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Abstract 

Functional lipids, primarily derived through the modification of natural lipids by various processes, are widely 
acknowledged for their potential to impart health benefits. In contrast to chemical methods for lipid modification, 
enzymatic catalysis offers distinct advantages, including high selectivity, mild operating conditions, and reduced 
byproduct formation. Nevertheless, enzymes face challenges in industrial applications, such as low activity, stabil-
ity, and undesired selectivity. To address these challenges, protein engineering techniques have been implemented 
to enhance enzyme performance in functional lipid synthesis. This article aims to review recent advances in protein 
engineering, encompassing approaches from directed evolution to rational design, with the goal of improving 
the properties of lipid-modifying enzymes. Furthermore, the article explores the future prospects and challenges 
associated with enzyme-catalyzed functional lipid synthesis.
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Introduction
Functional lipids are increasingly recognized for their 
potential to impart health benefits, ranging from cardio-
vascular health to mental well-being and metabolic regu-
lation, including diabetes management (Wu et al. 2022a). 
The synthesis of these bioactive lipids involves the modi-
fication of natural lipid structures through methods such 
as chemical reactions and enzymatic catalysis (Biermann 
et al. 2021; Bornscheuer 2018). This process yields func-
tional lipid derivatives, including diacylglycerols (DAGs), 
structured triglycerides (TAGs), and structural phospho-
lipids (PLs), precisely tailored to meet specific nutritional 
requirements (McDaniel et al. 2003; Xu et al. 2023). How-
ever, conventional chemical methods often require rigor-
ous reaction conditions and yield significant byproducts, 
posing challenges for the efficient synthesis of desired 
functional lipids.

In contrast to chemical methods, enzymes stand 
out as biodegradable biocatalysts, offering significant 
advantages in the industry, such as high selectivity, mild 
operating conditions, and reduced byproduct forma-
tion (Madhavan et  al. 2021). Structured TAGs undergo 
hydrolysis, esterification, or interesterification catalyzed 
by enzymes such as lipases and phospholipases, with 
a primary focus on modifying the composition and/
or position of fatty acids in lipids. This intricate process 
leads to the synthesis of a diverse array of functional 
lipids to meet specific nutritional demands, including 
medium-long-medium structured lipids (MLM-SLs), 
human milk fat substitutes (OPO, OPL), DHA-enriched 
TAGs, and various other structural lipids (Zhu et al. 2023; 
Zorn et al. 2016; Zou et al. 2020). Additionally, structured 
PLs, subject to modification by enzymes like phospho-
lipase A2 and phospholipase D, encompass DHA/EPA-
enriched phospholipids and derivatives with distinct 
head groups, such as saccharides, phenylalkanols, terpe-
nes, and ethanolamine derivatives (Hayashi et  al. 2021; 
Zhang et al. 2019b; Zhang et al. 2020b).

The suboptimal performance of enzymes and high 
costs remain challenges in the enzymatic modification of 

*Correspondence:
Jiufu Qin
jiufuq@scu.edu.cn
1 College of Biomass Science and Engineering, Sichuan University, 
Chengdu 610065, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40643-023-00723-7&domain=pdf


Page 2 of 10Guan et al. Bioresources and Bioprocessing            (2024) 11:1 

functional lipids. Recently, significant progress in protein 
engineering has evolved, shifting from random mutagen-
esis techniques  (Elizabeth 2022; Yang and Arnold 2021) 
to more targeted rational design approaches (Madhavan 
et  al. 2021; Reetz et  al. 2005; Reetz and Carballeira, 
2007). Protein engineering involves the modification of 
sequences in natural proteins with the goal of enhanc-
ing their activity(Lovelock et  al. 2022; Wu et  al. 2022c) 
and stability (Adi Goldenzweig 2018; Li et al. 2022c), and 
potentially optimizing or altering their selectivity (Wu 
et al. 2022b; Zheng et al. 2023), thereby creating tailored 
enzymes. Recent advancements in machine learning (Lu 
et  al. 2022; Mazurenko et  al. 2019) and artificial intelli-
gence, such as AlphaFold (Varadi et  al. 2022), Rosetta-
Fold (Baek et al. 2021; Watson et al. 2023) have emerged 
as promising approaches directing protein engineering. 
This manuscript serves as a review of advanced technolo-
gies in protein engineering, encompassing directed evo-
lution and rational design for modifying enzyme activity, 
selectivity, and stability, within the context of developing 
functional lipids (Fig. 1).

Enhancing functional lipid synthesis via protein 
engineering
Improving enzyme activity for the high‑yield synthesis 
of functional lipids
In the realm of industrial biocatalysis, enhancing enzyme 
activity for specific substrates is a critical factor for 
improving production efficiencies. This is especially per-
tinent in the synthesis of specific lipids, where improved 
enzymatic activity leads to more effective and precise 
lipid processing.

Mimicking natural evolution, directed evolution sys-
tematically enhances enzyme properties by improv-
ing specific protein traits through multiple rounds of 
mutation and screening (Arnold 2018; Kuchner 1997). 
The advantage of directed evolution lies in its ability to 
obtain desired enzyme variants with limited knowledge 
of protein structure information and catalytic mecha-
nisms. This approach has found wide application in 
lipid-modifying enzymes, including lipase (Zhang et  al. 
2020a), phospholipase D (PLD) (Zhang et  al. 2019a), 
and oxidative fatty acid decarboxylases (OleT) (Markel 
et al. 2021). For instance, to enhance the transphosphati-
dylation activity of PLD, a directed evolution approach 
was employed, utilizing DNA shuffling and an autodis-
play system for efficient mutant screening. This strat-
egy identified three beneficial mutations in PLD, with 
the top-performing mutation demonstrating an 80.3% 
phosphatidylserine content and a 3.24-fold increase in 
transphosphatidylation conversion compared to the wild 
type (WT). The study also emphasized the influence of 
C-terminal amino acids on PLD folding and underscored 
the significance of N-terminal amino acids in catalytic 
reactions (Zhang et al. 2019a). Although directed evolu-
tion is a powerful method for enzyme modification, the 
challenge lies in the vastness of the mutation library, 
resulting in significant screening pressure (Bornscheuer 
et al. 2019; Qu et al. 2020). The development of efficient 
screening methods is crucial to enhance its effectiveness 
(Zeng et al. 2020).

On the basis of protein sequence information, struc-
tural details, and catalytic mechanisms, the catalytic 
activity or selectivity modification of enzymes primarily 

Fig. 1 Protein engineering, encompassing directed evolution and rational design, has been utilized to enhance the performance of lipid-modifying 
enzymes in the synthesis of functional lipids. The products include, but are not limited to: (1) Triglycerides (TAGs), such as medium-long-medium 
structured lipids (MLM-SLs); (2) Diacylglycerides (DAGs); and (3) Phospholipids (PLs) with various acceptor alcohols X (e.g., saccharides, 
phenylalkanols, terpenes, and ethanolamine derivatives)
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targets residues within the substrate-binding pocket or 
channel (Yu et al. 2019; Zheng et al. 2023). This involves 
reshaping the volume of the substrate-binding pocket 
to accommodate substrates appropriately, eliminating 
spatial conflicts in the molecular channel to facilitate 
substrate transfer, or directly optimizing the enzyme–
substrate interaction. These rational strategies contribute 
to a certain extent in reducing screening costs, but their 
success is significantly influenced by the careful selec-
tion of mutation targets. This necessitates a thorough 
understanding and awareness of protein information by 
researchers (Table 1).

One such strategy, termed "substrate pocket recon-
struction" guided by insights from the catalytic mecha-
nism, involved expanding the substrate-binding pocket 
and making precise adjustments in the coordination 
of the substrate within the active site (Fig.  2). Molecu-
lar docking provided information on the force net-
work between the enzyme and substrate, combined 
with molecular dynamics (MD) to calculate critical dis-
tances between catalytic residues and the substrate, such 
as nucleophilic attack distance. Simultaneously, MD 
simulations revealed that flexible regions in the "top" 
loop tended to approach the active site. These analyses 
indicated the direction for target mutation. About 28 
residues near the active site and flexible regions were 
identified as potential mutation sites for NNK site-satu-
ration mutagenesis (SSM). The resulting optimal mutant 
displayed a notable  2.04-fold increase in the transpho-
sphatidylation/hydrolysis ratio compared to the WT. 
Under optimal conditions, the mutant Mu6 achieved 
a production of 58.6  g/L of phosphatidylserine with a 
77.2% conversion within 12  h on a 3  L scale, showcas-
ing its potential for industrial application (Qi et al. 2022). 
In another case, a conserved flexible loop (residues 
376–382) in the active site of Streptomyces klenkii PLD 
(SkPLD) was identified based on sequence conservation 
and amino acid analysis. Mutating the only hydrophilic 
residue Ser380 to Val in this loop resulted in a  4.8-fold 
increase in catalytic efficiency and nearly seven times 
higher adsorption equilibrium coefficient compared to 
the wild-type SkPLD. The findings indicate that the loop 
containing residue S380 in SkPLD plays a crucial role in 
interfacial binding and substrate recognition (Hu et  al. 
2021).

Based on a comprehensive understanding of lipase 
structural characteristics, lid dynamics, and the roles 
played by lids in lipase catalysis, lipases have been the 
subject of extensive protein engineering efforts (Chen 
et  al. 2022; Ge et  al. 2023; Maldonado et  al. 2021; Soni 
2022). The phenomenon of lipase interfacial activa-
tion, characterized by a significant increase in activity at 
the interface between oil and water, is intricately linked 

to a distinct domain in lipases known as the "lid" (Ver-
ger 1997). Site-directed mutagenesis was utilized to tar-
get hydrophobic residues in the lid region of T1 lipase, 
replacing them with hydrophilic counterparts. Notably, 
mutants A186S and A190S displayed a 35–50% increase 
in catalytic efficiencies compared to the WT, while 
retaining their functionality at elevated temperatures 
(Tang et al. 2017). In recent times, a distinct mono- and 
diacylglycerol lipase (MDGL) derived from the fungus 
Aspergillus oryzae has become a focal point in academic 
discussions. The crystal structure of Aspergillus oryzae 
lipase (AOL) has been successfully resolved at a resolu-
tion of 1.7 Å. Analysis of the structure and alignment of 
AOL with other MDGLs unveiled the critical role of resi-
due V269 in catalysis. Following this discovery, the engi-
neered variant V269D demonstrated a hydrolysis activity 
approximately 6 times higher than that of the WT (Lan 
et  al. 2021). Besides, recent studies have identified the 
propeptide region of lipase as a potential target for engi-
neering modifications. Taking Rhizopus chinensis lipase 
(RCL) as an example, analysis through MD simulations of 
the enzyme–substrate complex revealed that the propep-
tide uncovered a crucial region (Val5-Leu10), inhibiting 
the movement of the lid (Fig. 3). Mutations in this region 
significantly increased catalytic efficiency by 700% (Wang 
et al. 2021).

Tailoring enzyme selectivity for the precise synthesis 
of functional lipids
A diverse range of enzymes is applicable for the modifi-
cation of fats, oils, and other lipids due to their inherent 
excellent chemo-, regio-, and stereoselectivity (Born-
scheuer 2014). Although exploring lipid-modifying 
enzymes like lipases in nature for specific selectivities can 
be challenging and not always fruitful (Maldonado et al. 
2021), a viable alternative is the modification of existing 
lipases through protein engineering techniques.

Similar to the modification of enzyme activity, the 
targeted mutations for selective modification are pri-
marily focused on the substrate binding pocket. Some 
intriguing examples suggest that even a single or double 
residues mutations in this area has the potential to alter 
the selectivity of lipase. For instance, the substitution of 
TAGs with diacylglycerides (DAGs) has been demon-
strated to effectively reduce body fat accumulation and 
aid in weight loss (Prabhavathi Devi et  al. 2018). How-
ever, despite purification efforts, the obtained DAG level 
remains less than 60%, and high levels of by-products, 
such as monoacylglycerides (MAGs) and free fatty acids 
(FFAs), are observed (Lee et  al. 2020; Xu et  al. 2023). 
Consequently, structural analysis of lipase MAS1 sug-
gests that the charge and steric hindrance associated with 
the T237 residue at the entrance of the substrate-binding 
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pocket may influence substrate binding or product 
release. The T237R mutation resulted in an increased 
synthesis ratio of partial glycerides/triglycerides to 6.32, 
compared to 1.21 in the WT. Changes in hydrophobicity 
and steric hindrance contributed to a higher production 
of DAG over TAG. This highlights the significant poten-
tial of the T237R mutation as a mono- and diacylglycerol 
lipase (Yang et  al. 2022). Likewise, directing attention 
to the substrate-binding region of Candida antarctica 
lipase B (CALB), the engineered variants  CALBA282E/

I285F, designed with a constrained substrate binding 
region, exhibited an approximate twofold improvement 
in selectivity for the synthesis of 1-monoacyl-sn-glycerol 
with n-nonanoic acid. The resultant double mutant facili-
tated the generation of 1-nonanoyl-glycerol, achieving a 

concentration of 2.27 M in glycerol, with a reaction rate 
of 1.0  M/h (Woo et  al. 2022). Furthermore, molecular 
docking and computational simulations, calculating sub-
strate-enzyme binding energy, assess the absolute affinity 
between lipases and TAGs, offering theoretical guidance 
for rational lipase selectivity design (de Rodrigues et  al. 
2021).

Furthermore, a significant proportion of natural PLs 
can undergo synthesis via PLD-mediated transphosphati-
dylation involving phosphatidylcholine (PC) and cor-
responding alcohols. Nevertheless, the enzyme exhibits 
selectivity for alcohols, thereby constraining the molecu-
lar size of acceptor compounds and limiting the range of 
synthesizable phospholipid species. To enhance the posi-
tional specificity of engineered PLD toward the 1-OH of 

Fig. 2 Schematic representation of rational design to reconstruct the substrate pocket for improved PLD activity in phosphatidylserine 
production. The PLD structure depicted in a, b, c was modeled utilizing SWISS MODEL, utilizing the template protein from Protein Data Bank 
(PDB) ID: 1f0i and visualized using PyMOL; AutoDock Vina was employed to perform docking of PLD in complex with the substrate as shown in 
(a), with subsequent analysis conducted using the PLIP server; c Experimental assessment of enzyme activity and phosphatidylserine synthesis 
on a 3-liter scale; d Hydrophobic cavity computed with the POCASA server, indicating changes before and after mutations, implying an expanded 
substrate pocket for better substrate accommodation as one of the reasons for enhanced activity. Detailed experimental results are provided 
in the reference (Qi et al. 2022)
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myo-inositol, a comprehensive three-round mutagenesis 
approach was systematically implemented, targeting resi-
dues within the substrate-binding site of PLD. The most 
successful variant demonstrated exceptional positional 
specificity, reaching up to 98%. This investigation shows 
promise for expanding the substrate spectrum of PLD 
and facilitating the synthesis of diverse phospholipid 
species (Samantha et  al. 2021). Additionally, engineer-
ing of a PLD for the purpose of enzymatically producing 
"difficult-to-synthesize" PLs, such as phosphatidylthreo-
nine (Damnjanović et al. 2018) and 1-phosphatidyl-β-D-
glucose (Inoue et al. 2016), has proven to be effective.

The trans fatty acids, considered undesirable constitu-
ents of unsaturated fatty acids, can have notable adverse 
effects on human health. These effects include the poten-
tial to induce heart disease or metabolic dysfunction 
(Aldai et al. 2013; Micha and Mozaffarian 2009). The fatty 
acid photo-decarboxylase (FAP) is acknowledged for its 
effectiveness in catalyzing the decarboxylation of trans 
fatty acids, producing readily-removed hydrocarbons 
and carbon dioxide. However, there is a need to enhance 
its selectivity for trans fatty acids while leaving cis fatty 

acids unchanged. To address this, a highly effective pro-
tein engineering strategy, known as "focused rational 
iterative site-specific mutagenesis," was employed to 
improve the selectivity of the photo-decarboxylase. The 
optimal mutant V453E exhibited a remarkable one-thou-
sand-fold improvement in trans-over-cis selectivity com-
pared to the WT. This improvement was attributed to the 
reinforced electronic interaction between the enzyme’s 
residues and the double bond of the substrate, thereby 
stabilizing the binding of elaidic acid in the channel (Li 
et al. 2021).

Hydroxy fatty acids (HFAs) represent distinctive fatty 
acid (FA) derivatives known for their beneficial medical 
properties (Bergamo et al. 2014; Ogawa 2015). This cat-
egory includes branched FA esters of HFAs (FAHFAs) 
and specialized pro-resolving mediators (SPM) which 
exhibit effects such as antidiabetic, inflammation resolu-
tion, and tumor growth suppression (Sulciner et al. 2018; 
Yore et al. 2014). The enzymatic conversion of FAs using 
fatty acid hydratases (FAHYs) provides an environmen-
tally friendly pathway for HFA production. However, the 
diversity of HFAs generated has been historically limited 

Fig. 3 Schematic representation of MD simulation guided rational design for improving lipase activity. a Visually represents the application 
of Dynamic Cross-Correlation (DCC) analysis, based on MD simulations, to identify the critical interaction area between the propeptide and the lid. 
(b), the impact on hydrolysis activity is demonstrated through the introduction of mutations via site-directed mutagenesis, organized into three 
distinct groups. Additional methodologies, including Principal Component Analysis (PCA) and Interaction Graph Modeling (IGM), were also utilized 
to discern the movement pattern of the propeptide and pinpoint the critical interaction area with the lid. Further detailed information is available 
in the referenced literature (Wang et al. 2021)
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in terms of chain length and hydroxy position. A rational 
design approach, guided by a comparative analysis of 
enzyme active sites, led to the development of a three-
residue mutant of FAHY that exhibited a notable rever-
sal of regioselectivity towards linoleic acid. This mutation 
shifted the ratio of HFA regioisomers (10-OH/13-OH) 
from the original 99:1 to a new distribution of 12:88 
(Eser et al. 2020). In addition to the utilization of FAHYs, 
cytochrome P450 monooxygenases (CYPs) are employed 
for the enzymatic hydroxylation of fatty acids, resulting 
in valuable HFAs. However, CYPs typically yield complex 
mixtures of HFA regioisomers. To overcome this limita-
tion, extensive site-directed and site-saturation mutagen-
esis techniques were applied to isolate variants with 
high regioselectivity. These mutants demonstrated the 
capability to selectively produce a single HFA regioiso-
mer (either ω-1 or ω-2) with selectivity ranging from 75 
to 91% when using fatty acids ranging from C12 to C18. 
This makes them promising candidates for the produc-
tion of pure HFA isomers (Zong et al. 2023).

Improving enzyme stability to adapt to the processes 
in the lipid modification industry
The application of enzymes in the industrial synthesis of 
functional lipids may face challenges associated with high 
temperatures. For instance, elevated processing tempera-
tures can simplify industrial degumming processes by 
reducing oil viscosity and mitigating microbial contami-
nation, thereby facilitating enzymatic hydrolysis (Zhang 
et  al. 2022b). The utilization of more thermostable 
enzymes in the industry has shown several benefits, such 
as improved biocatalytic efficiency, shortened process-
ing times, and ultimately reduced energy consumption 
(Rathi et al. 2016). Protein engineering has made signifi-
cant contributions to the thermal stability modification 
of enzymes. Currently employed methods for enhanc-
ing enzyme thermal stability include disulfide bond “sta-
pling”, B-factor engineering, conformational free energy 
calculations, and N-terminal domain substitution.

Firstly, the introduction of covalent bonds, such 
as disulfide and thioether bonds, has been shown to 
enhance enzyme thermal stability. Identification of flex-
ible regions in lipase Lip2 through MD simulation led to 
the subsequent engineering of disulfide bonds into these 
regions, resulting in the creation of the mutant 4sN. 
This mutant exhibited significant improvements in both 
melting temperature (Tm) and the half-loss tempera-
ture at 15  min (T15

50), with enhancements of 19.22  °C 
and 27.75  °C, respectively. To assess the practical utility 
of mutant, the performance in synthesizing MLM-SLs 
using immobilized mutant 4sN has been further evalu-
ated. At 12  h, mutant 4sN achieved incorporations of 
18.24% and 20.43% at 40  °C and 45  °C, respectively, 

surpassing the wild type, which remained below 15% 
(Li et al. 2022b). Furthermore, by employing the Rosetta 
Cartesian_ddg protocol to calculate changes in confor-
mational free energy, potential mutations were predicted 
to enhance the stability of Rhizopus oryzae lipase (ROL). 
Through site-directed mutagenesis and the introduction 
of disulfide bonds, a variant exhibited improved stability, 
with an 8.5 °C increase in Tm and a half-life of 31.7 min 
at 60  °C, representing a 4.2-fold increase compared to 
the WT. Subsequently, the investigation evaluated the 
capacity of mutants to generate FAs from tricaprin and 
soybean oil under equivalent enzyme protein concen-
trations. After 12 h, the mutant demonstrated a notable 
hydrolysis rate of 97.2%, outperforming the WT, which 
achieved only 78.7%. This disparity underscores the posi-
tive impact of increased thermostability on catalytic effi-
ciency (Huang et al. 2023). Additionally, techniques such 
as B-factor analysis based on structural biology, have 
been widely employed to enhance the thermal stability of 
enzymes (Sun et al. 2019). The amino acid residues cru-
cial for thermal stability, often located in flexible protein 
regions, is achieved through B-factor analysis. For Phos-
pholipase C (PLC), a rational design strategy incorporat-
ing B-factor analysis and MD simulation was employed. 
The resulting variant, F96R/Q153P, exhibited a notable 
increase in its optimal reaction temperature (90 °C) and 
2.37-fold enhancement in kcat/Km. The mutant shows 
great potential application in food processing indus-
tries such as enzymatic degumming under extreme high 
temperature(Zhang et al. 2022b). Substituting the N-ter-
minal structural domain is another method for enhanc-
ing enzyme thermal stability, and this modification often 
brings surprising changes to the enzyme’s functionality. 
To illustrate, a monoglyceride lipase (TON-LPL) from the 
hyperthermophilic archaeon Thermococcus onnurineus 
was selected and successfully transformed it into a tri-
glyceride lipase using a N-terminal domain substitution 
approach. As anticipated, the mutant exhibited thermal 
stability, displaying optimal temperature at 60  °C, along 
with the desired enzymatic activity (Soni et al. 2019).

Conclusion and outlook
Despite substantial efforts in protein engineering aimed 
at modifying industrial enzyme catalysts, a gap per-
sists between advancements at the laboratory level and 
large-scale production. In recent years, significant con-
tributions to the field have been made by immobiliza-
tion techniques for lipid-modifying enzymes (Ahrari 
et  al. 2022; Akil et  al. 2020; Enespa et  al. 2022; Mar-
tins et  al. 2022; Pacheco et  al. 2022; Verdasco-Martín 
et al. 2018; Zhang et al. 2022a). Free enzymes show low 
operational stability, have high costs, and cannot be 
easily recovered or reused at the end of the reaction, 
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hindering product separation (Almeida et  al. 2021). 
Immobilization techniques aim to anchor enzymes on 
solid supports, employing various methods such as 
adsorption, entrapment, covalent bonding, and cross-
linking, to enhance biocatalyst stability and facilitate 
recovery/reuse steps. However, the work of protein 
engineering contributes to creating enzymes more suit-
able for immobilization. For example, enzyme immo-
bilization often achieves reusable biocatalysts with 
improved operational stability and solvent resistance, 
but this is often accompanied by some loss of enzyme 
activity (Bernal et al. 2018). Protein engineering is used 
to provide enzymes with higher performance to com-
pensate for these losses. Changes induced in enzymes 
through protein engineering may enhance their affin-
ity, allowing them to adapt to specific immobilization 
carriers. Additionally, altering the enzyme’s surface 
properties through protein engineering may improve 
its stability, activity, or selectivity in the immobilized 
state. Besides, given the intrinsic complexity of lipase/
phospholipase catalytic systems, which differ from 
homogeneous enzyme catalytic systems, there is a need 
for engineering the reaction medium (Cao et  al. 2022; 
Wang et al. 2023). The integration of multiple technolo-
gies, including protein engineering, immobilization 
techniques, and reaction medium engineering, repre-
sents a method to extend the industrial application of 
enzyme-mediated lipid modification.

Moreover, a notable transformation is occurring in 
the realm of biocatalysis for lipid modification, particu-
larly in the context of whole-cell biocatalysts. Diverse 
microorganisms, including bacteria, yeast, fungi, and 
microalgae, exhibit the capability to biosynthesize fatty 
acids utilizing a range of raw materials such as glucose, 
cellulose, starch, glycerol, and even one-carbon com-
pounds. The evolution of synthetic biology has pro-
vided the means to construct microbial cell factories. 
These cell factories, rooted in the principles of meta-
bolic engineering, serve as platforms for microbial syn-
thesis, enabling the production of targeted compounds 
(Nielsen and Keasling 2016). For instance, a Saccha-
romyces cerevisiae platform was engineered for the de 
novo synthesis of oleoylethanolamide, a phospholipid 
derivative with significant potential in pharmacological 
applications for mitigating lipid dysfunction and neu-
robehavioral symptoms (Liu et al. 2020).
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