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Abstract 

Sustainable agricultural practices help to manage and use natural resources efficiently. Due to global climate 
and geospatial land design, soil texture, soil–water content (SWC), and other parameters vary greatly; thus, real time, 
robust, and accurate soil analytical measurements are difficult to be developed. Conventional statistical analysis tools 
take longer to analyze and interpret data, which may have delayed a crucial decision. Therefore, this review paper 
is presented to develop the researcher’s insight toward robust, accurate, and quick soil analysis using artificial intel-
ligence (AI), deep learning (DL), and machine learning (ML) platforms to attain robustness in SWC and soil texture 
analysis. Machine learning algorithms, such as random forests, support vector machines, and neural networks, can be 
employed to develop predictive models based on available soil data and auxiliary environmental variables. Geosta-
tistical techniques, including kriging and co-kriging, help interpolate and extrapolate soil property values to unsam-
pled locations, improving the spatial representation of the data set. The false positivity in SWC results and bugs 
in advanced detection techniques are also evaluated, which may lead to wrong agricultural practices. Moreover, 
the advantages of AI data processing over general statistical analysis for robust and noise-free results have also been 
discussed in light of smart irrigation technologies. Conclusively, the conventional statistical tools for SWCs and soil 
texture analysis are not enough to practice and manage ergonomic land management. The broader geospatial non-
numeric data are more suitable for AI processing that may soon help soil scientists develop a global SWC database.
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Graphical Abstract

Introduction
Organisms need water as a compulsory part of routine 
metabolic activities, and especially plants require a con-
tinual supply of soil–water to maintain their turgor and 
transport mechanisms (Huang et al. 2020). The predomi-
nant allocation of water within plants is dedicated to the 
hydrolysis process, which serves as a means of generating 
energy required for the sustenance of a diverse array of 
chemical reactions and physiological processes (Bhunia 
et  al. 2023). Soil–water contents (SWCs) are often con-
fused with soil–moisture contents (SMCs), which in gen-
eral are different. SWCs account for a ratio between the 
volume of water present in a unit of soil volume (Hueso 
et al. 2012). It has been discovered that the rate of miner-
alization significantly affects the microbial contents and 
activity, which helps to regulate plant growth (Ma et al. 
2022). Moreover, the soil porosity and SWC saturation in 
designated soil pores may hinder  O2 diffusion, because 
the rate of  O2 diffusion is about one hundred times less 
when compared with air.

Hence, the ideal soil–water contents SWCs are limited 
in their ability to sustain crop growth as a result of the 
impeded diffusion caused by saturated soil pores (Zhang 
et  al. 2021). Similarly, when the saturation of soil pores 
decreases from an optimal level, it results in significant 
damage to the microbial flora residing within these pores. 
Consequently, this leads to a decline in nitrogen and car-
bon mineralization (Schlüter et  al. 2098). Furthermore, 
when drought is induced in soil pores, the water films 

surrounding soil particles become thinner, and dryness 
prevails in the soil, which primes water channels in the 
soil pores to become disconnected (Dwevedi et al. 2017).

The optimal SWCs are closely associated with car-
bon allocation, plant growth, nutrient recycling, photo-
synthetic rate, and microbial activity. The regulation of 
these parameters has also invariably been linked with the 
physicochemical properties of water that are held in soil 
(Wang et al. 2023). There is a fuzzy concept that all of the 
water present in soil can be taken up by plants. However, 
this is not a true concept; holding the water against the 
gravitational pull is a soil art that most often depends 
on the type of soil. Another indicator of the soil’s over-
all ability to store water is its porosity. Measuring soil–
water content and potential is the initial step in doing soil 
research, since they are important to state quantities of 
soil (Heiskanen 1997; Vereecken et  al. 2015). Therefore, 
this water-holding capacity against the gravitational 
pull feeds the crop during water scarcity posed by low 
precipitation.

Though, due to complicated laboratory protocols and 
high cost, it remains a mere challenge to analyze avail-
able water contents for plant growth (Zhao et al. 2015). 
Soil–water holding capacity (SWHC) is mainly affected 
by soil texture, which is further dependent upon pH, 
temperature, microbial community, precipitation, type 
of soil, and other relatable factors. For example, an ele-
vated environmental temperature will lead to the thawing 
of permafrost, which leads to many fluctuations in soil 
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properties finally nutrient availability to plants is com-
promised (Månsson et  al. 2014). Changes in crop rota-
tion and land use can make the soil better in ways, such 
as C/N ratio, bulk density, tillage (Beheshti et  al. 2012), 
and soil–organic carbon distribution is influenced by 
general topography (Sun et  al. 2015). Moreover, carbon 
stocks are influenced by precipitation. There are very few 
studies available on the subject that encapsulate multi-
factorial factors influencing soil’s porosity and texture 
(Jamil et al. 2016). For instance, nutrient movement, pore 
size, and soil structure are influenced by the soil physi-
cal properties. Soil fertility is improved by particle sur-
face absorption of ions in clay (Wang et al. 2022). Hence, 
the comprehensive examination of environmental factors 
pertaining to soil texture, porosity, and water content 
availability necessitates a laborious endeavor (Dragone 
et al. 2020).

The electrical conductivity (EC) and SWC measure-
ments with minimal damage to soil have been anticipated 
by scientists for many years (Masha et  al. 2021). While 
from the previous literature, it has been found that these 
factors are greatly influenced by soil porosity, which in 
turn is compromised by fluctuating environmental influ-
encers (Bittelli 2011). Besides, the effects of environ-
mental influencing variables are a time-demanding and 
complex task (Ruszczak and Boguszewska-Mańkowska 
2022) that has not been reviewed and has also not been 
experimentally evaluated in a single manuscript (Heis-
kanen 1997).

Due to the diversified data available, it is very difficult 
to establish and study the effects of all influencing fac-
tors on soil parameters (Zhao et al. 2020). This creates a 
huge hurdle to getting a complete insight into the influ-
encing parameter and making further decisions for intel-
ligent agricultural practices manually (Pastén-Zapata 
et  al. 2014). The accurate outcomes and decisions may 
be facilitated by considering the processing time and 
prerequisites of both conventional and advanced statis-
tical techniques (Clauser et  al. 2022). However, on the 
other hand, the critical time to perform a management 
response may have surpassed. For instance, the SWCs 
have been recorded on the landmark, and it is time to 
irrigate. While conventional statistics play a significant 
role in this irrigation decision-making process, the rela-
tive analysis is consistently and flawlessly present (Blanco 
and Lal 2023).

Artificial intelligence (AI) has been found to pro-
cess non-numerical data, such as images, videos, text, 
and voice data with greater perfection. Therefore, there 
is a need to align the geophysical influence data on soil 
quality with artificially intelligent systems to process the 
decision-making more robustly (Liu et  al. 2014). The 
AI does not even require the data to be large enough to 

process and suggest a crop management practice. The AI 
tools have previously been found to be smart enough to 
remove the noise from SWC, EC, and DC data for soil 
parameters. The noise removal was found to give an 
accurate SWC measurement that is actually available for 
the crop to be taken (Ratshiedana et al. 2023). The cur-
rent study explains a review of soil–water content data 
and its possible processing using AI tools. The false posi-
tivity in SWC results and bugs in advanced detection 
techniques are also evaluated, which may lead to wrong 
agricultural practices. This review first covers the soil–
water relationships and advancements in measurement 
techniques for SWC and soil texture. Second, the initial 
efforts for the development of global SWC and soil tex-
ture databases using AI networks have been discussed. 
Furthermore, the conventional statistical and AI analy-
sis platforms have been compared, and conclusions are 
drawn for future recommendations.

The diverse SWCs inside the soil
The soil has the property of water anchorage, which may 
change with physicochemical texture and climate (Singh 
and Nair 2023). The water-holding capacity of soil can 
vary among different types of soil. However, the compre-
hensive depiction of soil–water is insufficient to elucidate 
the scientific principles governing water absorption by 
field crops (Adhikari et al. 2022). The soil–water can be 
attributed to different types, i.e., hygroscopic soil–water 
(HSW), gravitational soil–water (GSW), and capillary 
soil–water (CSW). These various varieties of soil–water 
are subject to distinct and variable forces that degrade 
the soil (Rayne and Aula 2020). The soil architecture is 
quite variable and is affected by various environmental 
factors that regulate the soil pore distribution; likewise, 
the soil–water distribution is affected (Jian et  al. 2015). 
The HSW contents are held by soil–particle physical 
interactions in vapor form, which is more often hydrogen 
bonding. These contents are very unlikely to be strained 
by the crops for their growth due to strong soil binding 
(Wuddivira et al. 2012). After the precipitation, the GSW 
is rapidly increasing but is drained with more speed than 
any other type of soil–water due to its humongous gravi-
tational pull. The gravitational forces drag GSW con-
tents sharply to the larger pores deep down in the soil 
and often add to the water table (Fu et al. 2021). Due to 
shorter root lengths, the crops are also much less likely 
to use this GSW. As a general concept, GSW contents are 
temporarily available to the crops only before they are 
drained. Ideally, plants can easily access the soil–water 
when water contents are -33 bar; this only happens after 
all of the GSW drainage is completed and is termed field 
capacity (Leucci 2012). Water is usually considered the 
most important factor for crop growth, but actually, the 
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soil–water content causes plants to wilt if all of the soil 
pores are filled with water (saturation). Total saturation 
hinders oxygen diffusion and halts the respiration of 
roots, which destroy the whole crop lot (Bhattarai et al. 
2005). Therefore, the actual and readily available water 
contents utilized by crops are the CSW contents that 
make up the maximum field capacity. Moreover, when 
field capacity is not accessible by the plants due to the 
strong bonding of remaining water with soil, the perma-
nent wilting point is achieved which is actually the point 
of no water uptake by the plants (Ben-Noah et al. 2021). 
At this point, the crop water uptake forces cannot over-
come the available soil–water, which is often calculated 
at -15 bar. Hence, the water draw point for crops lies 
between field capacity and the permanent wilting point.

Soil and water interactions affect nutrient uptake
The water storage in soil has a direct relationship with 
the movement of water in soil pores, making water 
potential and SWCs relatable (Richards 2004). The soil 
texture and layering profiles also influence the water 
flow (Khaled and Fawy 2011). The manner in which soil–
water interacts with soil particles has varying effects on 
the absorption of water and nutrients by crops. The dis-
parity between soil and crop root water potential serves 
as a determining factor in facilitating the process of crop 
water uptake (Vico et al. 2023).

The instantaneous water concentration and force gen-
erated by water inside the crop roots are called crop root 
water potential. This is the key determinant for the direc-
tion of water movement in or out of the plant, because 

water movement is always explained as spontaneous 
from higher to lower potentials (Agegnehu et  al. 2016). 
The pressure potential, turgor pressure, and solute poten-
tials are also the denominators for crop root water poten-
tial (Boyer 2015). However, the real factor that governs 
water flow is the interaction of water molecules with soil 
(adhesion) and with each other (cohesion). Gravitational 
pull is another key factor that restricts uphill water flow 
(Miranda-Apodaca et al. 2018).

In general, water molecules are associated with one 
another, and plants are only able to uptake soil–water 
when they overcome the adhesion and gravitational pull. 
Therefore, the water uptake by the plants, even at more 
feasible bar pressure is difficult with varying soil textures 
and porosity. The water movement from soil to plant 
roots is justified by the suction phenomena elucidated 
by TACT theory (transpiration, adhesion, cohesion, and 
tension). The present theory elucidates the mechanism 
underlying water transport within the xylem and the gen-
eration of negative water potential within plant roots, 
resulting in the development of suction forces that facili-
tate the uptake of water into the plant roots (Lambers 
et al. 2019). The supporters of this theory are of the view 
that water suction is only possible when the TACT forces 
overcome the gravitational pull and other physical inter-
actions established by water. The schematic of TACT and 
water–soil interaction is explained in Fig. 1.

The disparities in nutrient composition between soil 
and crop roots facilitate the process by which crops 
absorb nutrients. The plant nutrient concentration refers 
to the quantity of nutrients found in the sap of a plant, 

Fig. 1 Schematics of water–water and water–soil interaction affecting the movement and availability of SWCs to plant roots (Drawn using 
Biorender.com)
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which is measured as a ratio of mass or molarity per unit 
volume (Chen et  al. 2022). Plant nutrient concentration 
varies with plant species, growth stage, and environmen-
tal conditions. Crop uptake of water and nutrients also 
depends on the characteristics of the root system, such 
as root branching pattern, root surface area, root diam-
eter, root length, root hair density, root depth distribu-
tion, etc. (Dotaniya and Meena 2015). The characteristics 
of the root system affect the contact area between roots 
and soil particles as well as the transport capacity of roots 
(Pregitzer and King 2005).

Crops need adequate amounts of both water and 
nutrients for optimal growth and yield. The interaction 
of soil–water with soil particles depends on various fac-
tors, such as soil texture, structure, organic matter, pH, 
cation exchange capacity, fertilizer application, climate, 
crop species, growth stage, environmental conditions, 
root system characteristics, etc. Therefore, understanding 
these factors and their effects on soil–water–plant rela-
tionships is important for managing soil fertility and irri-
gation practices effectively (Fu et al. 2019).

The relative proportions of clay, silt, and sand are 
expressed as soil texture (Barman and Choudhury 2020). 
The texture of soils is considered to influence nutrient 
availability either by changing the water holding capac-
ity or by manipulating the cation exchange capacity 
(Sharma et al. 2015). The water retained by soil for plant 
usage is subjected to water holding capacity, as this is 
the most crucial feature that supports nutrient uptake 
and transport mechanisms in plants. In general, higher 
water-holding capacity is a feature of finer-textured soils 
(clayey soils) than coarser textured soils (sandy soils), 
because they have 8–10 times more total pore space and 
smaller pores that hold water more tightly (Li et al. 2014). 
This means that clayey soils can provide more water and 
nutrients to plants than sandy soils, especially during 
drought periods. However, clayey soils can also become 
waterlogged or anaerobic if drainage is poor, which can 
limit nutrient availability and plant growth (Wang et al. 
2021a).

The concentration of soil nutrients exhibits variability 
based on factors, such as soil texture, structure, organic 
matter content, pH levels, cation exchange capacity, and 
the application of fertilizers (Bouajila et al. 2023). In gen-
eral, finer-textured soils (finer than 1 mm) have higher 
soil nutrient concentrations than coarser-textured soils, 
because they have a larger surface area and a more nega-
tive charge on their surfaces that can adsorb cations (pos-
itively charged nutrients). However, finer-textured soils 
can also bind some nutrients too strongly or make them 
unavailable by forming insoluble compounds with other 
elements.

Cation exchange capacity (CEC) reflects the avail-
ability of cationic nutrients present in soil–water, such 
as ammonium, calcium, potassium, magnesium, iron, 
zinc, etc. Cover crops in seed maize or soybean treat-
ment (SCCC) had a significant effect on soil exchange-
able K in the topsoil (0–5 cm soil layer) (Emamgolizadeh 
et  al. 2015). These positively charged ions are found in 
close interaction with negatively charged organic soil 
constituents. The positively charged ions are absorbed by 
the plant root using an anti-port cation exchange mecha-
nism (Ulusoy et al. 2016). In general, finer-textured soils 
have a higher CEC than coarser-textured soils, because 
they have a larger surface area and more negative charge 
on their surfaces. This means that clayey soils can store 
more cations and prevent their leaching than sandy soils. 
However, clayey soils can also bind some cations too 
strongly or make them unavailable by forming insoluble 
compounds with other elements, such as phosphorus.

Soil texture also affects the mobility and retention of 
negatively charged nutrients (anions), such as nitrate, 
phosphate, sulfate, etc. Previously, 10% clay soil addition 
was nearly as effective in reducing N and P leaching as 
20% clay soil. Adding only 10% clay soil to a sandy soil 
is likely to be less expensive than 20%. (Yan et al. 2022). 
Anions are not held by the soil particles but move freely 
with the soil–water. In general, coarser-textured soils 
have higher anion leaching potential than finer-textured 
soils, because they have larger pores that allow more 
water flow. This means that sandy soils can lose more 
anions by leaching than clayey soils, especially under 
high rainfall or irrigation conditions (Ali et  al. 2020). 
However, sandy soils can also allow more anion uptake 
by plant roots than clayey soils, because they have lower 
anion adsorption potential. Convincingly, soil texture 
affects nutrient availability by influencing the water-hold-
ing capacity and the cation exchange capacity of the soil. 
Finer-textured soils tend to have higher nutrient reten-
tion and lower nutrient leaching than coarser-textured 
soils, but they may also have lower nutrient availability 
and aeration under certain conditions (Liu et  al. 2021). 
Therefore, soil texture needs to be considered when man-
aging soil fertility and applying fertilizers.

SWCs in different soil types
The predominant land textures in arable areas primarily 
depend on precipitation to sustain SWCs, which is cru-
cial for supporting arid vegetation and facilitating the 
ecohydrological cycle (Xu et al. 2023). The SWCs in arid 
and semi-arid regions exhibit increased heterogeneity in 
response to variations in precipitation patterns and veg-
etation types (Obade and Gaya 2021). Due to the exhaus-
tive evaporation factor, the smaller precipitation index 
has insignificant effects on SWC (Wilson et  al. 2004). 
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SWC is reported to decrease with increasing soil depth 
due to lessening influence of precipitation factors on 
deep soils. Such as, the coefficient of variation was found 
to be high for SWC in the horizontal direction (48%), 
but was relatively small for SWC in the vertical direction 
(9%) (Zhao et  al. 2017). Therefore, it can be established 
that precipitation and SWCs are strongly associated with 
local climate (Mei et  al. 2019). Diverse microbial com-
munities coexist in various soil types to maintain their 
textural heterogeneity at microscale (Huang et al. 2023). 
Soil textures mainly hinge on soil heterogeneity, which 
has a direct linkage to soil pores distribution (Rooney 
et al. 2022). The differential pore distribution affects the 
SWC and pore saturation at large; therefore, soil–micro-
bial flora can also influence the SWC measurement tech-
niques that involve EM waves. The development of more 
microbial communities in soil pores often uplifts the 
water density (Amarasekare 2003) and also adds to the 
relative water volume, which later on results in false posi-
tivity for volumetric SWC observations (Vos et al. 2013). 
Scientists believe that this microbial flora is involved in 
the natural biogeochemical cycles and offers colonization 
resistance to the soil (Stein et al. 2014).

The water matrix suction by the crops has been a 
recent topic of research in environmental science and 
agriculture engineering (Xu and Yang 2018; Rahardjo 
et  al. 2019; Tian et  al. 2020). Measurement of SWCs in 
specific soil types is limited to detection techniques 
whether recent or advanced (Wang et al. 2021; Karakan 
2022; Ojeda Olivares et al. 2020). These studies have pre-
sented the idea of hydraulic retention and SWC strength 
using quantitative analytical techniques. Soil texture (Liu 

et  al. 2012) and pore conformations (Chen et  al. 2017) 
have been found to pose a significant influence on total 
SWCs. Moreover, the initial soil wetting has also been 
investigated to impact the water content at large (Zhang 
et al. 2021). However, the rapid draining of water due to 
gravitational pull generates a sufficient number of atroci-
ties in data collection and further analytical processing.

In another study, it was found that out of 120 samples, 
the water contents of more fine clayey soils were signifi-
cantly higher compared with those of more sandy soils 
(Li et  al. 2016). Nonetheless, the finer and clayey soil 
holds water sufficiently well and halts water mobility for 
crops even at ideal water bar of -30 units. Furthermore, 
when the soils are tuned to be finer, the porosity may 
increase, but the crop efficacy to drag water from these 
pores is significantly reduced (Fig. 2). Moreover, the suc-
tion matrix fractal analysis model for VSWC in various 
soil types confirms the significantly differential VSWCs 
(Fig. 3).

In general, sandy soils have higher hydraulic conductiv-
ity than clayey soils, because they have larger pores that 
offer less resistance to water flow (Hao et al. 2019). This 
means that sandy soils can drain faster than clayey soils 
after rainfall or irrigation. However, this also means that 
sandy soils can lose more water by evaporation or tran-
spiration than clayey soils, because they have a lower 
matric potential and cannot retain water against atmos-
pheric demand. Because clayey soils have smaller pores 
that give more barrier to water movement, they have 
poorer hydraulic conductivity than sandy soils. This 
means that clayey soils can hold more water after rain-
fall or irrigation than sandy soils. However, because 

Fig. 2 Physical parameters of differently textured soils in relation to water contents (Redrawn from data source) open access license (Obade 
and Gaya 2021)
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clayey soils have a larger matric potential, which prevents 
gravitational drainage, they can become waterlogged or 
anaerobic if drainage is poor (Mulla et  al. 2023). SWCs 
vary with soil texture due to differences in pore space 
and pore size distribution. Clayey soils have a higher 
SWC and lower hydraulic conductivity than sandy soils 
under all moisture conditions. This affects the water 
holding capacity and water movement in the soil, which 
in turn affect various processes, such as plant growth, 
nutrient cycling, water balance, and soil erosion. There-
fore, understanding the relationship between SWC and 
soil texture is important for managing soil and water 
resources effectively.

Advancements in SWCs measurements
Soil–water content (SWC) is a crucial parameter that 
affects various biophysical processes, such as plant 
growth, nutrient cycling, and water balance (Pereira 
et al. 2020). Measuring SWC accurately and efficiently is 
important for many applications in ecology, agriculture, 
hydrology, and engineering. The SWC is often termed 
wetness of soil, which in general has no specified but 
relative value (Lal and Shukla 2004). This relative value is 
often a ratio, often calculated as water over soil volume 
 (Vw/VS) and volumetric SWC (VSWC), is usually repre-
sented as θ (García-Gamero et al. 2022). Moreover, as a 
general convention, this VSWC is often referred to as rel-
ative soil volume filled with water. Being a basic quantity 
for soil research initiation, SWC measurement is a rou-
tine analysis for soil examination. There are diverse meth-
ods that have been reported to measure SWC and have 
their own pros and cons. One of the basic, or so-called 

absolute, methods of measuring SWC is the gravimetric 
method (GM), which is noncalibrated and the most basic 
method.

The GM is a destructive approach that often fails to 
provide real-time knowledge and cannot measure the 
same sample area again (Villalobos et  al. 2008). This 
method may also leave a space from where the sample 
has been taken, which will abruptly change the SWC, 
bulk density, and relative volume of nearby areas. These 
factors might leave the GM method unreliable and 
nonrepresentative if we are more involved in the real-
time measurement of SWC. The neutron method (NM) 
was then developed for more likely real-time and non-
destructive SWC measurements. This method accounts 
for only elastic collisions between neutrons and water 
molecules. Consequently, the presence of tightly bound 
hygroscopic water molecules and neutron dissipation 
can lead to the acquisition of false-positive outcomes.

The determination of the actual water content acces-
sible for crops may continue to lack definitive findings 
(Drizo et  al. 2022). Due to high radiation levels, this 
method also remains banned in most countries. This 
method is non-destructive, continuous, and capable 
of measuring SWC at different depths and large vol-
umes of soil. However, it is expensive, hazardous, and 
requires a license to operate. It also requires calibration 
with other methods and correction for soil bulk den-
sity and temperature. With the research and develop-
ment of SWC measurement technology, more accurate 
and noninvasive methods were also introduced, which 
require little calibration and are more sensitive. These 
methods either rely on electrical or electromagnetic 
(EM) signal travel in the soil and water, and then the 
resistance, capacitance, frequency, or time of travel can 
be compared as a measure of SWC. These methods are 
more robust and require prior installation and calibra-
tion (Karimi, et al. 2020). However, once installed, real-
time and noise-free results can be obtained.

It remains a key factor that electromagnetic wave 
propagation is inhibited by air gaps, so the techniques 
utilizing EM waves are limited to certain soil types. For 
instance, the ground penetration radar (GPR) method 
involves EM wave propagation in soil and then a reflec-
tion of these waves by soil entities. It uses a transmitter 
and a receiver that are moved along the soil surface or 
placed in boreholes and measure the travel time, ampli-
tude, frequency, or envelope of the reflected waves 
(Pandya 2021). This method is non-destructive, high-
resolution, and capable of measuring SWC at different 
depths and large areas of soil. However, it is complex, 
expensive, and affected by soil texture, structure, salin-
ity, and surface roughness. It also requires inversion 
models and calibration with other methods (Sharma 

Fig. 3 Results of fractal model showing the association 
between VSWC and matrix suction from diverse soil textures (Reprint 
from open access license) (Obade and Gaya 2021)



Page 8 of 16Awais et al. Bioresources and Bioprocessing           (2023) 10:90 

and Sen 2022). The comparative analysis of the tech-
niques discussed is also summarized in Table 1.

Conclusively, there are various techniques available for 
measuring SWC at different scales and for different pur-
poses. Each technique has its own strengths and weak-
nesses that need to be considered when choosing the 
most suitable one for a given situation. There is no single 
best technique that can measure SWC universally and 
accurately. Therefore, it is often necessary to combine or 
compare different techniques to obtain reliable and rep-
resentative estimates of SWC. Future development of 
SWC measurement techniques may focus on improving 
their accuracy, precision, resolution, cost-effectiveness, 
ease of use, and integration with other sensors, models, 
and programs developed by AI.

Soil texture prediction and analysis using artificial 
intelligence
Soil texture has been found to play a crucial role in eco-
system health, agricultural production, and sustainable 
farmland management (Zhai et  al. 2006). Among the 
diverse soil properties, the texture plays a pivotal role in 
decision-making for the planning and management of 
agricultural land. The conventional approaches with agri-
culture sensors and statistical analysis were found to be 
non-robust, time-consuming, non-instantaneous, and 
expensive (Bormann 2010). However, with advanced AI 
processing tools and ML applications, new avenues for 
texture prediction and revolutionized soil management 
practices have been opened.

Conventional soil texture analysis is performed by 
sieving, sedimentation, and other hydrometric labo-
ratory methods. Later, the results from these experi-
ments are statistically analyzed, and conclusions are 
drawn manually. The complexity of this analysis can 
be presumed from the variable soil textures and envi-
ronmental attributes that affect it. This creates heaps of 
data that cannot be translated into a single conclusion 

for correct decision-making (Riese and Keller 2019). 
Therefore, all of these manual dealings require skilled 
professionals, a significant amount of time, and special-
ized instruments. However, AI tools are a promising set 
of alternatives for these limitations that otherwise con-
fine soil management.

AI techniques that include machine learning (ML) 
and deep learning (DL) are potentially remarkable 
for accurate and efficient soil texture predictions. The 
inputs utilized by these algorithms are compositional, 
spectral, and geographical data sets that can be in non-
numerical form (Johnson et  al. 2020). AI processing 
of these data sets mainly reduces the cost, time, and 
labor involved compared with conventional laboratory 
protocols. The complexity of relationships among the 
data sets is quickly learned and applied using the ML 
and DL algorithms (Wang et al. 2021b). This is not the 
only scale available with this technology; cloud systems 
and mobile applications are another step forward. The 
wider scalability of AI enables farmers and land manag-
ers to access and process land management operations 
with ease.

The subjective and error-prone data analysis from 
traditionally practiced laboratory protocols is then 
dazzled by the objective, more accurate, and real-time 
data processing using AI tools (Hassan-Esfahani et  al. 
2015). By leveraging AI techniques, we can overcome 
the limitations of traditional laboratory-based methods 
and enable real-time decision-making in soil manage-
ment practices. However, addressing challenges related 
to data quality, interpretability, and system integra-
tion will be crucial for the successful implementation 
of AI-based soil texture analysis (Liu et al. 2022). With 
continued research, collaboration, and innovation, AI-
driven soil analysis can contribute significantly to sus-
tainable land management, agricultural productivity, 
and environmental conservation. Integrating AI models 
seamlessly into existing soil management practices and 

Table 1 Comparison of advancements in SWCs measurements

Technique Principle Advantage Disadvantage References

Gravimetric method (GM) Soil collection and analysis ✓ Absolute results ✓ Non-calibrated
✓ Destructive

Lal and Shukla (2004)

Neutron method (NM) High energy neutrons ✓ Real time
✓ Non-destructive

✓ High radiation
✓ Considers only elastic 
collisions

García-Gamero et al. 
(2022)

Ground penetrating radar 
(GPR)

Electro-magnetic Waves ✓ Non-destructive High 
resolution

✓ Complex
✓ Expensive
✓ Requires calibration

Karimi et al. (2020)

Capacitance method (CM) Resistance and capacitance 
sensors

✓ Relatively inexpensive
✓ Automated

✓ Difficult installation
✓ Results affected by soil 
types

Bünemann et al. (2018)
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decision support systems requires collaboration among 
scientists, engineers, and policymakers. This integra-
tion would ensure the practical implementation of AI-
based soil texture analysis on a broader scale.

Artificial intelligence and SWC measurement
The highest cadre of the information technology revolu-
tion is AI, which has influenced and reshaped every field 
of life. AI has a robust approach, where the computers 
learn from already existing data sets and get themselves 
trained enough to solve complex problems. This AI 
resides on very complex modules that are cladistical in 
their linkage and are very complex to understand (Bar-
ros et  al. 2022). AI is generally compared with human 
neurons for its signal-processing complexity. The inputs, 
processing, decision-making, and outputs are similar to 
those of human neurological systems (Fig. 4).

A variety of fields have benefited from AI, for instance, 
robotics, medical imaging, disease detection, and flight 
control systems. AI has also been found to be capable of 
solving key issues in agronomy, meteorology, and hydrol-
ogy. The science of SWC measurement has also benefited 
from AI source codes recently. It has presented itself as 
a water- and soil-state manager with high performance, 

correlation, and statistical correctness (Gao et al. 2022). 
This is a very smart add-on to robust agricultural deci-
sion-making under the influence of various environmen-
tal factors. This section of the manuscript will review AI 
strategies for agriculture biosensing, with a special focus 
on SWC management.

Climate variability can readily impact the outcomes of 
the FDR and TDR techniques for measuring SWC. This 
has inspired scientists to report a novel method in 2020 
(Mallet et al. 2020), which included measuring the tem-
perature response and heating the surrounding soil in 
short bursts. Due to its high degree of automation and 
being less influenced by climate, this actively heated opti-
cal fiber (AHOF) method can be applied, where conven-
tional TDR and FDR might not be enough (Ciocca et al. 
2012). However, the analysis performed by AHOF still 
requires correction due to unpredicted errors, types of 
soil, and other climatic variables. Therefore, the artificial 
neural network (ANN) utilized for removing the errors 
generated by the AHOF method to improve the effective-
ness of acquired results (Liu et al. 2023). The prescribed 
model was recommended for usage, which contained the 
use of a climate layer or cover layer that was found to be 
highly correlated with SWC contents.

Fig. 4 Comparison of artificial and biological neuron (Barros et al. 2022) (Open Access)
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The field of agriculture sensing has now been closely 
linked with ANN models to rectify and filter the most 
accurate results and forecast the future for irrigation and 
agricultural management. Precision agriculture has now 
been supplemented with pH, humidity, SWC, mechani-
cal, and airflow sensors that provide enough results for 
robust decision-making using ANN tools. Considerable 
efforts have been made to forecast the future of wheat 
crops using ANN model training based on previous sen-
sor readings (Roshan et  al. 2022). The scientists then 
concluded multilayered perceptron model was the most 
effective, with lower MSE and RMSE when compared 
with other ANN models. Accurate assessment of SWCs 
has grabbed the attention of researchers over the past few 
years.

Many efforts have been made to contribute to in-situ 
data collection and the development of remote databases 
for SWCs (Owe et  al. 2008). However, these efforts are 
still in progress, and to date, we do not have such a data-
base on a global scale. SWC measurement using pseudo-
transfer functions (PTFs) is a solution to maximize the 
right soil data acquisition from lands, where there are no 
data available. Regression model analysis usually gener-
ates PTF data that can be fed to an adaptive neuro-fuzzy 
interference system (ANFIS) that gives a non-explicit 
insight into SWC variables (Liu et al. 2020). The research 
found the ANFIS model to be more efficient, robust, and 
quick compared to conventional statistical models that 
have higher standard errors (Hosseini et al. 2021). Under-
standing soil texture and water content is key to proper 
crop management. Precipitation and droughts consider-
ably account for more than anything else that can affect 
soil textures (Keller and Håkansson 2010).

The main components of a Bragg grating AH–FBG 
moisture sensor are a resistance wire, an optical fiber 
with quasi-distributed FBGs for temperature monitoring, 
and an enclosed tube. The capacity of an FBG to reflect 
light waves with a specific center wavelength is affected 
by temperature and strain. The AH–FBG sensor’s center 
wavelength shift is unaffected by strain, because a 
corundum tube encircles it, taking the strain out of the 
equation. If the sensor is placed in the ground, the soil 
temperature at the relevant measurement point may be 
calculated by examining the FBG reflection spectrum 
(Fig. 5). This superior technology, however, is strictly con-
fined to certain situations. For example, when heated, the 
AH–FBG sensor may be seen as an endless linear heat 
source. Furthermore, the soil being tested is expected to 
be homogenous and isotropic (Liu et al. 2023).

Role of AI in smart agricultural irrigation systems
AI has enabled computer science to create artificial 
systems that work similar to the human brain. These 

artificial systems or machines can help humans perform 
more precise learning, logical reasoning, problem-solv-
ing, and decision-making. Due to its enormous poten-
tial, AI has been integrated into many research fields, 
such as agriculture, where it can help farmers optimize 
their use of water, land, and other resources, increase 
their productivity and profitability, and reduce their 
environmental impact (Kose et  al. 2022). Agriculture 
faces the key challenge of water scarcity in regions with 
low precipitation and where droughts are prevalent.

The Food and Agriculture Organization (FAO) states 
that agriculture accounts for about 70% of global freshwa-
ter withdrawals, and it can go up to 15% by 2050 to meet 
the mounting demand for food by a growing population 
(Pernet and Ribi Forclaz 2019). However, water avail-
ability is unevenly distributed across the world, and cli-
mate change is expected to exacerbate the variability and 
impulsiveness of rainfall patterns, distressing crop yields 
and quality. To address this challenge, many researchers 
and practitioners have proposed and implemented smart 
irrigation systems that use sensors, controllers, actua-
tors, communication networks, and data analysis tools 

Fig. 5 Artificial intelligence-based fiber optic sensing for soil 
moisture measurement (Liu et al. 2023) (a) an optical fiber 
with quasi-distributed FBG for temperature measurement (b) 
example of result plot from the fiber with quasi-distributed FBG
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to monitor and control the delivery of water to crops 
according to their needs and environmental conditions 
(Jong et al. 2021).

These systems aim to improve water use efficiency, 
reduce water waste and runoff, enhance crop growth 
and quality, and save energy and labor costs (Penghui 
et  al. 2020). However, smart irrigation systems face 
some limitations, such as high maintenance cost, a 
lack of interoperability and standardization among dif-
ferent devices and platforms, the complexity of data 
processing and interpretation, and the uncertainty 
and variability of crop responses to irrigation. Moreo-
ver, traditional irrigation scheduling methods based 
on fixed rules or thresholds may not be intelligent 
enough to detach the dynamic and nonlinear interac-
tions between soil, crops, water, management prac-
tices, and weather (Kouadio et al. 2018). Therefore, AI 
is considered to play a significant role in enhancing of 
functionality and performance of smart irrigation sys-
tems. Agriculture, when factionalized with AI systems, 
can help farmers identify instantaneous and accurate 
measurements as well as decisions for fertilization, irri-
gation, SWC, pH, and related factors (Raja and Shukla 
2021). AI can also help farmers optimize their irriga-
tion schedules and distribution using machine learning 
algorithms that can learn from historical and current 
data, forecast future scenarios, and adapt to changing 
conditions.

There are a variety of insights available, where AI can 
help smart irrigation systems obtaining optimal results. 
Fuzzy logic is one of the examples that deals with 
imprecise and uncertain information using linguistic 
variables and rules instead of numerical values. Fuzzy 
logic can be used to model complex systems, such as 
SWC, soil–total moisture, nutrient dynamics, or crop 
water requirements by incorporating expert knowledge 
and human intuition (Mahmoudi et  al. 2022). Second, 
the Internet of Things (IoT) is a network of intercon-
nected devices that can collect, transmit, process, and 
act on data without human intervention. IoT can be 
used to implement smart irrigation systems by inte-
grating sensors, controllers, actuators, communication 
modules, cloud computing services, and mobile appli-
cations (Kodali and Sahu 2016).

Finally, ML is another smart advancement that is 
empowered by ANNs, DL, and reinforcement learning 
(RL). These attributes of ML have the advantage of pro-
cessing soil imagery to extract information about soil tex-
tures, SWCs, nutrition, and other parameters (Pham et al. 
2018). Therefore, utilizing these resources efficiently over 
conventional statistical approaches and vigorous data 
analysis can be the new era approach for smarter agri-
culture practices, especially for soil management. In the 

last couple of years, numerous researchers and engineers 
worked on different types of materials subject to biologi-
cal sciences, agricultural sciences and environments.

Statistical and AI tools comparison
The statistical approaches have served the science from 
its beginning and have presented enormous ways of 
data analysis for further decision-making and drawing 
conclusions (Phoon et  al. 2010a). Most mathematical 
or statistical approaches involve numerical data pro-
cessing, stigmatization, and drawing data correlations. 
Rather, the AI tools rely on computational modules to 
carry out such challenging tasks that otherwise require 
human intelligence. Drawing the line between statisti-
cal analysis and AI processing is difficult due to the reli-
ability of both in various conditions (Henderson et  al. 
1992). However, AI processing for the same subject of 
experiments can be more advantageous, robust, and 
decisive compared to statistics. Statistical analysis usu-
ally requires structured and large numerical data inputs, 
such as SWCs, soil properties, weather data, etc. (Phoon 
et  al. 2010b). However, on the other hand, AI tools can 
efficiently operate with non-structured and qualitative 
data, such as images, videos, texts, voice data, etc. (Yu 
and Kumbier 2018). In addition, the AI tools are smart 
enough to handle data augmentation, regularization, and 
ensemble learning of small and noisy data sets (Friedrich 
et  al. 2022). More specifically, ML tools are data-driven 
models and novel algorithms for training, processing, 
and making predictions for given data sets that are not 
addressed while using predefined statistical models. The 
interpretation and visualization of data have been sim-
plified for human interface in AI tools, but the statisti-
cal approach is not robust and time-consuming for this 
purpose. Statistical tools can be used for descriptive and 
inferential purposes, such as describing the distribution 
of soil–water content, identifying the factors that affect 
soil–water content, testing the differences or relation-
ships among soil–water content variables (Wadoux et al. 
2020). On the other side, AI tools can be used for predic-
tive and prescriptive purposes, such as predicting SWCs 
based on various inputs, optimizing the irrigation sched-
ule based on SWC goals, recommending the best man-
agement practices, etc. Statistical and AI tools are known 
to have different strengths and limitations for SWC anal-
ysis. Depending on the research question and objective, 
one may choose to use either or both of them to obtain 
comprehensive and accurate insights from the data. The 
link between statistical and AI tools is an advanced key 
to opening the doors for robust management and agricul-
tural biosensing (Table 2).
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Development of a global dataset for soil texture and SWC 
data
Many ecological processes, water availability, and agri-
cultural productivity depend on the type and strength 
of agricultural land. Soil texture and SWC are the more 
crucial parameters to determine effective land usage, sus-
tainable agriculture, and water administration (Maino 
et al. 2022). However, due to the vast earth’s surface and 
spatial soil heterogeneity, it is very difficult to obtain 
comprehensive and reliable soil information (Martinelli 
and Gasser 2022). The global data set of SWC and soil 
texture information has the potential to enable farmers, 
policymakers, and land managers to timely engage in 
smart agricultural practices. Such data sets can also help 
in crucial hydrological analysis and climate modeling.

Soil–water dynamics, climate change, flood predic-
tion, and water movement modeling can be reshaped 
after the development of these global data sets. Environ-
mental conservation is another crucial concern that can 
be smartly managed after developing global data sets 
for soil parameters (Zhang and Shi 2019). This will help 
in the assessment of soil erosion, fertility, and ecologi-
cal health. Moreover, areas with vulnerable soils can be 
identified more accurately, and targeted conservation and 
land restoration efforts can be practiced more efficiently. 
Considerable efforts have been made in past toward the 
development of a global soil parameter database. These 
efforts involve everything from general laboratory anal-
ysis of soil from various localities to the installation of 
advanced sensors globally or geospatial technologies 
(Mallah et al. 2022).

Remote sensing technologies, such as satellite imagery 
and airborne sensors, can provide valuable information 
on soil properties indirectly. Spectral signatures obtained 
from these sensors can be correlated with soil texture and 
soil–water content data collected from ground-based 
measurements. Proximal sensing techniques, such as 
electromagnetic induction and ground-penetrating radar, 
also contribute to the acquisition of soil data on a larger 
scale. Machine learning algorithms, such as random for-
ests, support vector machines, and neural networks, 
can be employed to develop predictive models based on 

available soil data and auxiliary environmental variables. 
Geostatistical techniques, including kriging and co-krig-
ing, help interpolate and extrapolate soil property values 
to unsampled locations, improving the spatial represen-
tation of the dataset (Naimi et al. 2022).

Ensuring an adequate distribution of soil samples 
across different regions, soil types, and land cover cat-
egories is essential for capturing the spatial heterogene-
ity of soils globally. Sampling biases and limited access to 
certain regions can pose challenges in achieving a rep-
resentative data set. Soil data collected using different 
protocols, laboratory methods, and instruments needs 
to be standardized and harmonized to ensure consist-
ency and compatibility. Developing robust quality control 
procedures and data harmonization protocols is neces-
sary to integrate diverse data sets into a coherent global 
database. Encouraging data sharing among research-
ers, institutions, and national soil agencies is crucial for 
developing a comprehensive global data set. Collabora-
tion at regional and international levels can help over-
come data gaps and promote data exchange, leading to a 
completer and more reliable dataset.

Conclusion
The need for robust, quick, and accurate soil analysis 
using AI technology holds a great and promising future 
for sustainable agricultural practices and efficient natural 
resource management (Pandey et al. 2023). The nonuni-
form geospatial distribution of SWCs and soil textures 
is a big impediment to the development of a global soil 
database. Even advanced statistical data processing is 
time-consuming and has delayed decision-making to 
practice intelligent agriculture. However, by leveraging 
AI, DL, and ML techniques, researchers can overcome 
these challenges and obtain more efficient and reliable 
soil analysis results. Artificial neural networks (ANNs) 
and other related AI modules have shown promising 
results in achieving robustness in SWC and soil texture 
analysis. These techniques allow for the processing of 
non-numeric geospatial data, providing valuable insights 
for soil scientists and aiding in the development of a 
global SWC database.

Table 2 Comparison of data processing with AI tools and statistical tools

Advantage AI processing of data Statistical tool

Handling complex data Structured and unstructured text, images, etc. Designed for structured data with known distributions

Predictive power Forecasting, classification, and anomaly detection are possible Primarily focused on hypothesis testing and descrip-
tive statistics; may not excel in predictive tasks

Automation of task Can automate data preprocessing Requires more manual intervention

Adaptability Can adapt to changing patterns and learn from data Unadaptable and may need manual adjustments

Real-time decision-making Enables real-time decision-making by deploying models as APIs 
or microservices, supporting applications and services

Used for batch processing and may need manual 
integration for real-time decision support
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Machine learning algorithms, such as random forests, 
support vector machines, and neural networks, can be 
employed to develop predictive models based on avail-
able soil data and auxiliary environmental variables. In 
addition, geostatistical techniques such as kriging and 
co-kriging play a significant role in interpolating and 
extrapolating soil property values, improving the spatial 
representation of the data set. However, challenges such 
as false positivity in SWC results and bugs in advanced 
detection techniques need to be addressed to ensure 
accurate and reliable soil analysis. Further research 
and development are required to refine AI models and 
improve their performance in soil analysis applications. 
It is evident that conventional statistical tools alone are 
insufficient for robust SWC and soil texture analysis. 
The integration of AI and related technologies provides 
a promising pathway to enhance soil analysis efficiency, 
enable intelligent decision-making, and facilitate sus-
tainable land management practices. By harnessing the 
power of AI, researchers can make significant strides in 
understanding soil–water relationships, improving agri-
cultural productivity, and developing a comprehensive 
global SWC database to support sustainable agriculture 
and resource management.
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