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Introduction
Biocatalysis significantly contributes to a number of key 
research areas focusing on integrating green chemistry 
into the pharmaceutical industry. (Sheldon and Brady 
2019) One of the challenges for applications of biocataly-
sis in the synthesis of key pharmaceutical building blocks 
is limited stability and recyclability of the enzymes, which 
can be alleviated by continuous flow processes. The utili-
zation of immobilized enzymes and packed bed reactors 
(PBRs) in continuous flow processes represents major 
opportunities in biocatalysis field. (Basso and Serban 
2019; Britton et al. 2018; Thompson et al. 2019b) Growing 
demands have been explored in pharmaceutical industry 
to replace the batch reactors with continuous flow pro-
cesses. (Coloma et al. 2021; Cosgrove and Mattey 2022; 
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Abstract
Reductive amination by amine dehydrogenases is a green and sustainable process that produces only water as the 
by-product. In this study, a continuous flow process was designed utilizing a packed bed reactor filled with co-
immobilized amine dehydrogenase wh84 and glucose dehydrogenase for the highly efficient biocatalytic synthesis 
of chiral amino alcohols. The immobilized amine dehydrogenase wh84 exhibited better thermo-, pH and solvent 
stability with high activity recovery. (S)-2-aminobutan-1-ol was produced in up to 99% conversion and 99% ee in 
the continuous flow processes, and the space-time yields were up to 124.5 g L-1 d-1. The continuous reactions were 
also extended to 48 h affording up to 91.8% average conversions. This study showcased the important potential to 
sustainable production of chiral amino alcohols in continuous flow processes.
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Otvos and Kappe 2021; Plutschack et al. 2017; Sokač 
Cvetnić et al. 2023; Tamborini et al. 2018; Wan et al. 
2022) Key benefits have been proposed including lower 
production cycle time, less waste, and reduced operating 
costs. (Brufani et al. 2023; De Santis et al. 2020) Particu-
larly, in biocatalytic applications, continuous flow enables 
the reuse of immobilized enzymes in more cycles, in-situ 
removal of the products to reduce the product inhibition, 
(Meyer et al. 2022) and enhanced cofactor recyclability 
(Reus et al. 2024). Lipases (hydrolases, esterases), alco-
hol dehydrogenases, oxidases (glucose oxidases, galac-
tose oxidases), (Cao et al. 2017; Chapman et al. 2018) 
ω-transaminases (TAs), (Andrade et al. 2014; Bohmer et 
al. 2019; Mattey et al. 2021) sugar derivatizing enzymes, 
HRPs (horse radish peroxidases), halohydrin dehaloge-
nase, (Zhang et al. 2018) amidases, (Lin et al. 2019) and 
whole cell biocatalysts (Jin et al. 2019; Chen et al. 2022) 
have all been immobilized on various carriers and sub-
jected to continuous flow processes.

Asymmetric reductive amination (ARA) is one of the 
prominent methodologies to produce chiral amines from 
the corresponding ketones or aldehydes. In particular, 
chiral vicinal amino alcohols are present in a variety of 
pharmaceuticals or natural products (Chen et al. 2019). 
Using free ammonia as the amine donor, amine dehy-
drogenases (AmDHs) are capable of catalyzing ARA of 
hydroxyl ketones, affording amino alcohols in high yields 
and ee. Ever growing research interests have focused on 
the identification and engineering of AmDHs to expand 
the substrate scope, improve the stability and activity of 
the enzymes. Since the first conversion of AmDHs from 
LeuDH by Bommarius et al. in 2012 (Abrahamson et 
al. 2012), a variety of AmDHs were converted from leu-
cine dehydrogenases (LeuDHs) (Chen et al. 2018, 2019), 
phenylalanine dehydrogenases (PheDHs) (Jiang and 
Wang 2020; Li et al. 2022; Liu et al. 2020; Pushpanath et 
al. 2017; Ye et al. 2015), L-lysine dehydrogenases from 
Geobacillus stearothermophilus (LysEDHs) (Tseliou 
et al. 2019, 2021), or identified as native AmDHs (Ben-
nett et al. 2022; Mayol et al. 2016, 2019). These investi-
gations have inspired further applications of AmDH for 
the production of chiral amines as building blocks for 
pharmaceutical industry. Previously, we have performed 
genome mining and identified five AmDHs (GsAmDH 
from Geobacillus stearothermophilus, BsAmDH from 
Bacillus stearothermophilus, LsAmDH from Lysiniba-
cillus sphaericus CBAM5, SpAmDH from Sporosarcina 
psychrophile, and TiAmDH from Thermoactinomyces 
intermedius) that were able to catalyze the ARA of pro-
chiral α- and β-hydroxy ketones. (Tong et al. 2021; Wang 
et al. 2020). Subsequently, protein engineering was con-
ducted and high stereoselectivities and activities were 
obtained (Ming et al. 2022) towards the hydroxyl ketones 
to produce amino alcohols. These highly active mutants 

were subjected to ARA reactions under relatively large 
scale and high substrate concentrations, thus demon-
strating the utility of the mutants for potential appli-
cations. Therefore, it is in urgent need to design and 
optimize immobilization techniques to enable continu-
ous use of the enzymes in industrially viable packed bed 
reactors (PBR). However, the dependence on co-factors 
and recycling systems implies complexity for the appli-
cations of AmDHs. (Hu et al. 2022) The examples of 
using continuous enzymatic recycling NAD(P)H are 
scarce. (Croci et al. 2022; Romero-Fernandez and Para-
disi 2021; Zhang et al. 2023; Zor et al. 2017) In particular, 
the specific activities of the immobilized enzymes (espe-
cially when immobilizing with crude enzymes or cell-
free extracts) are often lower due to diffusion problems, 
variations in structures, or insufficient enzyme loading, 
etc. (Zhang et al. 2023) Though there have been reports 
for the immobilization strategies involving AmDHs, 
(Caparco et al. 2020; Liu et al. 2017; Ren et al. 2017) to 
date only a couple of studies have investigated the con-
tinuous flow processes with AmDHs, which afforded only 
moderate conversions. (Franklin et al. 2021; Thompson et 
al. 2019a)

Herein, we envisioned a continuous flow process using 
PBRs with co-immobilized variant of AmDH wh84 and 
GDH for the co-factor recycling of the reductive amina-
tion of 1-hydroxybutan-2-one (1a) to produce the opti-
cally active (S)-2-aminobutan-1-ol ((S)-1b) (Fig.  1 and 
Scheme S1). The co-immobilization of AmDH wh84 and 
GDH on polymer-based porous bead carriers was charac-
terized and optimized, and subsequently the advantages 
of the continuous flow processes were demonstrated 
with comparison of batch reactions. This study show-
cases the potentials of using co-immobilized AmDHs and 
GDH in the industrial processes with continuous flow 
and offers paradigm for the future design of large-scale 
bioprocesses.

Experimental section
Materials
An engineered strain, AmDH wh84, was constructed 
from our previous work and used in the current study. 
Resin carriers were purchased from Xi’an Lan Xiao 
Technology Co., Ltd., (Xi’an, China) and Tianjin Nankai 
He Cheng Technology Co., Ltd. (Tianjin, China). The 
magnetic nanoparticles were purchased from Yeasen 
Biotechnology Co. Ltd. (Shanghai, China). 1-hydroxy-
2-butanone, 2-amino-1-butanol and other chemicals 
were purchased from Shanghai Macklin Biochemical 
Technology Co., Ltd and Bide Pharmatech Ltd.

Preparation of crude extracts of AmDH and GDH
The genes encoding AmDH or GDH were cloned into the 
commercially available pET-24a vector containing the 
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NdeI and XhoI restriction sites, and were constructed 
with an N-terminal 6xHis tag. The transformed E. coli 
BL21(DE3) cells were stored in 50% glycerol at -80  °C. 
To initiate protein expression, cells were thawed, inocu-
lated into 5 mL LB medium containing 50 µg mL-1 kana-
mycin, and incubated at 37  °C with shaking at 220  rpm 
for 8–12 h. A 1 mL aliquot of the seed culture was then 
transferred to 500 mL of TB medium containing 50  µg 
mL-1 kanamycin and grown at 37  °C with shaking at 
220 rpm until an OD600 of 0.6–0.8 was reached. Protein 
expression was induced by adding 0.1 mM isopropyl β-D-
1-thiogalactopyranoside (IPTG) and incubating the cells 
at 20 °C with shaking at 220 rpm for 15 h. The cells were 
collected by centrifugation (4 °C, 4000 rpm, 10 min) and 
resuspended in PBS buffer (50 mM, pH 7.4), followed by 
centrifugation to remove the supernatant. The cells were 
then resuspended in the same buffer at a concentration 
of 0.1  g ml-1 (cell wet weight). Subsequently, the cells 
were disrupted using a high-pressure cell homogenizer 
and centrifuged (4 °C, 12,000 rpm, 40 min) to remove the 
precipitates, resulting in crude protein extracts of AmDH 
and GDH.

Immobilization of enzymes on amino resins
First, 6.0 g amino resin was washed three times with 24 
mL of PBS buffer (50 mM, pH 7.4), and then the resin 
carriers were filtered and dried under reduced pres-
sure. Next, the resulting amino resins were mixed with 
24 mL of 2% glutaraldehyde solution at 20 °C for 1 h and 

subsequently washed by PBS buffer. Finally, the resins 
were mixed with 24 mL crude protein extract and stirred 
at 200–250  rpm, 20  °C for 18 h, followed by 1 h of set-
tling. The supernatant was collected to determine the 
protein loadings and immobilization yields. The immo-
bilized enzymes were washed with PBS buffer (50 mM, 
pH 7.4) two to three times, filtered and stored for further 
experiments.

Immobilization procedures of enzymes on epoxy resins
Firstly, 6.0  g epoxy resin was washed three times with 
24 mL PBS buffer (50 mM, pH 7.4), and then the resin 
carriers were filtered and dried under reduced pressure. 
Next, the resulting epoxy resins were mixed with 24 mL 
crude protein extract and stirred at 200–250 rpm, 20 °C 
for 18 h, followed by 1 h of settling. The supernatant was 
collected to determine the protein loadings and immo-
bilization yields. Finally, the immobilized enzymes were 
washed with PBS buffer (50 mM, pH 7.4) two to three 
times, filtered and stored for further experiments.

Enzyme assays
Conditions for enzyme activity analysis of AmDH: 
200  mg co-immobilized AmDH and GDH or 200 µL 
AmDH (crude extract) and 50 µL GDH (crude extract), 
1 mM NAD+, 100 mM glucose, 50 mM Tris-HCl (pH 
9.5) buffer (including 1  M NH4Cl), 10 mM 1a, 30  °C, 
30  min, total volume: 1 mL. The reaction was then ter-
minated using acetonitrile. The product (S)-1b was 

Fig. 1  (a), Reductive amination of 1-hydroxybutan-2-one (1a); (b), Representative diagram for the continuous flow process
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quantified by HPLC after derivatization with Marfey’s 
reagent (N-alpha-(2,4-dinitro-5-fluorophenyl)-L-alanin-
amide). Detection conditions (Li et al. 2017): Zorbax 
SB-C18 column (4.6*150 mm, 5 μm), 340 nm wavelength, 
with 25 ℃ column temperature, at 1 mL min-1 flow rate; 
mobile phase A: ultrapure water, mobile phase B: meth-
anol. Elution program: 60% A/40% B, hold at 40% B for 
6  min, increase B to 60% within 9  min, hold for 3  min, 
then decrease B to 40% within 2 min, hold for 5 min. One 
unit (U) of activity was defined as the amount of enzyme 
required to produce 1 µmol of (S)-1b per minute under 
the standard assay conditions.

The activity recovery (AR) is defined as the ratio of 
the immobilized enzymatic activity over the total free 
enzymatic activity added to the reaction mixture for the 
immobilization. Immobilized activity (IA) defined as the 
activity of AmDH per gram of co-immobilized enzyme. 
The protein loading (PL) is defined as the mass of enzyme 
immobilized on one gram of resins. The immobiliza-
tion yield (IY) is defined as the ratio between the mass of 
immobilized enzyme over the total free enzyme added to 
the reaction mixture for the immobilization. The activity 
of GDH (UGDH) is determined by measuring the change 
in absorbance values of NADH at 340  nm by UV spec-
trophotometry. Conditions: 10 µL GDH (crude extracts), 
10 mM NAD+, 100 mM glucose and 50 mM Tris-HCl 
(including 1  M NH4Cl) buffer (pH 9.5), total volume: 
200 µL, 30 ℃. One unit (U) of GDH activity is defined 
as the amount of enzyme required to produce 1 µmol of 
NADH per minute under the standard assay conditions. 
The definitions can also be interpreted by the following 
equations:

	
AR(%) =

Ai

A0
×100%� (1)

	
IA (U/gresin) =

Ai

mre sin
� (2)

	
PL (mg/g) =

m0 −ms

mre sin
� (3)

	
IY (%) =

m0 −ms

m0
× 100% � (4)

	
UGDH =

EW×V×103

M×L
� (5)

Where Ai is the immobilized AmDH activity, U; A0 is the 
total free AmDH activity added to the reaction mixture 
for the immobilization, U; mresin is the mass of resin, g; m0 
is the mass of the total free enzyme, mg; ms is the mass of 
enzyme in the supernatant after immobilization, mg; EW 
is the change in absorbance at 340 nm within 1 min; V is 

the volume of the reaction solution, mL; M is the molar 
absorption coefficient of the NADH, L mol-1 cm-1; L is 
the optical distance, cm.

Enzyme stability
To determine the stability of immobilized enzymes, 
they were incubated for 2  h under various pH values 
(3.0–13.0), temperatures (℃), and organic solvents such 
as methanol, acetonitrile, n-hexane, N, N-dimethylfor-
mamide (DMF), dimethyl sulfoxide (DMSO), methyl 
tert-butyl ether (MTBE), ethyl acetate to evaluate the pH 
stability, thermo-stability, and organic solvent tolerance 
of immobilized and free enzymes. The enzyme activity 
measured at pH 9.5 and 30 ℃ is defined as 100% to deter-
mine the relative activity.

Batch reactions of immobilized enzymes
200 mg immobilized enzymes were added to 1 ml Tris-
HCl (including 1 M NH4Cl) buffer (50 mM, pH 9.5) con-
taining 10 mM 1a, 1 mM NAD+ and 100 mM glucose. 
Buffer pH was adjusted by KOH or HCl. The mixture 
was then incubated with agitation at 30 ℃ and 220 rpm 
for 0.5 to 2 h. The generated products were quantified by 
HPLC.

AmDH/GDH binding ratio optimization
Six different ratios of AmDH and GDH enzymes were 
immobilized using the LXTE-706 carrier. For each 
ratio, 6.0 g of LXTE-706 carrier were mixed with 24 mL 
of crude protein extracts of AmDH and GDH for the 
immobilization reaction using the epoxy resin immo-
bilized enzyme method described above. Protein load-
ing (PL) and immobilization yield (IY) were determined 
by measuring initial protein concentrations and the 
concentrations in the supernatant after completion of 
the immobilization reaction. To test the immobilized 
enzymes, 200 mg of each were added to 1 mL Tris-HCl 
(including 1  M NH4Cl) buffer (50 mM, pH 9.5) con-
taining 10 mM 1a, 1 mM NAD+, and 100 mM glucose. 
The mixture was incubated with agitation at 30 ℃ and 
220 rpm for 0.5 h, and conversions were determined by 
HPLC.

Continuous reactions with a fixed-bed reactor
Immobilized enzyme was filled in a fix-bed reactor (Col-
umn Y2, 7.85 mL volume). A peristaltic pump was used 
to pump Tris-HCl (including 1 M NH4Cl) buffer (50 mM, 
pH 9.5) containing 10 mM 1a, 1 mM NAD+ and 100 mM 
glucose into the packed bed bioreactor. Buffer pH was 
adjusted by KOH or HCl. 2 column volumes (CV) of the 
solution mixture were allowed to flow through the col-
umn before the reactions reached steady state and con-
versions reached plateau. Subsequently, the samples were 



Page 5 of 11Xie et al. Bioresources and Bioprocessing           (2024) 11:70 

collected in the fraction collector and analyzed using 
HPLC.

Results and discussion
Tailored co-immobilization system for AmDH and GDH
AmDHs are NADH dependent enzymes, which require 
co-factor recycling systems (e.g. GDH and glucose) to 
regenerate the co-factors. Therefore, to reduce the over-
all cost for enzymes and enable the reuse of both AmDH 
and GDH on PBRs, it is only economically viable if both 
enzymes are immobilized. Previously, we successfully 
identified, characterized and engineered an amine dehy-
drogenase from Sporosarcina psychrophila (SpAmDH) 
derived from leucine dehydrogenase. (Tong et al. 2021) 
Upon three rounds of CAST/ISM-guided mutagenesis, 
the mutant wh84 was constructed with 3.2-fold improve-
ment in TTN to the WT enzyme. In this work, we cul-
tured and expressed the variant AmDH wh84 and the 
crude extract was used for the immobilization directly 
without enzyme purification. Additionally, glucose 
dehydrogenase (GDH) from Bacillus subtilis was also 
expressed and immobilized as a crude extract.

A number of immobilization strategies were investi-
gated on the purpose of selecting the best-performing 
carriers for co-immobilization. The commercially avail-
able ion-exchange, amino and epoxy resins as well as 
magnetic nanoparticles with carboxyl groups modified 
surfaces were utilized. We characterized the properties 
of co-immobilized enzymes on various carriers in terms 
of immobilization activity (IA), activity recovery (AR), 
Protein loading (PL), Immobilization yield (IY) of AmDH 
wh84, pore sizes and particle sizes (Table  1). Among 
the carriers, the epoxy resin LXTE-706, ion-exchange 
resin ESQ-3and LXTE-902, and the amino resin LXTE-
700s exhibited highest immobilization activity (IA up to 
1.35 U g-1) and activity recovery (AR up to 55.30%). The 

magnetic nanoparticles offer advantages such as ease 
for separation and strong covalent bonding with surface 
modifications, however, the activity was significantly 
lower than that of the resins and not pursued further 
(Table S1). In the end, the resins LXTE-700s, LXTE-706, 
ESQ-3, LXTE-902 were selected as the carriers for the 
subsequent process development and optimizations.

The enzyme activities for GDH and AmDH are highly 
different, as a result, the optimum ratios of AmDHs to 
GDH were investigated using LXTE-706 on the pur-
pose of lowering enzyme usage and balancing enzymatic 
activities for the co-factor recycling. The specific enzyme 
activity of the GDH crude extract were determined to 
be 5.50 U mL-1, which was significantly higher than that 
of AmDH (0.61 U mL-1). Indeed, with an AmDH/GDH 
ratio 5:1, the conversion reached a maximum of 80.5% 
(Table  2). Further increasing the ratio did not lead to 
higher conversions. Therefore, 5:1 ratio was employed in 
the following studies.

There are two strategies for the immobilization of the 
enzymes: separate immobilization or co-immobilization. 
For the separate immobilization strategy, the enzymes 
were immobilized on carriers separately and the res-
ins carrying each of the enzyme were mixed and added 

Table 1  The comparisons of co-immobilized AmDHs and GDH on various carriers
Carrier type Model Specific activity

(IA)a [U g− 1]
Activity 
recovery
(AR)b [%]

Protein loading 
(PL)c

[mg g− 1]

Immobilization 
yield (IY)d

[%]

Particle sizes
[µm]

Pore 
diam-
eters
[Å]

Ion exchange 
resin

LXTE-902 1.35 ± 0.03 55.3 ± 1.23 249.6 80.0 150–350 400–600
ESQ-3 1.33 ± 0.025 54.3 ± 1.02 163.2 52.3 100–300 100–300

Amino resin LXTE-700s 0.69 ± 0.05 28.3 ± 2.05 129.6 41.5 300–500 200–400
LXTE-700 0.09 ± 0.01 3.7 ± 0.01 134.4 43.1 150–300 200–400
LXTE-701 0.26 ± 0.01 10.7 ± 0.41 187.2 60.0 100–300 500–700
LXTE-703 0.25 ± 0.01 10.2 ± 0.01 172.8 55.4 100–250 300–500
LXTE-704 0.28 ± 0.01 11.5 ± 0.41 158.4 50.8 100–300 500–700

Epoxy resin LXTE-706 1.33 ± 0.015 54.3 ± 0.61 159.2 51.0 100–300 100–300
LXTE-603 0.01 ± 0.001 0.4 ± 0.01 62.6 20.1 100–300 280–320
LXTE-604 0.05 ± 0.005 1.8 ± 0.20 62.6 36.9 100–300 270–320
LXTE-609 0.02 ± 0.005 0.6 ± 0.20 115.2 18.5 100–300 260–320

a, IA was defined by Eq. (2); b, AR was defined by Eq. (1); c, PL is defined by Eq. (3) and IY is defined by Eq. (4)

The AmDHs (wh84) / GDH ratio is 5/1

Table 2  Optimization of AmDH/GDH ratios
AmDH/GDH 
ratios*

Protein loading 
(PL)a

[mg g-1]

Immobilization 
yield (IY)a

[%]

Conv. 
[%]

6: 1 148.8 46.3 52.0 ± 1.7
5: 1 144.0 44.8 80.5 ± 4.0
2: 1 158.4 49.3 67.1 ± 0.2
1: 1 148.8 46.3 60.4 ± 0.4
1: 2 168.0 52.2 41.3 ± 0.6
1: 5 158.4 49.3 29.7 ± 2.5
* Co-immobilized on the carrier LXTE-706. a, PL is defined by Eq.  (3) and IY is 
defined by Eq. (4)
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to the reactions. On the other hand, the crude enzymes 
of AmDH wh84 and GDH were co-immobilized on the 
carriers in one-step. The resulting immobilization activ-
ity (IA) of AmDH wh84 achieved for the co-immobiliza-
tion strategy was 0.69 U g-1, which was much higher than 
that of the separate immobilization (0.43 U g-1, Fig. S4a). 
Additionally, the co-immobilization reduced the steps 
for immobilization and operational costs, therefore, co-
immobilized AmDH wh84 and GDH were employed for 
further investigations.

The SDS-PAGE gel analysis was performed on the mix-
ture of crude extract of AmDH wh84 and GDH and the 
supernatant after the immobilization process was per-
formed for 3–18 h (Fig. S4b). There were significantly less 
enzymes compared to the crude enzyme mixture, which 
was in accordance with the immobilization yields (IY up 
to 52.2%). The crude enzymes were used for immobiliza-
tion directly without further purification for the ease of 
operation and cost saving. The surface Lysine distribu-
tion was visualized (Fig. S3), which consists of 4.8% and 
6.1% of total amino acids of AmDH and GDH (Table S2).

The co-immobilized enzymes were employed in the 
batch reactions to convert 1a to (S)-1b. The optimum pH 
was determined to be 9.5 after performing the reactions 
in various pH (Fig.  2a). Various reaction temperatures 
were also attempted to determine the optimum con-
ditions, and 30–40  °C were shown to be the best range 
(Fig. 2b) It is worth noting that the optimal reaction con-
ditions for free AmDH wh84 are pH 8.5 and 30  °C. In 
the end, the optimum pH 9.5 and 30 °C temperature was 
employed in further investigations.

Batch reactions with co-immobilized AmDH and GDH
Thermostability and pH stability of the co-immobilized 
enzymes and free enzymes were investigated by incuba-
tion at various temperatures (30–55 °C) (Fig. 3a) and pH 
(3.0–12.0) (Fig. 3b) for two hours and the residual activi-
ties were tested. For temperatures at 30–40 °C, the rela-
tive activity for the free enzymes were higher than that 
of the immobilized enzymes, however, at an elevated 
temperature of 45–55 °C, the free enzymes lost a major-
ity of the activity, whereas the co-immobilized enzymes 
were able to retain 30-40% activity (LXTE-706) and 
40-70% activity (LXTE-700s), respectively. Furthermore, 
the immobilized enzymes displayed considerably higher 
pH stability than free enzymes at extreme pH values such 
as pH 3.0–8.0 and 11.0–13.0, indicating higher stability 
of the immobilized enzymes in acidic or basic conditions. 
At pH 9.0–11.0, the immobilized enzymes on LXTE-706 
were more active than LXTE-700s and the free enzymes, 
showing the distinct advantages of the immobilization 
processes in improving the pH stability of the enzymes.

Organic solvents are frequently used in biocatalytic 
processes to aid the solvation of substrates and products; 
however, enzymes were shown to be unstable in presence 
of solvents possibly due to unfolding, denaturation or 
aggregation. Immobilization technologies may offer ele-
gant solutions to solve the solvent intolerance problems. 
Therefore, even though the current strategy does not 
involve the use of organic solvents, for potential future 
applications with substrate with poor water solubility, we 
investigated the stability of the co-immobilized enzymes 
on carriers including LXTE-706 with the highest immo-
bilization AmDH activity (1.33 U g-1), and LXTE-700s 
with higher thermo- and pH stability. Upon incubation 

Fig. 2  Optimization of the batch reactions with co-immobilized enzymes. (a), Optimization of pH for the batch reactions using co-immobilized AmDH 
wh84 and GDH. Buffer pH was adjusted by KOH or HCl. Reaction conditions: NAD+ (1 mM), glucose (100 mM), Tris-HCl (50 mM, pH 7.0–10.0) buffer (includ-
ing 1 M NH4Cl), immobilized enzymes (200 mg), 1a (10 mM), 30 °C, total volume: 1 mL, carrier: LXTE-706; (b), Optimization of reaction temperatures for 
the batch reactions using co-immobilized AmDH wh84 and GDH. Reaction conditions: NAD+ (1 mM), glucose (100 mM), Tris-HCl (50 mM, pH 9.5) buffer 
(including 1 M NH4Cl), immobilized enzymes (200 mg), 1a (10 mM), 25–50 °C, total volume: 1 mL, carrier: LXTE-706
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in various solvents for two hours with different log P val-
ues, their residual activities were compared (Fig. 3c). The 
co-immobilized enzymes on LXTE-700s retained > 90% 
activity in solvents including ethyl acetate, n-hexane 
and MTBE. On the other hand, LXTE-706 as the carrier 
exhibited lower activities in most of the solvents, except 
that in acetonitrile, where the activity was 48% higher 
than that of the LXTE-700s.

The co-immobilized enzymes in batch reactions can 
be recycled and reused for various batches. Filtration 
followed by buffer wash were performed on the immo-
bilized enzymes prior to each batch reactions. High-
est activities were obtained for enzymes immobilized 
on LXTE-700s and LXTE-706. 63.6% and 57.5% activ-
ity were retained after 8 batches of reuse, respectively 

(Fig. 3d). In comparison, ESQ-3 as the carrier offered one 
of the highest activity recoveries (AR up to 54.3%), but 
the activity declined rapidly and completely lost after 6 
batches of reuse. Poor reusability was also observed for 
enzymes immobilized on LXTE-902. The enzymes were 
immobilized with stable covalent bindings on LXTE-
700s and LXTE-706, which are possibly the reason why 
the recyclability exceeds that of the ion exchange resins 
LXTE-902 and ESQ-3. In addition, the LXTE-700s car-
rier is functionalized with amino groups on the surface, 
and LXTE-706 is functionalized with both epoxy and 
amino groups. Since epoxy groups are prone to ring-
opening and losing functionality upon extended expo-
sure to air, we speculate that immobilized enzymes on 

Fig. 3  Characterizations of the co-immobilized enzymes. (a), Thermo-stability of the free and co-immobilized enzymes; (b), pH stability of the free and 
co-immobilized enzymes; (c), Solvent tolerance of co-immobilized enzymes; (d), Reusability of the enzymes co-immobilized on various carriers. Reaction 
conditions: NAD+ (1 mM), glucose (100 mM), Tris-HCl (including 1 M NH4Cl) buffer (50 mM, pH 9.0 for LXTE-700s, or pH 9.5 for LXTE-706), immobilized 
enzymes (200 mg), 1a (10 mM), 30 °C, total volume 1 mL, incubation time: 2 h
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LXTE-700s are more stable due to more stable linkage 
established with amino surface groups.

Continuous flow biocatalysis with co-immobilized enzymes
Enzymatic ARA of 1a was carried out in PBRs filled with 
co-immobilized AmDHs wh84 and GDH, and the carrier 
LXTE-706 was selected considering both the immobili-
zation activity and stability. Subsequently, we performed 
the continuous flow studies under various flow rates 
(0.2 mL min-1 to 1.6 mL min-1). A fraction collector and 
subsequent HPLC analysis enabled the monitoring of 
the results (Fig. S1-S2, S5-S8). Owing to excellent enan-
tioselectivity of AmDHs, ee of (S)-1b maintained > 99% 
throughout the studies. Three columns with the same 
cross-sectional area and different lengths (Y1: 10*50 mm, 
Y2: 10*100  mm, Y3: 10*150  mm) were utilized to 

compare the space-time-yields (STY) and conversions 
under various flow rates. The residence times at different 
flow rates are labeled in Fig. 4 and listed in Table S3. The 
STY for whole-cell biotransformation in batch prepara-
tive scale (200 mM, 91% conversions in 24 h, 0.1 g mL-1 
wet cell) was also compared with the continuous flow 
reactions. (Tong et al. 2021) Subsequently, we performed 
the continuous flow studies under various flow rates (0.2 
mL min-1 to 1.6 mL min-1). With samples taken after the 
reaction reached steady state at various flow rates, the 
maximum STY for the continuous reactions reached 
124.5, 122.4, and 111.4 g L-1 d-1 for columns Y1, Y2 and 
Y3, respectively (Fig.  4a-c). As a result, at 99% conver-
sion, the maximum STY for the continuous flow reac-
tion (64.6 g L-1 d-1) is up to 4-fold to that of the whole-cell 
batch reaction (16.2  g L-1 d-1) and the immobilized 

Fig. 4  Comparisons of the continuous flow processes under various flow rates with (a), Column Y1; (b), Column Y2; (c), Column Y3; (d), Conversions for 
the continuous flow reactions in 48 h (Column Y2, 0.2 ml min-1 flow rate). Reaction conditions: NAD+ (1 mM), glucose (100 mM), Tris-HCl (including 1 M 
NH4Cl) buffer (50 mM, pH 9.5), 1a (10 mM), 30 °C, carrier: LXTE-706
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enzyme in batch reaction (16.0 g L-1 d-1). Up to 99% con-
versions and 99% ee were achieved with Column Y2 and 
Y3 at low flow rates (0.2–0.4 mL min-1). The STY exhibits 
a gradual increase at relatively low flow rates, and even-
tually reaches plateau at higher flow rates for all three 
columns. In addition, at approximately 6.5 min residence 
time, the STY for Y1 and Y2 are close to 120.0 g L-1 d-1. 
The results indicate that the reactions were influenced by 
external diffusion at low flow rates, and this effect were 
minimized at higher flow rates. The STYs achieved in this 
study is relatively high at this scale comparing to previous 
studies (Table S4), which were mostly performed at small 
scales.

The continuous flow reaction was extended to 48 h to 
achieve an upscaled production of (S)-1b and examine 
the stability of the co-immobilized enzymes (Fig. 4d). The 
column Y2 and 0.2 ml min-1 flow rate were selected, and 
the conversions maintained in the range of 83.8–99.0% 
throughout 48 h. The average conversions reached 91.8%, 
producing 470.5  mg of the product (S)-1b. The residual 
activity for the immobilized AmDH was determined 
to be 1.01 U g-1, which is 75.9% of the immobilization 
activity of the fresh enzyme (1.33 U g-1). The STY of the 
continuous system exceeds that of the whole-cell bio-
transformation and batch reactions, and the immobilized 
enzymes were not directly agitated to avoid the physical 
destruction. In particular, the recyclability is enhanced as 
shown from the results of the 48  h continuous produc-
tion. Therefore, from economic perspective, the con-
tinuous flow system affords reduced cost and improved 
recyclability. The current system is also easy to scale-up, 
as demonstrated by a similar final STY achieved with 
varied lengths and filling capacity of columns. We envi-
sioned that the current system may offer a useful plat-
form for preparative scales for sustainable production of 
chiral amino alcohols.

Conclusions
In this work, the enzymes AmDH wh84 and GDH were 
co-immobilized on various carriers and characterized by 
thermo-, pH, solvent stability and reusability. Continuous 
flow biocatalysis were investigated utilizing three differ-
ent columns and the maximum STY was up to 124.5 g L-1 
d-1. At 99.0% conversion, the maximum STY for the con-
tinuous flow reaction is up to 4-fold to that of the whole-
cell batch reactions and batch reactions with immobilized 
enzymes. The average conversions for the 48 h continu-
ous flow process reached 91.8%, producing 470.5  mg 
product in excellent enantioselectivity. The reactions 
proceed in aqueous buffers without the use of organic 
solvents and only produce water as the main by-product. 
Therefore, the current study represents an encourag-
ing contribution to the sustainable industrialization for 

enzymatic production of chiral amino alcohols by con-
tinuous flow processes.
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