have studied the activities of ulvan 
obtained from different extraction processes. At present, 
biological activities such as anti-virus, anti-inflamma-
tory, antioxidant, anticoagulant, immune regulation, and 
induced plant defense have been reported by researchers.

Anti‑virus activity
Much research shows that ulvan from different Ulva 
sp., such as Ulva compressa, U. lactuca, U. clathrata, 
U. intestinalis, U. armoricana, and U. pertusa, have 
the activity of anti-virus (Aguilar-Briseño et  al. 2015; 

Table 3 Different extraction methods of ulvan

Method Advantages Disadvantages

Hot water extraction A. Low cost A. It takes a lot of time

B. Simple and easy to operate B. Low product yield

C. High temperatures may cause degradation 
of certain polysaccharides

Acid–Base extraction A. Save time A. May disrupt polysaccharide structure

B. Increased cost of waste liquid treatment

Physical-assisted extraction A. Save time A. May disrupt polysaccharide structure

B. High extraction efficiency B. Cannot improve polysaccharide yield and purity

C. Maintain the structure and biological activity 
of polysaccharide

Enzyme-assisted extraction A. Mild reaction conditions A. High cost

B. High extraction efficiency

Table 4 The summary of methods for purification of ulvan

Method Separation column Mobile phase Flow speed Refs.

Q Sepharose XL 0–2 M NaCl 5.0 ml/min (Glasson et al. 2022)

IEC Q Sepharose XL 0–2 M NaCl 20.0 ml/min (Kidgell et al. 2020)

DEAE-Sepharose 0–1 M NaCl 10.0 ml/min (Li et al. 2020a)

GFC HiTrap Q FF 0–2 M NaCl 2.0 ml/min (Chi et al. 2021)

HiTrap Q FF 0–2 M NaCl 2.0 ml/min (Chi et al. 2020a)

Table 5 Different preparation methods of Ulva oligosaccharide

Method Advantages Disadvantages

Chemical degradation A. Simple operation
B. Inexpensive

A. Harsh reaction conditions

Physical degradation B. Long processing time

Enzymatic degradation A. Mild reaction conditions
B. Excellent product specificity

A. Enzyme are expensive
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Hardouin et  al. 2016; Lopes et  al. 2017; Morán-San-
tibañez et  al. 2016; Song et  al. 2016). Ulvan is a natural 
sulfated polysaccharide, which in turn can have unique 
inhibitory effects on viruses and tumors. Recently, with 
the increasingly serious COVID-19 epidemic, Shefer 
et al. evaluated the antiviral SARS CoV-2 activity of ulvan 
extracted by ammonium oxalate (AOx scheme) and HCl 
(HCl scheme), respectively. The research results showed 
that ulvan extracted by the AOx scheme could protect 
VERO E6 cells from the cytopathic effect of SARS CoV-
2, and they attributed it to the interaction of negatively 
charged groups of ulvan with the protein on the surface 
of the virus (Shefer et al. 2021). Sulfated polysaccharides 
bind to viral binding sites  (CD4 receptors) on the surface 
of T cells, interfering with viral invasion, which may be 
due to the binding of sulfate groups to the polysaccha-
rides through electrostatic interactions. The research of 
Chi et al. on the anti-vesicular stomatitis virus activity of 
ulvan also has similar research results, that is, ulvan may 
inhibit virus infection and replication by interacting with 
viral envelope glycoproteins or binding with cell surface 
receptors. And they also found that the higher-molecu-
lar-weight ulvan (38.5  kDa) had better antiviral activity, 
probably because the longer glycan chains more readily 
recognized and interacted with proteins attached to the 
viral surface (Chi et al. 2020b). In fact, the putative anti-
virus mechanism of sulfated polysaccharide is to bind to 
glycoprotein on the virus or adsorb on the cell surface 
receptor to prevent the virus from entering the cell inte-
rior, as shown in Fig. 2 (Andrew and Jayaraman 2021; Lu 
et al. 2021).

Therefore, it can be hypothesized that molecular 
weight and charge also affect the antiviral activity of Ulva 
stramonium polysaccharides. However, an obstacle to the 
application of sulfated polysaccharides as antiviral drugs 

is that they usually have anticoagulant activity and thus 
side effects. Current research is directed toward the syn-
thesis of sulfated derivatives with high antiviral activity 
and low anticoagulant activity.

Antioxidant activity
Oxidative stress is defined as an imbalance of oxidant 
and antioxidant levels in the body induced by reac-
tive oxygen species (ROS), which disrupts redox sig-
nal transmission and regulation and can potentially 
cause molecular damage. It is implicated not only in 
the aging process but also in the pathophysiology of 
numerous illnesses (Chen et  al. 2022a). As anti-oxida-
tion research has progressed, the anti-oxidative activity 
of ulvan produced using various extraction techniques 
has been identified. For instance, Sulastri Evi et al. dis-
covered that with the increase of the concentration of 
ulvan extracted with HCl in the hydrogel, its ability to 
scavenge hydroxyl radicals was continuously enhanced 
(Sulastri et  al. 2021). Yuan et  al. extracted ulvan by 
microwave-assisted extraction, which had a scaveng-
ing ability of 27.6% and 68.6% for DPPH free radicals 
and ABTS free radicals, respectively, and good reduc-
ing activity (Yuan et al. 2018). Chen et al. examined the 
antioxidant activity of ulvan extracted using hot water, 
enzyme-assisted extraction, microwave-assisted extrac-
tion, and microwave enzyme-assisted extraction and 
found that the enzyme-assisted extraction had the best 
DPPH scavenging capacity. In addition, Li et  al. dis-
covered that the scavenging capacity of purified ulvan 
(FU) and purified ulvan with high sulfate group (HFU) 
in hot water-extracted ulvan, FU, and HFU is superior 
to that of Vc, and in  vivo tests on mice revealed that 
different dosages of HFU groups significantly increased 
the activities of catalase (CAT), glutathione peroxidase 

Table 6 The properties of ulvan lyase from different sources

Sources PL family Optimal pH Optimal 
temperature 
( °C)

Km Products Refs.

Alteromonas sp. LOR PL24 8.0 40 - DP2, DP4 (Kopel et al. 2016)

Alteromonas sp. (AsPL) PL24 8.5 40 3.19 ± 0.37 mg·mL−1 DP2, DP4 (Qin et al. 2020)

Pseudoalteromonas sp. strain PLSV PL24 8.0 35 2.10 ± 0.31 mg·mL−1 DP2 (Qin et al. 2018)

Pseudoalteromonas sp. PLSV PL24 8.0 50 - DP2, DP4 (Kopel et al. 2016)

Catenovulum maritimum PL24 9.0 40 - DP2 (Xu et al. 2021)

Alteromonas sp. LOR PL25 7.5 45 - DP2 (Foran et al. 2017)

Alteromonas sp. A321. ALT3695 PL25 8.0 50 0.43 mg·mL−1 DP2, DP4 (Gao et al. 2019)

Thalassomonas sp. LD5 PL25 9.0 60 1.01 ± 0.05 mg·mL−1 DP2, DP4 (Wang et al. 2022)

Nonlabens ulvanivorans NLR42 PL28 9.0 50 5.1 ± 0.2 mg·mL−1 DP2, DP4 (Nyvall Collén et al. 2011)

Formosa agariphila KMM 3901 PL28 8.5 45 3.0 ± 0.1 mg·mL−1 DP2 (Konasani et al. 2018b)

Formosa agariphila KMM  3901 T PL28 8.5 29.5 0.26 ± 0.06 g·L−1 DP2 (Reisky et al. 2018)
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(GSH-Px), and superoxide dismutase (SOD), while low-
ering MDA levels text. These results indicate that ulvan 
have a strong capacity to scavenge DPPH and ABTS free 
radicals in vitro, probably because the hydroxyl groups 
of the polysaccharides provide hydrogen ions, leading 
to the reduction of DPPH radicals. Ulvan achieved anti-
oxidant activity via influencing the activities of CAT, 
GSH-Px, and SOD in vivo. However, to determine the 
signaling pathways involved, further research on the 
method by which ulvan alters the expression of antioxi-
dant enzymes in vivo is required.

Anti‑hyperlipidemic activity
Hyperlipidemia is a major cause of vascular disease, and 
traditional treatment techniques have significant negative 
effects. As a result, studies on anti-hyperlipidemic com-
ponents in natural foods are expanding (Ge et al. 2022). 
Ulvan, the primary active element in the green algal 
Ulva, has long been known to have anti-hyperlipidemic 
properties (Pengzhan et al. 2003). Currently, all the ulvan 
utilized in the investigation of anti-hyperlipidemic activ-
ity is produced using hot water extraction. Sathivel et al. 
(2008) tested the anti-hyperlipidemic activity of crude 
ulvan by feeding it to mature male albino rats. The find-
ings revealed that ulvan could significantly inhibit the 

acute rise in serum triglyceride, free fatty acid, and total 
cholesterol levels while also significantly lowering high-
density lipoprotein (HDL), very low-density lipoprotein 
(VLDL), and having a parallel inhibitory effect on the rise 
in low-density lipoprotein (LDL) (Sathivel et  al. 2008). 
Following that, Li et  al. compared the anti-hyperlipi-
demic ability of crude ulvan (U) and purified ulvan (F1 
and F2). The result shows that F1, which can dramati-
cally lower the level of low-density lipoprotein choles-
terol (LDL-C) while increasing the level of high-density 
lipoprotein cholesterol (HDL-C) at a dose over 250 mg/
Kg, and F2, which reduced serum total cholesterol (TC) 
and triglycerides (TG) levels considerably, have better 
anti-hyperlipidemic ability than U (Li et  al. 2018). Fur-
thermore, Qi et  al. and Li et  al. revealed that sulfated 
ulvan had better anti-hyperlipidemic activity than ulvan, 
while the latter discovered that the anti-hyperlipidemic 
activity of the pure ulvan was further boosted after sul-
fated, that is, the LDL-C content was reduced, HDL-C 
was raised to normal levels, and the TC and TG contents 
were significantly reduced at only half the dose of FU (Li 
et  al. 2020a; Qi et  al. 2012). These findings suggest that 
the anti-hyperlipidemic effect of ulvan is mediated by 
various pathways, the balance of which is determined by 
the structural properties of ulvan. This opens the door to 

Fig. 2 The putative antiviral mechanism of ulvan
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tailoring anti-hyperlipidemic supplements for more spe-
cific purposes.

Anticancer activity
Abd-Ellatef et  al. studied the prevention of carcino-
genic activity in ulvan obtained by hot water extraction 
on the breasts of Wistar rats. The findings revealed that 
ulvan could not only raise the expression of the tumor 
suppressor protein p53 and the enzymatic activities of 
glutathione-S-transferase (GST), GPx, and CAT, but 
also considerably lower blood TNF-α and NO (Abdel-
latef et  al. 2017). Shao et  al. investigated the inhibitory 
impact of ulvan produced by hot water extraction, which, 
after partial desulfurization, inhibited the development 
of DLD intestine cancer cells, and found that the large 
molecular weight desulfurized sample DS-UFP3 inhib-
ited cell growth well at a concentration of 4 mg/mL (Shao 
et  al. 2014). The anticancer activity of ulvan appears to 
be exerted through multiple pathways, including the 
encouragement of cancer cell death, the decrease of 
cancer cell growth, and the activation of innate immune 
responses. Ulvan is a class of biological response modi-
fiers, and if it can be used as anticancer drugs, its great-
est advantage is that it have fewer toxic side effects, and 
it can be more effective when used in combination with 
chemotherapeutic drugs. Moreover, to a certain extent, 
ulvan can counteract the adverse reactions caused by 
chemotherapeutic drugs.

Immunomodulation activity
Klongklaewad et  al. investigated the immunomodula-
tion activity of ulvan prepared by hot water extraction on 
Pacific white shrimp and discovered that ulvan promoted 
the expression of immune-related genes (Anti-lipopol-
ysaccharide factor (ALF), prophenoloxidase (proPO), 
SOD, transglutaminase (Trans), lysozyme (Lyso), C-type 
lectin (Clectin), and lipopolysaccharide and β-1,3-glucan 
binding protein (LGBP)) to varying degrees and had a 
good preventive effect on yellow head virus (YHV), sig-
nificantly reducing its mortality (Klongklaew et al. 2021). 
Fernández-Dazde et  al. evaluated the immunomodula-
tion activity of ulvan isolated from sodium oxalate and 
discovered that ulvan can increase reactive oxygen spe-
cies in macrophages (Fernández-Díaz et al. 2017). Ulvan 
is an immunostimulant that significantly promotes 
phagocytosis by macrophages and increases the weight of 
the spleen, an immune organ. According to Harikrishnan 
et al., who examined the immunomodulation activity of 
ulvan on Labeo rohita, it was discovered that ulvan can 
significantly increase phagocytic (PC) activity, respira-
tory burst (RB), alternative complement activity (ACP/
ACH50), lysozyme (Lyz) activity, immunoglobulin M 
(IgM), and other cytokines or protein mRNA expression 

(Harikrishnan et  al. 2021). In addition, ulvan promotes 
the expression of antioxidant-related genes (SOD, GPx, 
natural killer cell enhancer factor β (NKEF-β) gene, etc.) 
and anti-inflammatory-related genes (toll-like receptor 
22 (TLR22), interleukin 1β (IL-1β), tumor necrosis factor 
α (TNF-α), etc.). Ulvan can achieve immunomodulatory 
effects by promoting the expression of immune-related 
genes and elevating the activities of PC, RB, and ACP/
ACH50. In summary, it can be hypothesized that ulvan 
can play an antiviral role by regulating the body’s immune 
status, enhancing the body’s immunity, and promoting 
the value-added of T and B lymphocytes.

Plant defense activity
Ulvan also has positive impacts on plant defense. For 
example, the induction activity of thermochemically 
extracted ulvan on the defensive response system of 
table grapes was assessed by Shomron et  al. The out-
comes demonstrated that ulvan derived from Ulva rigida 
may raise active oxygen levels and catalase, superoxide 
dismutase, and chitinase enzyme activities, decreas-
ing table grape rot (Shomron et  al. 2022). According to 
Borba et  al.’s study on wheat-to-wheat yeast resistance 
induced by ulvan extracted by hot water, while ulvan can-
not directly play an antifungal function, it can indirectly 
activate the genes expressing PR proteins (PR-2 and 
PR-3), ROS metabolism (OXO), and the octadecanoid-
based pathway (LOX and AOS). However, the utilization 
of ulvan would face challenges, including poor bioavail-
ability and solubility brought on by its high molecular 
weight (de Borba et  al. 2021). Paulert et  al. investigated 
the immunomodulatory activity of hot water-extracted 
ulvan in parsley and basil, finding that ulvan can increase 
the levels of salicylic acid (SA), salicylic acid β-glucoside 
(SAG), and abscisic acid (ABA) in parsley and basil, as 
well as increase jasmonic acid (JA) accumulation in basil 
[86]. Ulvan demonstrated considerable bioinducer activ-
ity as well as the ability to operate as a promoter, improv-
ing plant health and resistance.

In conclusion, the biological activities of ulvan, such as 
anti-virus, anti-oxidation, anti-hyperlipidemic, antican-
cer, and immunomodulation, are strongly connected to 
its fundamental biological activities, and they have some 
regulatory effects on plant defense systems. It is impor-
tant to note that the biological activity of ulvan is highly 
connected to their molecular weight, structural proper-
ties, and content. The mechanism related to the biologi-
cal activity of ulvan is shown in Fig. 3.

Biological activity of Ulva oligosaccharide
At present, the relevant research and reports on the 
activity of Ulva oligosaccharides are increasing, but the 
literature reports are relatively scattered, and due to the 
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complexity of the structure of Ulva oligosaccharides, the 
mechanism of related activities and the structure–activ-
ity relationship of oligosaccharides have not yet been 
determined. According to Chi et  al.’s evaluation of the 
anti-vesicular stomatitis virus (VSV) activity of Ulva 
oligosaccharides made by ulvan lyase of the PL25 fam-
ily, lower-molecular-weight degraded Ulva oligosac-
charides demonstrated antiviral activity equal to that of 
undegraded ulvan at 100 L/mL. Low-molecular-weight 
polysaccharides are preferable for the creation of dietary 
supplements and medications due to their compara-
ble action to natural polysaccharides (Chi et  al. 2020b). 
Using an enzymatic method, Ulva oligosaccharides were 
prepared by Li et  al. to study their anti-inflammatory 
bowel disease (IBD) properties. The study’s findings 
revealed that Ulva oligosaccharides started to have a pro-
tective effect on IBD at a dose of 50 mg/kg and were most 
effective at 100–120  mg/kg. Ulva oligosaccharides may 
also lessen the harm dextran sodium sulfate (DSS) causes 
to colonic epithelial cells (Li et  al. 2020c). According to 
Tabarsa et  al., Ulva oligosaccharides with a high sulfate 
group composition and a low molecular weight may suc-
cessfully multiply RAW264.7 macrophages, proving that 
they have a higher bioavailability. Additionally, Ulva oli-
gosaccharides may stimulate RAW 264.7 cell produc-
tion of cytokines with weak immunomodulatory activity, 
such as nitric oxide, IL-1β, TNF-α, IL-6, IL-10, and IL-12 
(Tabarsa et  al. 2018). And Berria et  al. also found that 
the mRNA and protein expression of cytokines (such 
as CCL20, IL-8, and TNF-α) were increased when por-
cine intestinal epithelial (IPEC-1) cells were treated with 
Ulva oligosaccharides (Berri et  al. 2017). The presence 

of Ulva oligosaccharides that have been degraded might 
enhance the anticancer activity of ulvan, according to 
research by Carvalho et  al. on the cytotoxicity of Ulva 
oligosaccharides on human cervical cancer cells (de Car-
valho et  al. 2020). In contrast to high-molecular-weight 
ulvan, degraded Ulva oligosaccharides displayed stronger 
antioxidant activity, according to Qi et  al. (2005). Using 
a male Wistar rat model, Yu et al. investigated the anti-
hyperlipidemic activity of Ulva oligosaccharides and dis-
covered that it increased HDL cholesterol by 2.0 times 
and decreased TG by 46.4% in rats given Ulva oligosac-
charide. Accordingly, degraded Ulva oligosaccharides 
were superior to undegraded ulvan in treating hyperlipi-
demia caused by diabetes. The biological activities related 
to Ulva oligosaccharides are shown in Fig. 4.

In terms of enhancing plant defense activity, Ulva oli-
gosaccharides also performed well. Paulert et al. investi-
gated the oxidative burst activity of Ulva oligosaccharides 
prepared by acid hydrolysis to induce dicotyledonous 
plants, and the findings revealed that low-molecular-
weight Ulva oligosaccharides can have the same activity 
as ulvan, and its inducing activity is not dependent on 
acid sulfation. Because of their solubility or high viscos-
ity, large molecular weight polysaccharides are challeng-
ing to utilize in normal agricultural contexts (Paulert 
et al. 2021). AbourachaaZ et al. investigated the effects of 
ulvan and ulvan oligosaccharides produced by ulvan lyase 
on apple defense reactions and corruption. Ulva oligo-
saccharides may totally prevent the formation of blue and 
cyan molds on fruits, according to the findings. Ulva oli-
gosaccharides, as opposed to ulvan, can also better stim-
ulate the immune regulation system of apples, resulting 

Fig. 3 The mechanisms related to the biological properties of ulvan Fig. 4 The biological activities of Ulva oligosaccharides
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in the activation of antioxidant-related enzymes and an 
increase in the activities of phenylalanine ammonia lyase 
(PAL), peroxidase (POD), and polyphenol oxidase (PPO) 
(Abouraïcha et  al. 2015). However, researches on the 
action of Ulva oligosaccharides are limited. This is also 
due to the complexity of the structure of ulvan, and there 
is no suitable method for obtaining oligosaccharides with 
a specified fine structure to research the structure–activ-
ity connection of oligosaccharides.

Conclusion and outlook
The extraction rate of ulvan increased significantly as the 
extraction process was continuously optimized, going 
from a low yield of 7%–24% (Chen et al. 2021; Paradossi 
et  al. 1999; Toskas et  al. 2011) in the traditional extrac-
tion method to 35.3 ± 0.3% (Hardouin et al. 2016) in the 
enzyme-assisted extraction method and 40.4 ± 3.2% 
(Magnusson et  al. 2019) in the microwave-assisted 
extraction method. In addition, obtaining high-purity 
ulvan by purification played a key role in the study of 
their structure and activity. As Glasson analyzed the 
monosaccharide composition and structure by purifying 
the polysaccharides from different sources and analyzed 
the in vivo and in vitro antioxidant activity and enzyme 
inhibitory activity of purified ulvan with a higher con-
fidence level in their results. Enzymatic preparation of 
Ulva oligosaccharides has milder reaction conditions 
and higher reaction efficiencies and produces oligosac-
charides with unsaturated bonds at the non-reducing end 
compared to chemical and physical methods. In addition, 
the rich biological activities of ulvan and Ulva oligosac-
charides make them potentially applicable in food, medi-
cine, cosmetics, and other fields.

However, studies on the structure and biological prop-
erties of ulvan are still at an early stage compared to 
other marine sulfate polysaccharides, carrageenan, and 
fucoidan. On one hand, the high-value development of 
ulvan is still affected by the immaturity and low purity 
of the large-scale preparation process, i.e., the industrial 
production of high-purity ulvan cannot be realized. On 
the other hand, the relationship between the physico-
chemical properties of ulvan and their biological activi-
ties, as well as the mechanism of action of the biological 
activities, remains unclear. This is due to the fact that 
studies related to the highly refined structure–function 
properties as well as the activity of fully characterized 
ulvan against highly precise targets are still scarce. In 
contrast, Ulva oligosaccharides, as degradation products 
of ulvan, retain various physiological activities and other 
excellent properties of ulvan. Although the tool enzyme 
ulvan lyase has been identified and certain research find-
ings have been obtained, the reported enzymes still can-
not match the demands of commercial applications due 

to a lack of sequence information, low stability, and low 
activity. As a result, ulvan lyases with high activity and 
exceptional stability, as well as their entire sequence 
information, are urgently required for commercial appli-
cations. Furthermore, precise fine structure analysis of 
ulvan and its oligosaccharides plays a significant role in 
increasing the structure–activity connection of ulvan 
and its oligosaccharides, as well as the high-value devel-
opment and effective exploitation of ulvan. Ulvan, a rich 
green marine biomass resource, will be more fully uti-
lized in the future with the realization of industrialized 
production of high-purity ulvan, the discovery of more 
and more excellent biochemical properties of ulvan 
lyases, and the clarification of the structure–activity rela-
tionship between ulvan and its oligosaccharides.
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