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Abstract 

Single‑cell oils (SCO) produced by oleaginous yeast hold promise as a sustainable alternative for producing nutrition‑
ally and pharmaceutically valuable lipids. However, the accumulation of oils varies substantially between yeast spp. 
Consequently, identifying well‑suited producers with a high innate capacity for lipids biosynthesis is paramount. 
Equally important is optimizing culturing and processing conditions to realize the total lipids production potential 
of selected strains. The marine Rhodotorula mucilaginosa and Lodderomyces elongisporus yeast were investigated 
to explore their potential for polyunsaturated fatty acids (PUFAs) production on high glucose media (HGM) using 
two‑stage culture mode. Both strains accumulated > 20% (w/w) of their dry cell weight as lipids when grown on HGM 
using a two‑stage culture system. Both yeast isolates exhibited a maximal lipid/biomass coefficient  (YL/X) of 0.58–
0.66 mg/mg at 7 °C and 0.49–0.53 mg/mg at 26 °C when grown on 8% glucose and produced monounsaturated 
and PUFAs similar to that of Menhaden and Salmon marine oils. For the first time, significant amounts of Eicosapen‑
taenoic acid (19%) and Eicosadienoic acid (19.6%) were produced by L. elongisporus and R. mucilaginosa, respectively. 
Thus, the SCO derived from these wild strains possesses significant potential as a substitute source for the industrial‑
scale production of long‑chain PUFAs, making them a promising contender in the market.
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Graphical Abstract

Introduction
Omega-3 PUFAs, like eicosapentaenoic acid (EPA) and 
docosahexaenoic acid (DHA), are crucial in maintaining 
human health. They help reduce blood pressure, allevi-
ate inflammation, and protect against chronic diseases 
such as heart disease, diabetes, and cancer. Also, it is 
highly recommended to regularly incorporate essen-
tial omega-3 PUFAs like Linoleic acid (LA) (n − 6) and 
α-Linolenic acid (ALA) (n − 3) into the daily diet since 
the human body cannot synthesize them due to the lack 
of essential enzymes like delta-12 and delta-15 desaturase 
(Saini and Keum 2018). However, challenges such as bad 
taste, fishy odor, stability issues, coextracted contami-
nants, and declining fish stocks worldwide raise aware-
ness to explore alternatives to obtaining EPA and DHA 
rather than fish oils. Consequently, the natural produc-
tion of omega-3 by marine microbes presents a promis-
ing avenue for this purpose. Producing omega-3-rich oils 
sustainably and mitigating the challenges associated with 
fish oils (Shah et al. 2022; Abbas et al. 2023).

Marine environments never fail to surprise researchers 
because they can harbor a wide variety of microorgan-
isms that are capable of producing a variety of valuable 
compounds, such as lipids, enzymes, antibiotics, and 
therapeutic metabolites (Zaky et  al. 2014; El-Baz et  al. 
2018; El-Far et  al. 2021). Marine yeasts and their lipid 
contents as dietary supplements lack sufficient informa-
tion in the context of lipid production. Adjusting growth 
conditions, such as carbon supply and other minerals, as 

well as pH and temperature, can significantly affect the 
total lipids content and the makeup of cellular fatty acids 
in a specific yeast strain (Elfeky et al. 2020).

Although most oleaginous yeasts develop triacylglycer-
ides (TAGs) in response to nitrogen starvation (Donzella 
et  al. 2019), alternative nutrient limitation techniques 
may be beneficial. For example, phosphorus and sulfur 
limitations allow lipid formation by Rhodosporidium tor-
uloides mitigating, high nitrogen toxicity in low-cost sub-
strates (Wu et al. 2011; Wang et al. 2018).

Additional evidence that nitrogen limitation during 
growth causes an increase in lipid accumulation was con-
firmed by Sitepu et al. (2013). Cryptococcus curvatus, on 
the other hand, is a remarkable exception; it can build 
TAGs before nitrogen depletion and even when under-
going logarithmic growth (Gong et al. 2015). As a result, 
lipid synthesis in nitrogen-rich substrates can be accel-
erated and the production time reduced, making them 
industrially applicable.

Different yeasts have been used to study the effects of 
nitrogen sources on total lipids and fatty acids (FAs) pro-
files, with different results. When Cryptococcus albidus 
was grown on different sources of nitrogen, the growth 
curves were almost the same (Hansson and Dostálek 
1986). Compared to a variety of inorganic and organic 
compounds were evaluated as sole nitrogen sources to 
support the growth of Rhodosporidium toruloides, Evans 
and Ratledge evaluated urea as a sole nitrogen source for 
R. toruloides cultivation and reported it supported the 
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highest levels of both biomass (18% w/w dry cell weight, 
DCW) and total lipids (52% w/w) (Evans and Ratledge 
1984). Deeba and his team also examined the effects of 
various nitrogen compounds, including peptone, urea, 
yeast extract, and ammonium sulfate ((NH4)2SO4), on R. 
toruloides growth. Despite all nitrogen sources enabling 
cellular proliferation, significant differences in biomass 
and lipid production were observed. Yeast extract facili-
tated the maximum DCW of 10.2 g/L. However, the use 
of  (NH4)2SO4 boosted the highest microbial lipid titer 
to 5.8  g/L, resulting in a lipid content of approximately 
57% (w/w) DCW. These results indicate that different 
nitrogen sources can influence the carbon partitioning 
between biomass and lipid biosynthesis in R. toruloides 
(Deeba et al. 2021).

For non-oleaginous yeasts (Crabtree-positive yeasts), 
protein synthesis and development cease when the 
medium undergoes nitrogen depletion, and the extra car-
bon is transferred to build polysaccharides. Meanwhile, 
in oleaginous yeast species, the conversion of excess car-
bon is channeled into lipid bodies in the form of TAGs 
(Ageitos et al. 2011). In general, glucose inhibits the for-
mation of mitochondria, and cells grown in high glucose 
concentrations have extremely poor respiratory activity, 
even under aerobic conditions (Kamihara and Nakamura 
1984; de Alteriis et  al. 2018). Hence, oleaginous yeasts 
(OY) help use high-sugar hydrolysates like cassava starch 
because they can quickly build up a large amount of cell 
mass and lipids (Li et al. 2010).

In addition, the significant effects of temperature vari-
ation as well as glucose concentration on FAs’ composi-
tion were investigated in other studies (Rossi et al. 2009; 
Amaretti et al. 2010). Hence, the enhancement of growth 
temperature or glucose concentration could lead to an 
improvement in the FAs production (Salvador López 
et al. 2022).

Rhodotorula spp. are widely recognized oleaginous 
yeasts that have garnered significant attention in bio-
fuel production and the synthesis of short-chain PUFAs 
(Viñarta et al. 2020; Maza et al. 2021). As an oleaginous 
yeast, it possesses the remarkable ability to accumulate 
lipids, making it a promising candidate for sustainable 
biofuel production. Additionally, Rhodotorula mucilagi-
nosa has been extensively studied for its capacity to bio-
synthesize short-chain PUFAs, essential nutrients with 
various health benefits. The yeasts’ metabolic versatility 
and ability to efficiently convert carbon sources into valu-
able lipids and PUFA products have positioned them as 
useful organisms in biotechnological applications (Adel 
et al. 2021; Li et al. 2010 and Li et al. 2022). Lodderomy-
ces elongisporus, a recently isolated strain, has emerged 
as a promising candidate in the production of PUFAs. 
In our previous published research paper and through 

meticulous experimentation and analysis, we have dem-
onstrated the strain’s capacity to efficiently accumulate 
lipids (54%) and synthesize short-chain PUFAs as Lin-
oleic acid (22.67%) and α-Linolenic acid (7.47%) (Adel 
et al. 2021). R. mucilaginosa and L. elongisporus are ole-
aginous psychrophilic marine yeasts (Van der Walt 1966). 
Both strains accumulate 48–54% of lipids in a High-
Glucose Basal Defatted Medium with C: N (8:1) at 15 °C 
(Adel et al. 2021).

Vitamins play a critical role in supporting the growth 
and metabolic processes of yeast; lack of biotin retards 
yeast growth and fermentation (Magdouli et  al. 2020). 
Stambuk et al. (2009) reported that the amounts of unsat-
urated FAs in S. cerevisiae were decreased significantly 
in the presence of thiamine but were entirely avoided by 
the addition of pyridoxine with thiamine to the medium 
(Stambuk et  al. 2009). Earlier studies suggest that thia-
mine is essential for the survival and growth of certain 
fungi, and it is also involved in the metabolism of glu-
cose and fructose, as well as energy generation (Chung 
et al. 2009; Perli et al. 2020). In addition, adding pyridox-
ine would be essential to restore respiratory activity in 
high glucose medium (Nakamura et al. 1980; Evers et al. 
2021). The long-term effects of vitamins on weight gain 
were studied by Pannia and his colleagues (Pannia et al. 
2015). The researchers focused on the methyl group vita-
mins (i.e., folic acid, vitamin B12, and vitamin B6) and 
their functions within a high multivitamin diet. Vitamin 
B6 derivatives, like pyridoxal 5’-phosphate, were shown 
to stimulate adipogenesis and increase lipolysis in mouse 
3T3-L1 adipocytes (Yanaka et al. 2011).

Furthermore, phospholipids biosynthesis requires 
methyl radicals, which are synthesized from methio-
nine with the help of coenzymes B12 and B9 (Fidanza 
and Audisio 1982). Besides, the membrane structure 
of mitochondria and the production of lipids were not 
observed in pantothenate-deficient yeast cells (Furukawa 
and Kimura 1971). With the addition of pantothenic acid 
(vitamin B5) to deficient S. cerevisiae, unsaturated FAs, 
particularly palmitoleic acid, and oleic acid, were pro-
duced, and the rate of respiration in the defective cells 
was eventually recovered (Hosono and Aida 1974). It has 
also been shown that Orotic Acid (OA) stimulates lipo-
genesis (Jung et al. 2011).

Interestingly, two-stage fed-batch fermentation has 
been shown in previous studies to improve lipids produc-
tion in yeast (Xie et al. 2017). Research into micro- and 
lab-scale fermentation eventually leads to the need for 
fermentation optimization (Xie 2012; Xie et  al. 2015). 
Since PUFAs are made inside yeast cells, optimizing the 
process means first increasing biomass synthesis and 
then increasing PUFA production while stopping the for-
mation of byproducts during the oleaginous phase. The 
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use of two stages of fed-batch fermentation increases 
biomass and PUFA synthesis. First, yeast is grown on a 
nitrogen-rich carbohydrate substrate. Even though nitro-
gen is limited in the second stage, there are still enough 
carbohydrates. After using all the extra nitrogen in the 
medium, yeast cells stopped growing and stored lipids. 
Because strains have various genetic backgrounds, opti-
mal conditions frequently differ (Zhu and Jackson 2015). 
Consequently, more improving work is likely to increase 
the performance of the newly selected strains. For the 
aforementioned reasons, the objective of this study was 
to investigate the influence of different incubation tem-
peratures and the effect of the depletion in nitrogen sup-
ply on lipids production by the two wild marine yeasts (R. 
mucilaginosa and L. elongisporus), using the two-stage 
batch fermentation bioprocess to boost the cellular bio-
mass and PUFAs synthesis.

Materials and methods
Chemicals and media
Anhydrous D-glucose, methyl alcohol, and phosphoric 
acid were purchased from Alamia Chemicals, El-Nasr 
Pharmaceutical Chemicals Co., and El Gomhouria Co. 
in Egypt. Techno Pharmchem and Loba Chemie (India) 
sold yeast extract, peptone, and vanillin, respectively. Sri-
Parme was a supplier of agar. Chloroform was obtained 
from Fisher Scientific, UK. Other locally obtained ana-
lytical reagent grade chemicals and reagents were used.

The medium Yeast Extract–Peptone–Dextrose (YPD) 
was used for the seed culture and maintenance of yeast 
isolates with the composition (g/L); yeast extract 10, pep-
tone 20, glucose 20, agar 20, pH 5.5 ± 0.2. High Glucose 
Medium (HGM) was used as a minimal medium for lipid 
production by marine yeast isolates in different incuba-
tion temperatures with the composition (g/L); glucose 
80,  KH2PO4 6.3, 27  K2HPO4 27, pH 6.8. First Stage (FS) 
growth medium was used for biomass production in a 
two-stage fermentation system with the following com-
position (g/L): yeast extract 10, peptone 20, glucose 20, 
 MgCl2 1,  ZnSO4.7H2O 0.02, vitamin supplements 0.5 mL, 
pH 5.8 ± 0.2. Second Stage (SS) fermentation medium or 
High glucose medium with vitamins (HGM + VIT) was 
used for lipids production in the two-stage fermentation 
system with the following composition (g/L); glucose 80, 
 KH2PO4 6.3,  K2HPO4 27,  MgCl2 1,  ZnSO4.7H2O 0.02, 
and vitamins (0.5  mL, pH 5.8). Vitamin supplements 
were modified according to Adel et  al. (2021). These 
supplements were group of Vitamins B and Orotic acid 
used for lipid production with the following composi-
tion (mg/mL);  B1 (Thiamine) 2.5,  B3 (Nicotinamide) 10, 
 B5 (Pantothenic acid) 3,  B6 (Pyridoxine hydrochloride) 2, 

 B9 (Folate) 0.5,  B12 (Cyanocobalamine) 1.25, and Orotic 
acid 5.

Yeast strains identification
The two marine isolates, R. mucilaginosa and L. elong-
isporus were isolated from the Red and Mediterranean 
Seas, Egypt and identified by MALDI-TOF analysis in 
our laboratory and preserved in GEBRI Microbiological 
Culture Center (University of Sadat City, Egypt). Both 
strains were stored in YPD slants at 4  °C and subcul-
tured every two weeks (Adel et al. 2021). The identity of 
the tested yeast isolates was confirmed molecularly from 
the sequence of the ITS region. The genomic DNA of the 
yeasts was extracted by the CTAB method (El-Sayed et al. 
2015, 2022; Abdel-Fatah et  al. 2021), and used as PCR 
template, with the primer set ITS4 5′-GGA AGT AAA 
AGT CGT AAC AAGG-3′ and ITS5 5′-TCC TCC GCT 
TAT TGA TAT -GC-3′. The PCR reaction contains 10 μl of 
2 × PCR master mixture (Cat. # 25027), 1 μl gDNA, 1 μl 
of each primer (10  pmol/μl), in total volume 20  μl with 
sterile distilled water. The PCR was programmed to ini-
tial denaturation at 94  °C for 4  min, 35 cycles at 94  °C 
for 30  s, 55  °C for 10  s, and 72  °C for 30  s, in addition 
to final extension at 72 °C for 4 min. The amplicons were 
analyzed by 2.0% agarose gel in TBE buffer, sequenced 
by Applied Biosystems Sequencer, HiSQV Bases. The 
obtained sequences were non-redundantly BLAST 
searched, aligned by the Clustal W muscle algorithm 
(Tamura et  al. 2011), and the phylogenetic analysis was 
constructed with the neighbor-joining method of 100 
bootstrap replications (Edgar 2004).

Lipids production and growth at different temperatures
For investigating the influence of diverse temperature 
regimens on lipids synthesis over an extended incubation 
period, two seed cultures of the yeast isolates were used 
to inoculate High Glucose Medium (HGM) at a 1:10 [v/v] 
ratio in three experimental groups. The cultures were 
incubated at 7 °C, 15 °C and 26 °C in an orbital shaker 
(New Brunswick, CA) set to 150 rpm for 480 h (20 days). 
At five-day intervals, samples were withdrawn by remov-
ing three containers from each temperature. The yeast 
cells were harvested by centrifugation at 5000xg at 4 °C, 
washed twice with sterile saline solution, and then resus-
pended to a volume of 1 mL prior to storage at − 20 °C 
for subsequent analysis.

Two‑stage batch fermentation
First Stage (FS) Growth Media were prepared by transfer-
ring a single colony grown on solid YPD into a 500 mL 
Erlenmeyer flask with 200 mL of FS Media, capped with 
cotton plug and incubated at 15  °C and 150  rpm for 
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168  h (7 days). Second-Stage (SS) Fermentation Media 
(HGM + VIT): Yeast cultures were cultivated in 500  mL 
Erlenmeyer flasks containing 200 mL of SS medium and 
capped with breathable cotton filter masks (> 99% Bacte-
rial Filtration Efficiency (BFE); > 99.5% Particles Filtration 
Efficiency, PFE). SS medium was inoculated with 20 mL 
of FS medium (1:10 [v/v]), then incubated at 26  °C for 
672 h (28 days) at 150 rpm. For lipids analysis, the yeast 
cells were harvested via centrifugation at 5000xg and 
4 °C, followed by twice washing the cell pellets with ster-
ile saline solution then re-suspended to a 1  mL volume 
prior to storage at −  20  °C. Concurrently, the dry cell 
weight (DCW, g/L) of each sample was determined by 
placing samples at 80 °C until constant weight. At the end 
of the incubation period, reducing sugars residues were 
measured using the 3,5-Dinitrosalicylic acid method 
(Zhao et al. 2008).

Sulfo‑phospho‑vanillin (SPV) assay for lipids estimation
Lipids were measured using a modified SPV assay based 
on Mishra et  al. (2014) method, and the standard lipid 
stocks were prepared according to Cheng et  al. (2011) 
and Adel et  al. (2021) modified method. 10 mg/mL of 
pre-washed yeast cells were transferred to 96-well micro-
plate at different aliquots, diluted to 50 μL with distilled 
water. Sulfuric acid (100 μL) was added and mixed inten-
sively, then incubated for 20 min at 90 °C. The reaction 
mixtures were rapidly iced-cooled, and the initial vanillin 
background absorbance was measured at λ570. 100 μL of 
SPV reagent (0.2 mg vanillin/mL in 17% phosphoric acid) 
was added, incubated for 10 min at 25 °C in the dark, and 
a post-vanillin absorbance was measured. The final SPV 
response was defined as the difference in absorbance of 
post-vanillin and initial-vanillin measured spectrophoto-
metrically at λ570 (Adel et al. 2021).

Extraction of lipids
For lipids extraction, yeast biomass suspension was dis-
rupted based on the modified method described by 
Byreddy et  al. (2015). The yeast biomass (500  mg) was 
suspended in 10 mL of 10% NaCl solution, vortexed for 
2 min, and incubated for 48 h at room temperature. The 
shearing force was then produced by re-pipetting for 
60  min with 5-min rest intervals using a 20-mL glass 
syringe with its needle. A four-step procedure for lipid 
extraction was used, as described by Axelsson and Gentili 
(2014). 230–300 mg samples of yeast cell pellets were re-
suspended in 0.5 mL of 0.73% NaCl solution and mixed 
with 10  mL chloroform: methanol mixture (1:1) for 
30 min. The centrifuged pellet was extracted again with 
3 mL of the same solvent (chloroform: methanol; 1:2) and 

chloroform: methanol: 0.73% NaCl (60:30:4.5). The sol-
vents were evaporated under a stream of nitrogen gas. 
The dry residue was employed for further purification.

Methylation of fatty acids and gas–liquid chromatography
FA composition of the extracted lipids was deter-
mined according to the method of Jøstensen and Land-
fald (1997). Derivatization to fatty acid methyl esters 
(FAMEs) (via methanolic KOH) was performed as 
described by Adel et  al. (2021) at the Regional Center 
for Food and Feed, Cairo, Egypt. FAs composition was 
determined using PerkinElmer (Waltham, MA) Cla-
rus-580 GLC equipped with HP88 capillary column 
(30  m × 0.25  mm i.d, 0.20  μm film thickness) and FID, 
and a GLC-461 (NuChek Prep, Inc., Minnesota, USA) 
as a reference standard for the determination of  C12–
C24 FAs.

Statistical analysis
Every experiment was run three times. The 
means ± standard deviation were displayed for the results. 
Using SPSS (Version 17), a two-way ANOVA was con-
ducted to examine the effect of temperature and time on 
lipid synthesis, with significant differences determined at 
P ≤ 0.05.

Results
Molecular identification of yeast strains
The marine yeasts isolated from the Red and Mediter-
ranean Sea, Egypt were identified by MALDI-TOF as R. 
mucilaginosa and L. elongisporus (Adel et al. 2021). The 
biochemical identified yeasts were molecular confirmed 
by their ITS sequences. The genomic DNA of the yeasts 
were used as PCR template, the amplicons for the two 
yeasts were resolved by about 550–600  bp. The ampli-
cons were sequenced, and the retrieved sequences were 
non-redundantly BLAST searched on the NCBI data-
base, displaying 99.5% similarity with the ITS sequence 
of R. mucilaginosa and L. elongisporus. The yeasts R. 
mucilaginosa and L. elongisporus were deposited at 
the Genbank with accession numbers OR975650 and 
OR975649, respectively. From the phylogenetic analysis 
of ITS sequences of R. mucilaginosa, the ITS sequence 
of this isolate had about 99% similarity with various 
isolates R. mucilaginosa, with accession # KY104882.1, 
KY104846.1, KY104791.1, KY104865.1, KY104871.1, 
KY104863.1, KY104887.1, KY104798.1, MN638750.1, 
KY104888.1, and KY104797.1, with E-value zero and 99% 
query coverage (Fig. 1). As well as, the ITS sequence of 
L. elongisporus displayed 98% similarity ITS sequence 
of L. elongisporus with accession numbers MG554647.1, 
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MG554644.1, MG554642.1, KY611844.1, MF084289.1, 
KY104073.1, KY104070.1, KY104069.1, KP132383.1, 
KP341544.1 and KM361506.1 with E-values zero and 
98% query coverage (Fig.  1). So, from the biochemical 
and molecular analysis, the yeasts were confirmed as R. 
mucilaginosa and L. elongisporus.

Yeast growth at different temperatures in HGM medium
The oleaginous yeast strains R. mucilaginosa and L. 
elongisporus were cultivated in HGM medium with 
a carbon to nitrogen ratio of 8:0 to study the effect of 
temperature on biomass production. Maximum dry cell 
weight (DCW) for R. mucilaginosa was achieved after 
15 days of cultivation at 7 °C, reaching 21.5 ± 2.4 mg/mL. 
Similarly, L. elongisporus attained its highest DCW of 
24.3 ± 0.9 mg/mL after 20 days at the same temperature. 
In contrast, incubation of the yeasts at elevated tempera-
tures corresponded to significantly lower biomass yields. 
Specifically, R. mucilaginosa cultured at 26 °C for 20 days 
produced a DCW of only 13.3 ± 4.2  mg/mL. Similarly, 
L. elongisporus incubated at 15  °C attained a maximum 
DCW of just 8.8 ± 1.02  mg/mL after 5  days. Nonethe-
less, there was no significant difference among measured 
values over time, as shown in Fig. 2. To demonstrate the 
effectiveness of the microplate SPV approach for lipids 
measurement of intact yeast cells cultivated in HGM at, 
7  °C, 15  °C and 26  °C both yeast isolates’ biomass was 

collected and washed, and the lipids content of a known 
mass of cells (10 mg/mL) was measured at four concen-
trations. Absorbance versus simulated liquid culture vol-
ume showed a linear relationship with a significant linear 
correlation  (R2 > 0.95) despite some exceptions (Table 1). 
The lipid content was determined by converting absorb-
ance to mass using known standard lipids (Fish, Flax 
seed, and Coconut oils) described by Adel et  al. 2021. 
The linearity of the test was verified by plotting detected 
lipid versus added biomass for each isolate (Table  1). 
The response factor ranged from 0.2318 to 2.5909, and 
the correlations between the measured lipids concentra-
tions and the yeast cells were greater than 0.85 overall 
(Table  1), normalized to standard curves. Experiments 
with both yeast isolates were chosen from sets incubated 
at 7 °C on the 15th day and at 15 °C and 26 °C on the 20th 
day due to their significantly high response factors (≥ 0.7) 
as compared to the standard curves (Table 1) to further 
analysis.

Optimization stage using two‑stage batch fermentation
Yeast isolates were initially screened using the SPV assay 
to evaluate relative lipid accumulation when cultured 
in HGM. Strains displaying positive results in the SPV 
assay, indicating enhanced lipid droplet formation, were 
selected for lipid extraction, followed by gas chromatog-
raphy (GC) analysis. The GC profiles (Table 2) revealed 

Fig. 1 Molecular identification of Lodderomyces elongisporus and Rhodotorula mucilaginosa based on the sequence of the ITS region. The 
phylogenetic relatedness of L. elongisporus (A) and R. mucilaginosa (B) by the Maximum Likelihood method
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that R. mucilaginosa and L. elongisporus cultured at 26 °C 
exhibited unique fatty acid compositions when com-
pared to other temperatures, dominated by monoun-
saturated fatty acids (MUFAs) such as palmitoleic acid, 
cis-7-hexadecenoic acid, and vaccinic acid. Additionally, 
these two strains uniquely produced of polyunsaturated 
fatty acids α-linolenic acid and stearidonic acid, as well 
as long-chain fatty acids like gadoleic acid, when cultured 
at 26 °C. Due to this promising fatty acid profile charac-
terized by specific MUFA and polyunsaturated fatty acid 
production exclusively at 26 °C, this temperature was car-
ried forward for the optimization stage. R. mucilaginosa 
and L. elongisporus were cultured at 26 °C in HGM + VIT 
(SS fermentation media). The collected isolates were cul-
tured in HGM as well as HGM + VIT, which previously 
underwent lipid extraction and were evaluated by GC to 
quantify and compare the FAME profiles and total lipid 
content between the different fermentation conditions 
(Table 2). This experimental workflow provided a prelim-
inary screening of isolates via a qualitative lipid staining 
method and statistical comparison across varying culture 

temperatures (Table  1), followed by quantitative lipid 
analysis (Table 2).

At the first stage, after incubating for 168  h with a 
first-stage (FS) growth medium containing 2% glu-
cose and 0.5  mL of vitamin supplements, moderate 
increases in DCW were observed for both L. elongispo-
rus and R. mucilaginosa as compared to their growth in 
YPD medium (containing 1% glucose) at 15  °C. Specifi-
cally, the DCW of L. elongisporus increased from 13.4 to 
19.3  mg/mL when cultured in the FS medium, repre-
senting a modest 44% rise. Similarly, R. mucilaginosa 
exhibited a DCW of 25.8 mg/mL when grown in the FS 
medium, marking an incremental increase of 42% over 
its DCW of 18.2 mg/mL in standard YPD medium under 
the same temperature conditions. These results indicate 
that supplementing the growth environment with addi-
tional glucose and vitamins led to small but measurable 
enhancements in biomass accumulation over a cultiva-
tion period for both yeast strains.

Fig. 2 Biomass concentration (g/mL) of L. elongisporus (A) and R. mucilaginosa (B) after incubation at 7, 15 and 26 °C in HGM (average ± SD)
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Comparison of fatty acids composition
Lipids profiles of R. mucilaginosa and L. elongispo-
rus (Table  2) mainly consisted of long-chain FAs with 
between sixteen and eighteen carbon atoms. These 
findings revealed that the distribution of several FAs, 
including C18:1 (oleic acid), C16:0 (palmitic acid), 
C18:0 (stearic acid), and C18:3 (linolenic acid), were 
almost dominant throughout the process. R. muci-
laginosa and L. elongisporus had the highest values of 
32.80% and 34.94% (C18:2; linoleic acid) at 7 °C, respec-
tively, but the lowest values were obtained at 26 °C.

When R. mucilaginosa was cultivated in HGM + VIT 
under the same conditions as L. elongisporus, the rela-
tive concentration of oleic acid (C18:1) was significantly 
decreased. Monosaturated FAs were found only at 
26 °C in HGM, such as gadoleic acid and vaccinic acid. 
Palmitolic acid (C16:1, ω7) and cis-7 Hexadecenoic 

acid (C16:1, ω 9) were also detected in HGM + VIT 
and HGM, respectively. HGM + VIT, showed unusual 
C16 PUFAs (C16:4, ω 1; 6,9,12,15-hexadecatetraenoic 
acid), C16:3 (ω4; hexadeca tertaenoic acid), and C16:3 
(ω4; hexadeca trienoic acid) in relatively low concentra-
tions (< 6%). Therefore, there was a substantial correla-
tion between C16 UNSFAs and the temperature rise. 
Furthermore, C18 PUFAs (other than LA) were found 
in both yeasts at 26  °C, including C18:3 ω 3 (α -Lino-
lenic acid; ALA) and C18:4 ω 3 (Stearidonic acid; SDA), 
albeit in trace amounts (< 3%).

The incubation at 26  °C is optimal for producing of 
long-chain fatty acids (LCFAs) (C20 and C22). Interest-
ingly, L. elongisporus generated a significant quantity 
of Eicosapentaenoic acid (EPA) (19%) after being incu-
bated for 28 days in the two-stage HGM + VIT. Simul-
taneously, R. mucilaginosa stored 19.6% Eicosadienoic 
acid (EDA) in the same conditions. Both yeast isolates 
maintained stable and maximal levels of total PUFAs 

Table 1 Evaluation of lipid synthesis using the SPV test in two yeast isolates cultured for 20 days at three different temperatures (7, 15, 
and 26 °C) in HGM

Fish oil and Flax seed oil were used as external standards for the conversion of absorbance units to µg of lipids. Slope 1; from linear equation using Flax seed oil as 
an external standard. Slope 2; from linear equation using Fish oil as an external standard. Slope 3; from linear equation of SPV-microassay (absorbance measured at 
570 nm)

Incubation 
temperature

Yeast Days Slope 1 Slope 2 Slope 3 Correlation  R2

(a) 7 °C R. mucilaginosa 5 0.6098 0.3084 0.0161 0.9046

10 1.4432 0.7299 0.0381 0.9866

15 1.4356 0.7261 0.0379 0.9996

20 0.5947 0.3004 0.0157 0.9431

L. elongisporus 5 0.4773 0.2414 0.0126 0.961

10 1.9621 0.9923 0.0518 0.9587

15 1.3485 0.682 0.0356 0.9166

20 0.4773 0.2414 0.0126 0.9041

(b) 15 °C R. mucilaginosa 5 0.6553 0.3314 0.0173 0.9958

10 0.7273 0.3678 0.0192 0.9799

15 1.6061 0.8123 0.0424 0.9232

20 1.4735 0.7452 0.0389 0.9892

L. elongisporus 5 0.8258 0.4176 0.0218 0.8594

10 0.9015 0.4559 0.0238 0.9776

15 1.3258 0.6705 0.035 0.9838

20 1.4356 0.7261 0.0379 0.9378

(c) 26 °C R. mucilaginosa 5 0.7765 0.3927 0.0205 0.9453

10 2.5909 1.3103 0.0684 0.9588

15 1.1591 0.5862 0.0306 0.9717

20 1.7045 0.8621 0.045 0.9843

L. elongisporus 5 0.6477 0.3276 0.0171 0.9601

10 0.4583 0.2318 0.0121 0.9936

15 1.1023 0.5575 0.0291 0.9395

20 1.1098 0.5613 0.0293 0.9902
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(34.94, 32.8%) at 7  °C with HGM and (34.33, 32.46%) 
at 26  °C with HGM + VIT, respectively (Table  2). On 
the other hand, L. elongisporus and R. mucilaginosa 
incubated at 15 °C showed the highest levels of 50 and 
80.6% of total SFAs, respectively, in HGM.

Discussion
In our previous study, we observed an increase in 
FAs unsaturation degree for both yeast strains with a 
decreasing incubation temperature (7  °C and 15  °C) 
in basal defatted medium (BDM) (3% glucose), mainly 
in linoleic acid (LA) and α-linolenic acid (α-LA). In 
contrast, the opposite trend was observed with the 
increasing glucose concentration from 3 to 8% at 7  °C 

in High-Glucose Basal Defatted Medium (HG-BDM) 
(8% glucose), mainly in the absence of α-linolenic acid 
(α-LA). Meanwhile, HG-BDM positively affected total 
lipid production, reaching its maximum of 48% and 
54% by R. mucilaginosa and L. elongisporus, respec-
tively, at 15 °C (Adel et al. 2021).

Earlier research has demonstrated that the tempera-
ture of incubation and the concentration of glucose 
significantly impact the fatty acid (FA) composition 
of Rhodotorula species. For example, unsaturated FAs 
increase dramatically when the glucose concentra-
tion is raised from 2 to 10%. While oleic acid (OA) and 
linoleic acid (LA) more than doubled, alpha-linolenic 
acid (ALA) jumped from 1.7 to 6.21%. That tendency 

Table 2 Estimation of the fatty acid contents (%) of L. elongisporus and R. mucilaginosa following incubation with HGM and HGM + VIT

SFA saturated fatty acid, MUFA monounsaturated fatty acid, PUFAs polyunsaturated fatty acids, UNSFA unsaturated fatty acid, HGM High glucose medium, HGM + VIT 
High glucose medium + vitamin supplement

Fatty acids Name L. elongisporus R. mucilaginosa L. elongisporus R. mucilaginosa

HGM HGM + VIT

7 °C 15 °C 26 °C 7 °C 15 °C 26 °C 26 °C 26 °C

C12:0 Lauric acid – 4.46 2.87 – – – 1.11 –

C13:0 Tridecanoic acid – – – – 9.12 1.01 0.87 –

C14:0 Myristic acid – – 7.01 – 4.81 5.52 0.43 –

C15:0 Pentadecanoic acid – – 0.80 – – 0.79 – –

C16:0 Palmitic acid 16.20 31.20 24 20.21 37.1 23.86 10.4 –

C16:4 ω1 6,9,12,15
hexadecatetraenoic acid

– – – – – – 0.44 3.83

C16:1 ω7 Palmitolic acid – – 1.45 – – – 1.33 –

C16:1 ω9 cis‑7 Hexadecenoic acid – – – – – 2.27  – –

C16:4 ω3 Hexadeca tetraenoic acid – – – – – – 0.44 –

C16:3 ω4 Hexadeca trienoic acid – – –  – – – 5.30 –

C17:0 Heptadecanoic acid – – 0.77 – – 1.48 3.76 2.78

C18:0 Stearic acid – 14.35 9.89 11.1 29.6 7.76 7.70 11.0

C18:1 ω7 Vaccinic acid – – 3.12 – – 3.14 – –

C18:1 ω9 Oleic acid 48.86 25 30.26 29.70 13.3 32.04 40.6 6.24

C18:2 ω6 Linoleic acid (LA) 34.94 20.18 13.82 32.80 10.8 18.35 8.33 5.25

C18:3 ω3 α‑Linolenic acid (ALA) – – 1.59 – – 2.80 0.48 –

C18:4 ω3 Stearidonic acid (SDA) – – 0.96 – – – – –

C20:1 ω11 Gadoleic acid; cis‑9‑Eicosenoic acid – – 1.41 – – 0.96 – –

C20:5 ω3 Eicosapentaenoic acid (EPA) – – – – – – 19.0 –

C20:2 ω6 Eicosadienoic acid (EDA) – – – – – – – 19.6

C22:0 Behenic acid – – – – – – – 29.6

C22:2 Docosadienoic acid – – – – – – 0.43 –

C22:2 ω6 cis‑13,16‑Docosadienoic acid – – – – – – 0.35 3.78

NA Non‑Identified FA – – – 6.19 – 0.02 0.01 0.14

Total SFA 16.2 50.01 45.34 31.31 80.63 40.42 24.27 43.38

Total MUFA 48.86 25 36.24 29.7 13.3 38.41 41.93 6.24

Total PUFAs 34.94 20.18 16.37 32.8 10.8 21.15 34.33 32.46

Total
UNSFA

83.8 45.18 52.61 62.5 24.1 59.56 76.26 38.7
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towards increased FA unsaturation as glucose levels 
rise at 15 °C was reported by Gupta et al. (2012). In the 
opposite direction, the FA profile of Rhodotorula gla-
cialis was impacted by growth temperature and glucose 
concentration, with reduced fatty acid unsaturation 
occurring at higher temperatures or glucose concen-
trations (Amaretti et  al. 2010). Consequentially, in the 
current study, we continued what we started to exam-
ine the effect of high glucose concentration at different 
growth temperatures on total biomass and productivity 
by the tested marine strains.

The obtained data revealed that lowering the temper-
ature had a significant influence on boosting total lipids 
synthesis for both yeast isolates, as shown in Table 3. At 
7  °C, HGM demonstrated a high theoretical lipid out-
put of 0.16–0.17  (Ylipid/glucose) for ingested glucose. In 
comparison, relatively low constant values (0.07—0.08) 
were observed in the same medium at 15 °C and 26 °C 
(Table  3). Earlier investigations have also identified 
this pattern (Granger et al. 1993; Amaretti et al. 2010). 
Despite raising the temperature to 26  °C, HGM + VIT 
was second in high lipid production (0.14–0.18), com-
pared to the comparatively low lipid yield (0.07–0.08) 
in HGM at the same temperature. The inclusion of 
vitamins and minerals as part of the two-stage fer-
mentation culture method seems to have mitigated the 
impact of high temperature.

Vitamins significantly influence yeast growth, meta-
bolic processes, and lipogenesis. The lack of biotin hin-
ders yeast growth and fermentation (Magdouli et  al. 
2020), while thiamine decreases unsaturated fatty acid 
levels in S. cerevisiae. However, pyridoxine and thia-
mine can eliminate this effect (Stambuk et  al. 2009). 
In addition, thiamine is crucial for fungus growth, 
survival, energy production, and glucose and fructose 
metabolism (Perli et  al. 2020). Adding pyridoxine can 

restore respiratory activity in a high-glucose medium 
(Evers et al. 2021).

Pannia et  al. (2015) investigated the impact of micro-
nutrients on weight gain, focusing on the functions of 
methyl group vitamins (folic acid, vitamin B12, and 
vitamin B6) in a multivitamin-rich diet. Vitamin B6 
derivatives promote lipolysis and stimulate adipogenesis 
(Pannia et  al. 2015). Furthermore, methyl radicals are 
generated from methionine via coenzymes B12 and B9.

Pantothenate-deficient yeast cells cannot produce 
lipids and exhibit mitochondria without a membrane 
structure. When pantothenic acid (vitamin B5) is added, 
unsaturated fatty acids, specifically palmitoleic acid, and 
oleic acid, are generated in deficient S. cerevisiae, restor-
ing respiration rates (Hosono and Aida 1974). Also, oro-
tic acid (OA) has been shown to stimulate lipogenesis, 
yet its mechanism is obscure (Jung et al. 2011).

Moreover, magnesium and zinc are crucial for the sur-
vival of brewing yeast because they decrease cell death 
caused by ethanol stress and enhance the yeast’s ability 
to tolerate stress (Walker 2000; De Nicola and Walker 
2011). Rhodotorula toruloides can produce PUFAs when 
specific trace minerals are added to growth media. When 
grown on media enhanced with  Mg2+, eicosatrienoic acid 
(ETA/C20:3) accounts for 0.03% of total fatty acids (TFA). 
 Cu2+ supplementation produces docosahexaenoic acid 
(DHA/C22:6) with 0.05% TFA. γ-linolenic acid (GLA/
C18:3) levels increase from 0.07% without metal addi-
tion to 0.22%, 0.20%, and 0.12% of TFA, respectively, with 
 Zn2+,  Fe2+, and  Cu2+ supplementation (Saini et al. 2023).

The effect of temperature on DCW shows at 7  °C and 
26 °C, increasing in DCW by 21.50 and 22.6 with HGM 
and 20.42 and 27.00 with HGM + VIT, respectively, even 
though cell proliferation halted in both culture modes 
due to nitrogen depletion. These findings might be due 
to the higher lipid content of aged fatty yeast cells rather 
than their growing biomass (Table  3). When cultivated 

Table 3 The influence of temperature on the growth and lipid synthesis of R. mucilaginosa and L. elongisporus 

R. mucilaginosa and L. elongisporus were cultured at different temperatures in HGM and HGM + VIT containing 80 g/L glucose. the ultimate concentrations of 
biomass and lipids,  YX/S, Y L/S, and  YL/X, are biomass/glucose, lipid/glucose, and lipid/biomass yield coefficients, respectively, these coefficients altered with growing 
temperatures

Organism Temp.
(°C)

Day Medium YL/s
(mg/g)

YL/x
(mg/mg)

Yx/s
(mg/g)

Biomass
(mg/mL)

Lipids
(mg/mL)

R. mucilaginosa 7 °C 15 HGM 0.16 0.58 0.27 21.5 12.4

15 °C 20 HGM 0.07 0.38 0.18 14.7 5.61

26 °C 20 HGM 0.07 0.42 0.17 13.3 5.59

26 °C 28 HGM + VIT 0.14 0.49 0.28 22.6 11.1

L. elongisporus 7 °C 15 HGM 0.17 0.66 0.26 20.4 13.4

15 °C 20 HGM 0.06 0.37 0.15 11.9 4.41

26 °C 20 HGM 0.08 0.48 0.17 13.3 6.39

26 °C 28 HGM + VIT 0.18 0.53 0.34 27 14.2
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in a two-stage fermentation culture mode, L. elongispo-
rus surpasses R. mucilaginosa in total lipids accumula-
tion (Table  3), with 14.2  mg/mL total lipids, and this is 
the first research dealing with lipids production by L. 
elongisporus. Since the first discovery of L. elongisporus 
from concentrated orange juice in 1952 and renamed 
by van der Walt (Kurtzman and Suzuki 2010; Van der 
Walt 1966a), their uses in industrial biotechnology are 
limited to fermenting Luzhou-flavor liquor (Ling et  al. 
2017), Petroleum-degradation (Ma et al. 2015) and lipase 
production (Wang et  al. 2007). However, several previ-
ous studies have been on well-known Rhodotorula spp. 
in lipids synthesis, particularly for biodiesel production 
(Kot et al. 2016; Viñarta et al. 2020).

Furthermore, Gupta et  al. (2012) suggested that the 
marine-derived R. mucilaginosa AMCQ8A might be a 
source of lipids (65% of total biomass), including omega-3 
FAs (6–7%). Moreover, Sitepu et al. (2013) reported that 
several yeast strains were subjected to different culture 
conditions. Culture A involved a three-day cultivation 
period, Culture B involved a five-day cultivation period, 
and Culture C involved a five-day cultivation period with 
a transition from a low-nitrogen medium to a nitrogen-
free medium with a high glucose content of 120 g/L. Out 
of the 69 oleaginous yeasts (OY) studied, 34 exhibited the 
most increased lipids content in Culture C, confirming 
that lipids accumulation in OY is promoted by nitrogen 
deprivation (Sitepu et al. 2013).

Nitrogen limitation can induce lipid accumulation 
in OY by limiting protein synthesis and reducing the 
demand for amino acid and nucleic acid precursors. The 
tricarboxylic acid (TCA) cycle becomes less active due to 
decreased glutamate production and alpha-ketoglutar-
ate, a major carbon entry point into the TCA cycle. This 
reduces the production of intermediates like oxaloac-
etate, which are required for amino acid and nucleotide 
biosynthesis. Excess carbon is produced as acetyl-CoA 
through glycolysis and pyruvate dehydrogenase reac-
tion, which is diverted from the TCA cycle to fatty acid 
synthesis via fatty acid synthase. Nitrogen limitation 
generally shifts carbon flux from energy production and 
biosynthesis towards storage as neutral lipids like tria-
cylglycerols (Zhu et  al. 2012). The nitrogen limitation 
approach is a well-established method for inducing lipo-
genesis in many oleaginous microbes (Zhu et  al. 2012; 
Donzella et al. 2019). Sulfate limitation was found to pro-
mote intracellular lipid accumulation in R. toruloides up 
to 58.3% of cellular content, by cultivating the yeast in a 
medium with an initial high carbon-to-sulfur (C/S) molar 
ratio of 46,750, sulfate was depleted earlier, triggering a 
metabolic shift toward lipid biosynthesis (Wu et al. 2011). 
Sulfate needed for synthesis of sulfur-containing amino 
acids like cysteine and methionine, so, sulfate depletion 

reduces the carbon flux into central metabolic pathways, 
causing cells to divert excess carbon from glucose sources 
into lipid biosynthesis. Unlike the nitrogen limitation 
approach, phosphorus limitation offers a more afford-
able option for microbial lipid production due to abun-
dant nitrogen sources in raw materials. The phosphorus 
limitation significantly impacts cellular metabolism and 
physiology, as it plays a crucial role in biomolecules like 
DNA, RNA, ATP and phosphorylated proteins (Wang 
et  al. 2018). From the proteomics analysis of Rho-
dosporidium toruloides under phosphate-depleted and 
phosphate-rich conditions, the ribosome production and 
TCA cycle were downregulated in response to phosphate 
limitation, as well as the metabolites like AMP became 
dephosphorylated under phosphate stress, and NADPH 
was limited due to reduced pentose phosphate pathway 
and transhydrogenase cycle fluxes (Wang et al. 2018).

Besides increasing total lipid content, the growth tem-
perature can affect the composition and saturation level 
of fatty acids in the depositing TAG (Ratledge 2004). 
The current findings indicated that when the tempera-
ture was lowered to 7  °C, linoleic acid (LA) was signifi-
cantly increased in both yeast isolates, whereas palmitic 
acid was significantly decreased. These findings are in 
agreement with previous studies on Rhodotorula spp. 
(Granger et  al. 1993; Amaretti et  al. 2010). The drop in 
temperature to 5 °C also enhanced linoleic accumulation 
in R. glutinis (Granger et  al. 1993). Generally, lowering 
the temperature below the optimal growth temperature 
increases the lipid content and thus affects lipid compo-
sition. Unsaturated FAs have a lower melting point than 
saturated FAs, and short-chain FAs have a lower melting 
point than long-chain FAs. That’s why the ratio of linoleic 
acid to oleic acid (LA: OA) rises when the temperature 
drops (Suutari and Laakso 1994).

In agreement with these earlier observations, com-
pared to 7 °C and 15 °C, the current results demonstrate 
a significant increase in carbon chain elongation at 26 °C. 
The short lipid profiles terminate at low temperatures 
with C18-carbon fatty acids, especially oleic and linoleic 
acids. In contrast, extended lipid profiles consisting of 
C20 and C22 FAs were detected at 26  °C in both HGM 
and HGM + VIT media (Table  2). This trend was previ-
ously observed when L. elongisporus was incubated at 
26  °C on Basal Defatted Medium (BDM) (3% glucose), 
significant levels of 15-Docosenoic acid (C22:1, ω 7) 
and Tricosanoic acid (C23:0) were found as 12.12% and 
21.49%, respectively, in its FAs profile (Adel et al. 2021). 
This trend confirmed the positive influence of high tem-
peratures on the elongation mechanism in PUFA produc-
tion in L. elongisporus.

According to the data shown in Table 2, the predomi-
nant FAs in yeast isolates were oleic (18:1, ω9), palmitic 



Page 12 of 17Abaza et al. Bioresources and Bioprocessing           (2024) 11:39 

(16:0), stearic (18:0), and linoleic (18:2, ω 6). α-linolenic 
(18:3, ω 3), lignoceric (24:0), palmitic (16:1, ω 7), behenic 
(22:0), myristic (14:0), and arachidic acids (20:0) were 
among the minor FAs. As previously discovered in cer-
tain strains of Saccharomyces spp., Rhodosporidium spp., 
and Rhodotorula spp., these predominant FAs in com-
mon yeast strains, but other FAs were identified in trace 
amounts (Amaretti et  al. 2010; Fakankun et  al. 2019; 
Maza et  al. 2020 and 2021). Some PUFAs were unex-
pectedly detected at 26  °C, including C18:3 (ω 3, ALA), 
C18:4 (ω 3, SDA), C20:5 (ω 3, EPA), C16:4 (ω 1 6, 9, 12, 
15-hexadeca tetraenoic acid), C16:3 (ω 4, Hexadeca trie-
noic acid), and C16:4 (ω 3, Hexadeca tetraenoic acid). 
C18:4 (ω 3, SDA) was also suggested to be abundant in 
the lipid profiles of marine microalgae and terrestrial 
plants (Guil-Guerrero 2007). C18:3 (ω 3, ALA) has also 
been reported to be produced by marine Rhodotorula 
sp (Gupta et  al. 2012). On the other hand, C16:4 (ω 3, 
Hexadeca tetraenoic acid), the principal precursor FA 
in the Docosahexaenoic Acid (DHA) denovo pathway of 
marine green algae, and C16:3 (ω 4, Hexadeca trienoic 
acid), which is present primarily in the FA composition of 
Menhaden oil, were observed in the lipid composition of 
L. elongisporus. Moreover, Table 2 shows that both yeast 
strains contained C16:4 (ω1, Hexadeca tetraenoic acid) in 
concentrations ranging from 0.44 to 3.83%, which is suf-
ficient evidence to confirm the marine habitat of the iso-
lates since marine oil is the sole source of these fatty acids 
(Dugo et  al. 2012). In addition, C20:1 (ω 11, Gadoleic 
acid; cis-9-Eicosenoic acid) has been observed in Atlantic 
salmon FAs content (Routray et al. 2018).

Long-chain polyunsaturated fatty acids (LC-PUFAs), 
such as Eicosapentaenoic acid (EPA) and Eicosadienoic 
acid (EDA), were found in L. elongisporus and R. mucilag-
inosa at previously unreported levels of 19% and 19.6%, 
respectively. From a nutritional standpoint, human colos-
trum showed higher amounts of C20:2 (ω-6, EDA) 1.17% 
as compared to transitional 0.73% and mature milk 0.6% 
but C20:5 (ω-3, EPA) concentrations showed an opposing 
pattern from colostrum 0.51% to mature milk 0.87% (Guo 
2020).

When cultivated in suitable culture conditions, 
microorganisms such as marine algae, certain fungi, 
and bacteria naturally produce EPA, which has rec-
ognized therapeutic and nutritional benefits (Shah 
et al. 2022). Conversely, until now, only the genetically 
modified yeast was able to synthesize LC-PUFAs (ω-3 
and ω-6 FAs), which were created by introducing and 
expressing heterologous genes that encode the ω-3/ω-6 
biosynthesis pathway in the oleaginous host (Gemper-
lein et al. 2019; Jovanovic et al. 2021). In 2006, DuPont 
(Wilmington, USA) achieved the commercial produc-
tion of lipids from yeast through genetic modification. 

The genetically modified (GM) yeast strain accumu-
lated 35% total lipid content, with 15% being EPA. Sub-
sequently, the lipids were manufactured by CPKelco 
and marketed in the USA as NewHarvest™ EPA oil 
for human consumption and yeast biomass as animal 
feed under the Verlasso® brand in partnership with 
AquaChile (Puerto Montt, Chile) to produce salmon 
enriched with EPA. However, the process faced con-
sumer criticism due to hexane extraction solvents and 
genetic modification technologies, potentially limit-
ing market success and social acceptance (Abeln and 
Chuck 2021).

EPA can be produced by a mutant strain of Yarrowia 
lipolytica at 15% of DCW (MacKenzie et  al. 2010; Xue 
et al. 2013a and Xue et al. 2013b; Yuan and Alper 2019). 
Hence, L. elongisporus is regarded as the first marine 
wild yeast strain to generate a considerable quantity of 
EPA at 10% of DCW. Furthermore, because EDA is a cru-
cial intermediary FA in the Δ−9 elongase/Δ−8 desaturase 
pathway of EPA formation, R. mucilaginosa may be a 
promising future candidate yeast for EPA or DHA pro-
duction. Even though there are a lot of concerns about 
using L. elongisporus and R. mucilaginosa in the food and 
pharmaceutical industries due to their potency to cause 
infectious diseases, related studies confirmed that both 
strains emerge as opportunistic human pathogens that 
cause nosocomial infections in immunocompromised 
patients (Tsui et al. 2008; Butler et al. 2009; Badr et 2021). 
According to our confirmation results from the blood 
agar hemolysis test and micromorphology test, gamma 
hemolytic phenotype was shown by both yeast strains, as 
well as the absence of hyphal growth form, which was the 
most invasive form in virulence mechanisms (ElMekawy 
et al. 2013; Mayer et al. 2013).

According to current findings, the two-stage batch 
fermentation method seems to boost both the total bio-
mass and total PUFA content of yeast isolates (34.33 and 
32.46%) (Tables  2 and 3). In this situation, it is possible 
that during the second stage of fermentation, old yeast 
cells save all energy for respiration and catabolize the 
carbon source to produce ATP molecules and lipid accu-
mulation. The extra energy (accumulated ATP) is trans-
formed into high-energy FA molecules that may be stored 
as TAG and natural lipids. The yeast cell seems to further 
modify its lipid composition by increasing the degree of 
unsaturation and elongation as a response to incidental 
stress brought on by the low substrates and the start of 
starvation after a long time of incubation (28 days) under 
excellent aeration conditions towards storage energy-
dense PUFAs biosynthesis. Our findings support entirely 
the prior findings that showed that when OY transi-
tions to low-carbon resources, they produce biomass at 
the expense of the accumulated fat (like the beginning 
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of the first stage when glucose is 20 g/l). An increase in 
lipid synthesis causes an expansion of glucose catabolism 
through the pentose-phosphate pathway when nitrogen 
and carbon are limited. Furthermore, the dehydrogena-
tion of lipids may be enhanced in the absence of a carbon 
resource (like the end of second stage fermentation) (El 
Baz et al. 2011; Ageitos et al. 2011).

Based on the current study, there was an inverse rela-
tionship between FA unsaturation and elongation and the 
level of glucose in the culture medium, as evidenced by 
the sharp decline of glucose content with both yeast iso-
lates from 8 to < 0.2% at the end of the two-stage batch 
culture. This finding is consistent with Amaretti et  al. 
(2010), who reported that the total PUFAs of R. glacia-
lis DBVPG 4785 was increased by decreasing the glucose 
concentration at different temperatures (Amaretti et  al. 
2010). In addition, Deryabina et al. (2022) supposed that 
one of the factors providing great adaptability upon sub-
strate depletion (0.2% glucose) is the shift of synthesis 
towards PUFAs after increasing unsaturated FAs in mem-
brane phospholipids during the adaptation of Endomyces 
magnusii yeast in long-lasting cultivation and substrate 
restriction (Deryabina et al. 2022).

The area of bioprocessing that has received the least 
attention is downstream processing for oil extraction. 
Despite this, no standard technique can maximize oil 
recovery for all microbes. Consider the following obser-
vations while working with yeast lipids: (1) The yeast 
cell wall is mainly resistant to solvents; (2) Yeast lipids 
are membrane-bound or protected by phosphatides and 
proteins; (3) Yeast lipids are polar and nonpolar, requir-
ing both solvent types for extraction. Therefore, we 
developed a simple cell disruption technique to improve 
total free FAs extraction from the tested marine isolates, 
in which osmotic pressure and pressure extrusion were 
used to efficiently break down the rigid cell wall, fol-
lowed by solvent extraction. Such methods may reduce 
the risk of overheating induced by other mechanical pro-
cesses like sonication, bead milling, and grinding, which 
may accelerate PUFA oxidation and limit PUFA extrac-
tion. Consequently, we extracted significant amounts of 
EPA and EDA from both marine yeasts (19% and 19.6%, 
respectively).

In addition, using a two-stage culture fermentation 
method boosted lipid accumulation, as reported fre-
quently (Lorenz et  al. 2017). In the second stage, the 
dramatic rise in lipid accumulation in yeast cells might 
result from the energy savings necessary for reproduc-
tion and biomass. It is decreasing the toxic waste pro-
duced compared to the first growth phase, which triggers 
cell death. In addition, the avoidance of budding or fis-
sion reduces the presence of scars, reducing the degree 
of cell wall rigidity and improving the efficiency of lipids 

extraction. Consequently, the total PUFA extraction for 
both yeast isolates rose significantly and reached its max-
imum (32.46 and 34.33%) at 26 °C (Table 2). Even though 
a two-stage culture technique allows lipid accumulation 
to be separated from the growth phase, increasing the 
total biomass of yeast isolates and the total PUFA con-
tent, the long incubation period still presents a challenge 
for this kind of fermentation. That might be because our 
psychrophilic yeast strains, despite their high lipid yield, 
grow slowly at 26 °C.

However, fish oil is easily oxidized and often associ-
ated with an unpleasant taste and odor. Moreover, the 
availability of ω-3 fatty acids depends on factors like sea-
son, harvest location, fish species, and its primary food 
source, mainly marine algae and protists. Overfishing 
and global warming contribute to marine biodegrada-
tion; in response to high temperatures, microalgae pro-
duce less ω-3 desaturated fatty acids and more saturated 
fatty acids. Vegetable oils like corn, soybean, and palm oil 
offer alternative sources for PUFAs, but they only synthe-
size Cl8 PUFAs like stearidonic acid (SDA, 18:4ω3) and 
α-linolenic acid (ALA, 18:3ω3) due to a lack of essential 
enzymes. The microbial production of PUFAs has gained 
increasing interest as a sustainable alternative to plant 
and animal sources. Microbes offer distinct advantages 
over traditional sources, including diverse substrate utili-
zation and independence from climatic conditions. Their 
rapid growth and simplistic nature render microorgan-
isms’ applicable models for elucidating PUFA biosyn-
thetic pathways and optimizing production. Oleaginous 
microorganisms, accumulating over 20% of lipids, synthe-
size and store considerable fatty acid reserves, including 
PUFAs. Lipid profiles typically feature C4-C28-saturated 
and unsaturated fatty acids. Based on composition, oleag-
inous microbes show promise for biodiesel and nutraceu-
tical applications. Certain yeast species have been shown 
to accumulate significant cellular lipid reserves, making 
them promising platforms for manufacturing biofuels 
and oleochemicals like Yarrowia, Rhodotorula, and Lipo-
myces with lipid weight fractions exceeding 25% of their 
biomass. Their rapid growth rates, doubling times often 
under an hour, allow faster productivity compared to 
slower-growing plants, algae, or fungi. Additionally, yeast 
cultivation is less influenced by environmental variables 
and more amenable to large-scale processing. Oleaginous 
yeasts can accumulate up to 65% of their weight as oil and 
reach high densities over a week, outpacing algae yields 
100-fold. Common yeasts studied include Yarrowia lipo-
lytica, Lipomyces starkeyi, Rhodotorula toruloides, Cuta-
neotrichosporon oleaginosus, and Rhodotorula. glutinis 
(Santamauro et al. 2014; Abeln and Chuck 2021). Further 
engineering of cultivation conditions and process devel-
opment would be needed to enable economically viable 
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scale-up while addressing contamination and equipment 
corrosion concerns.

In conclusion, overall results demonstrate a significant 
production of lipids, particularly PUFA, by both wild 
yeast strains in the absence of nitrogen source at differ-
ent incubation temperatures. Using a two-stage batch 
culture system does exhibit some advantages in enhanc-
ing the intracellular LC-PUFA production by both yeast 
isolates over standard batch systems. This is the first time 
to report the production of LC-PUFAs such as EPA and 
EDA in significant amounts of 19 and 19.6% by the wild 
Ascomycetes yeast (Loddoromyces elongisporus) and 
the Basidiomycetes yeast (Rhodotorula mucilaginosa), 
respectively at 26 °C. These findings indicated the suc-
cess of the current strategy to induce the elongation and 
desaturation mechanisms by both strains. Given public 
reservations regarding genetically engineered organ-
isms, the explored indigenous oleaginous yeast isolates 
have innate lipid biosynthesis capacities without recom-
binant DNA modification. This addressing concerns over 
transgenic inputs in food and consumer products. Their 
efficient utilization of simple carbon sources and accu-
mulation of nutritionally/therapeutically relevant lipids 
are technologically and commercially appealing and 
serve as attractive alternative production platforms for 
long-chain PUFAs. The current study provides the first 
step towards exploiting the biotechnological potential of 
marine yeasts for long-chain PUFA production. Contin-
ued study of additional medium components, alternative 
nutrient limitation strategies, and statistical experimental 
designs holds promise to improve productivity and cus-
tomize lipid profiles significantly. Achieving this could 
position marine yeast as a sustainable source of high-
value oils.

Future work
While the current approach effectively induced lipogen-
esis and produced significant amounts of EPA and EDA, 
there remain lots of challenges in reducing the cost of 
production, shortening the incubation time, and opti-
mizing to improve yield, composition, and productivity 
achieving through the design of experiment techniques 
response surface methodology. Hence, critical param-
eters affecting yeast lipid synthesis need to be evaluated 
and investigated in future work.
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