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Abstract 

Panax notoginseng saponins (PNS) are the main active components of Panax notoginseng. But after oral administra-
tion, they need to be converted into rare ginsenosides by human gut microbiota and gastric juice before they can be 
readily absorbed into the bloodstream and exert their effects. The sources of rare ginsenosides are extremely limited 
in P. notoginseng and other medical plants, which hinders their application in functional foods and drugs. Therefore, 
the production of rare ginsenosides by the transformation of PNS using Aspergillus fumigatus was studied in this 
research. During 50 days at 25 ℃ and 150 rpm, A. fumigatus transformed PNS to 14 products (1–14). They were iso-
lated by varied chromatographic methods, such as silica gel column chromatography, Rp-C18 reversed phase column 
chromatography, semi-preparative HPLC, Sephadex LH-20 gel column chromatography, and elucidated on the basis 
of their 1H-NMR, 13C-NMR and ESIMS spectroscopic data. Then, the transformed products (1–14) were isolated 
and identified as Rk3, Rh4, 20 (R)-Rh1, 20 (S)-Protopanaxatriol, C-K, 20 (R)-Rg3, 20 (S)-Rg3, 20 (S)-Rg2, 20 (R)-R2, Rk1, 
Rg5, 20 (S)-R2, 20 (R)-Rg2, and 20 (S)-I, respectively. In addition, all transformed products (1–14) were tested for their 
antimicrobial activity. Among them, compounds 5 (C-K) and 7 [20 (S)-Rg3] showed moderate antimicrobial activities 
against Staphylococcus aureus and Candida albicans with MIC values of 6.25, 1.25 μg/mL and 1.25, 25 μg/mL, respec-
tively. This study lays the foundation for production of rare ginsenosides.
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Graphical abstract

Introduction
Panax notoginseng (Burk.) F.H. Chen is a well-known 
traditional Chinese medicine, which has various biologi-
cal activities (Li et al. 2022a, b; Yang et al. 2020; Ye et al. 
2010). P. notoginseng saponins (PNS) are the main active 
components of P. notoginseng. Among them, ginsenosides 
Rg1, Rb1, Rd, Re and notoginsenoside R1 are the major 
saponins, accounting for over 80% of the PNS. Saponins 
have pharmacological effects, such as anti-inflammatory, 
antioxidant, inhibition of platelet aggregation, regulation 
of blood glucose and blood pressure, inhibition of neu-
ronal apoptosis, protection of neurons, etc. (Duan et al. 
2018; Lin et al. 2015; Wei et al. 2023; Xiong et al. 2019). 
However, the major ginsenosides in PNS (including Rg1, 
Rb1, Rd, Re, R1) are difficult to be absorbed by the human 
body due to their high molecular weight, low membrane 
permeability, and low bioavailability (Cui et  al. 2016; 
Upadhyaya et  al. 2016). After oral administration, they 
need to be converted into minor ginsenosides by human 
gut microbiota and gastric juice before they can be read-
ily absorbed into the bloodstream and exert their effects. 
In addition, pharmacological studies showed that rare 
saponins have better biological activity, but their con-
tent in P. notoginseng is very low (Park et  al. 2010; Wei 
et  al. 2011; Wu et  al. 2012). Thus, a lot of studies have 
been focused on the conversion of major ginsenosides 
to rare ginsenosides  (Li et  al. 2022). Biotransformation 
is the most promising method to produce rare ginseno-
sides, which has the advantages of strong specificity, high 
yield, low cost and environmental friendliness (Zhang 
et  al. 2023a, b; Li et  al. 2022a, b). Studies showed that 
the genus Aspergillus has the ability of transformation 

saponins to rare ginsenosides. Such as Aspergillus tub-
ingensis can convert ginsenoside Rb1, Rb2, Rc, and Rd to 
CK. (Song et al. 2023); Aspergillus Niger XD101 can con-
vert ginsenoside Rb1 to CK (Jiang et al. 2021). However, 
there have no reports on the separation, purification, and 
structural identification of PNS transformation products 
by the genus of Aspergillus. This study aimed to trans-
form major ginsenosides into rare ginsenosides from 
PNS using fungus Aspergillus fumigatus, and to specu-
late their transformation pathways. This study reported 
for the first time the microbial conversion of PNS using 
A. fumigatus, and 14 rare ginsenosides were isolated 
from the converted products. This paper provides a new 
microbial conversion strain source for the large-scale 
preparation of rare ginsenosides, and also provides a 
theoretical basis for improving the medicinal value of P. 
notoginseng.

Materials and methods
Strains
The strain of A. fumigatus was isolated from fresh P. 
notoginseng root soil in our previous research, and was 
conserved in Potato Dextrose Agar (PDA) medium. A 
voucher specimen (No. Yang20210907) was deposited 
at the Faculty of Life Science and Technology, Kunming 
University of Science and Technology.

Sample, chemical, and reagents
Reference standards, including ginsenosides Rg1, Re, Rb1, 
Rd, 20 (S/R)-Rg2, 20 (R)-Rh1, Rg6, Rk3, Rh4, 20 (S/R)-Rg3, 
Rk1, Rg5, CK, 20 (S/R)-Rh2, and notoginsenosides R1, 
20 (S/R)-R2 were purchased from the Sichuan Victory 
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Biological Technology Co., Ltd. (Sichuan, China). PNS 
was supported by professor of Xiuming Cui, Kunming 
University of Science and Technology. The solvents meth-
anol and acetonitrile for HPLC were purchased from 
Sigma-Aldrich Co. (St. Louis, MO, USA). The Welchrom 
C18 Column (4.6 × 250  mm, 5  µm) was purchased from 
Yuexu Technology Co, Ltd. (Sichuan China). The Agilent 
1260 High Performance liquid chromatograph was pur-
chased from Agilent (Grand Island, NY, USA). The GF254 
Silica gel plate was purchased from Qingdao Marine 
Chemical Plant Co., Ltd. (Shandong, China). The stand-
ard strains, Staphylococcus aureus (CMCC(B)26003) and 
Candida albicans (BNCC109047), were purchased from 
Engineering Research Center of Industrial Microbiology 
(Henan, China). Ciprofloxacin was purchased from Bei-
jing Solarbio Science & Technology Co., LTD (Beijing, 
China).

Morphological observation of A. fumigatus
A. fumigatus was inoculated on PDA medium and cul-
tured in 25 ℃ incubator for 3 days. Colony characteristics 
and morphological characteristics (under optical micro-
scope) were observed.

Medium
PDA medium: potato extract powder 5  g/L, glucose 
15  g/L, and agar 25  g/L. PDB medium: potato extract 
powder 5 g/L and glucose 15 g/L.

Microbial transformation of PNS by A. fumigatus
We transferred well-developed fungal hyphae from the 
surface of the agar slant to three 500  mL Erlenmeyer 
flasks containing 300  mL PDB medium. The cultures 
were grown for 3 d on a rotating shaker at 25  °C with 
shaking at 150 rpm to produce seed liquid. Then, the seed 
liquids were transferred to 500  mL reagent bottles that 
contained 300  mL of medium for expand fermentation. 
The cultures were then incubated using the same condi-
tions as before. After 4 d, PNS (transformation substrate) 
were added to the cultures at the concentration of 5 mg/
mL. The cultures were incubated for additional 46 days at 
25 °C with shaking at 150 rpm. Finally, A total of 172.5 g 
PNS was transformed and a total of 34.5 L fermenta-
tion broth were prepared. The mycelia were separated 
by filtration and the filtrate was extracted five times with 
n-butanol. The organic layer was concentrated under 
reduced pressure to afford a residue (161.5 g).

Chromatographic conditions
A total of 161.5  g residue was obtained from the fer-
mentation solution. D101 macroporous resin col-
umn chromatography (H2O and EtOH as mobile 
phase, 0%→20%→40%→60%→80%→100% EtOH), 

silica gel column chromatography (CH2Cl2 and 
MeOH as mobile phase, ​CH​2C​l2​:MeOH = 20:1→15:
1→10:1→8:1→5:1→3:1→1:1→0:1), Rp-C18 reversed 
phase column chromatography (MeOH and H2O as 
mobile phase, 20%→40%→60%→80%→100% MeOH), 
semi-preparative HPLC (MeOH and H2O as mobile 
phase, 50%–100% MeOH, the wavelength is 203 nm), 
Sephadex LH-20 gel column chromatography 
(CH2Cl2:MeOH = 1:1) and other purification meth-
ods. The structures of the compounds were elucidated 
on the basis of their 1H-NMR, 13C-NMR and ESIMS 
spectroscopic data.

Analysis the conversion rate and products yield by HPLC
HPLC was performed using an Agilent 1260 system 
(Grand Island, NY, USA). A reverse phase column 
(4.6 × 250 mm, 5 µm; Yuexu Technology Co., Ltd. Sichuan 
China) at 30 ℃ was used. To determine the conversion 
rate of five main ginsenosides of PNS and the yield of 
conversion products, the conversion substrate (PNS), 
conversion products (extract), and saponin standards 
were dissolved in methanol prepared for analyzed by 
HPLC. H2O and CH3CN were used as the mobile phases 
A and B, respectively. The gradient elution was pro-
grammed as follows: 0–30  min, 20% (B); 30–60  min, 
20–37% (B); 60–65 min, 37–38% (B); 65–70 min, 38–45% 
(B); 70–75  min, 45–50% (B); 75–90  min, 50–56% (B); 
90–93  min, 56–62% (B); 93–103  min, 62–75% (B). The 
flow rate and detection wavelength were set as 1 mL/min 
and 203 nm respectively. The injection volume was 30 μL.

Antimicrobial activity
Transformation products (1–14) were evaluated for anti-
microbial activity against 2 human pathogenic micro-
bia. The tested microbia were: Staphylococcus aureus 
and Candida albicans. The activity of compounds 1–14 
against human pathogenic microbia was tested by double 
dilution method. Compounds 1–14 and positive control 
ciprofloxacin were dissolved with DMSO and the con-
centration was 1 mg/mL. Pathogenic microbia were incu-
bated in LB medium at 37 ℃ and 160  rpm for 8–12  h, 
microbia solution and compounds 1–14 were added to 
96-well plates, incubated at 37 ℃, and the 96-well plate 
was observed to be clear and transparent without micro-
bia growth after 12 h. The experiment was repeated three 
times. LB broth medium component: 20 g LB Broth dis-
solved in 1000 mL distilled water.

Results and discussion
Morphological observation of A. fumigatus
A. fumigatum was inoculated on PDA and cultured 
in 25  ℃ incubator for 3  days. The following colony 
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characteristics were observed: A. fumigatus is fluffy or 
flocculent, dark green (Fig.  1a). The conidial head is 
columnar, green when young, dark green when mature; 
The surface of the conidial stem is smooth, and many 
spores are scattered around it (Fig. 1b).

Separation of transformation products
The 161.5  g residue was eluted by D101 macropo-
rous resin column chromatography with a gradi-
ent elution of an ethanol–water solvent system to 
obtain four fractions (Frs A ~ D). Fr D was further 
obtained by silica gel column chromatography (CH2Cl2/
MeOH = 20:1→15:1→10:1→5:1→1:1) to obtain four 
components Frs D1-D4. Two components Fr D1-1-Fr D1-2 
were obtained by Rp-C18 reversed phase column chro-
matography (MeOH/H2O = 3:7→1:1→7:3→1:0) from 
Fr D1. The compounds 1 (7.0 mg) and 3 (19.3 mg) were 
obtained from Fr D1a by Sephadex LH-20 gel column 
chromatography (CH2Cl2/MeOH = 1:1). The compounds 
5 (tR = 13.2  min, 9  mg), 7 (tR = 17.5  min, 50.5  mg) and 
11 (tR = 23.5  min, 8  mg) were obtained from Fr D1b by 
semi-preparative HPLC (MeOH/H2O: 70–90%, 30  min, 
2 mL/min). The compounds 12 (tR = 6.8 min, 3 mg) and 
14 (tR = 12.4  min, 6  mg) was obtained from Fr D2 by 
semi-preparative HPLC (MeOH/H2O: 65–80%, 20  min, 
2  mL/min). Fr D3 was subjected to Sephadex LH-20 
gel column chromatography (CH2Cl2/MeOH = 1:1) to 
obtain two subfractions Fr D3a and Fr D3b. The com-
pounds 2 (9.5  mg), 6 (10  mg) and 13 (2  mg) were 
obtained by silica gel column chromatography (CH2Cl2/
MeOH = 7:1→4:1→2:1) from Fr D3a. The compounds 
4 (tR = 9.4  min, 6  mg) and 8 (tR = 15.4  min, 6  mg) were 
obtained from Fr D3b by semi-preparative HPLC (MeOH/
H2O: 55%–70%, 25  min, 2  mL/min). The compounds 9 

(tR = 17.5 min, 2 mg) and 10 (tR = 23.7 min, 13 mg) were 
obtained from Fr D4 by semi-preparative HPLC (MeOH/
H2O: 50%-70%, 35  min, 2  mL/min). semi-preparative 
HPLC conditions are as follows: H2O and MeOH were 
used as the mobile phases A and B, respectively. The 
wavelength is 203  nm. The detailed flowchart as shown 
in Fig. S17.

Structural characterization of products
The structures of products were identified on the basis 
of their spectroscopic data. Data of 1H and 13C NMR 
spectra of products 1–14 were in agreement with the 
reported literatures’ data. Compounds 1–14 were iden-
tified as ginsenoside Rk3 (1) (Park et  al. 2002), Rh4 (2) 
(Park et al. 2002), 20 (R)-Rh1 (3) (Teng et al. 2002), 20 (S)-
Protopanaxatriol (4) (Usami et  al. 2008), C-K (5) (Zhou 
et al. 2009), 20 (R)-Rg3 (6) (Teng et al. 2004), 20 (S)-Rg3 
(7) (Teng et al. 2004), 20 (S)-Rg2 (8) (Wang et al. 2007), 
notoginsenoside 20 (R)-R2 (9) (Chen et  al. 2007), ginse-
noside Rk1 (10) (Park et  al. 2002), Rg5 (11) (Kim et  al. 
1996), notoginsenoside 20 (S)-R2 (12) (Teng et al. 2002), 
ginsenoside 20 (R)-Rg2 (13) (Yang et  al. 2000), and 20 
(S)-I (14) (Yoshikawa et al. 1997). The structures of iso-
lated rare ginsenosides (1–14) as shown in Fig.  2. The 
detailed 1H-NMR and 13C-NMR data of compounds 1–
14 were shown in Table S1-S7.

Conversion rate of four products of PNS
The conversion rate of substrates and the yield of prod-
ucts was defined as follows:

Conversion rate (%) = m−m1

m
  × 100%

Productivity (%) = m2

m
  × 100%

Fig. 1  Morphology of A. fumigatus. a Colony morphology diagram; b Spore map of A. fumigatus 
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m: the mass of substrate; m1: the mass of remaining 
substrate; m2: the mass of products.

The major ginsenosides of PNS was notoginsenoside 
R1, ginsenosides Rg1, Re, and Rb1, the conversion rate of 
them were 32.52, 19.35, 24.74, and 100%, respectively. 
The conversion products and productivity were shown in 
Table 1.

Propose possible biosynthetic pathways of major 
ginsenosides Rg1, Re, Rb1 and notoginsenoside R1 of PNS
The transformation pathway of ginsenoside Rb1 is pro-
posed in Fig. S1A. Rb1 obtained Rd after hydrolyzing the 
lateral glucose of C-20, so the two monomers share the 
same conversion pathway. The ginsenoside Rb1 contains 
four glucopyranosyl moieties at the C-3 and C-20 posi-
tion of aglycone. According to the isolated ginsenosides 
20 (R/S)-Rg3, Rg5 and Rk1, C-K, 20 (S)-I, the conversion 
pathway of Rb1 can be predicted. The first pathway is 
the A. fumigatus attacked the outer β-(1 → 6)-glucosidic 
bond linkages to C-20 position of aglycone to produce Rd 
from Rb1, and was then followed by the hydrolysis of the 
outer β-(1 → 6)-glucosidic bond to C-3 position to pro-
duce F2, later followed by the hydrolysis of the inner β-
(1 → 6)-glucosidic bond to C-3 position to produce CK or 
by heating and oxidizing the air to get 20 (S)-I. Another 
pathway was followed by the hydrolysis of the inner β-
(1 → 6)-glucosidic bond to the C-20 position to produce 
20 (R/S)-Rg3 from Rd, then through dehydration reaction 
at the C-20 position to form a double bond with C-21 to 
get Rk1, or to form a double bond with C-22 to get Rg5.
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Fig. 2  Structures of minor ginsenosides from microbial transformation of PNS by Aspergillus fumigatus 

Table 1  The conversion products and their productivity

Substrates Transformation 
rate (%)

Products Productivity (%)

Rb1 100 20(S)-Rg3 17.90

20(R)-Rg3 22.29

Rg5 6.30

Rk1 3.25

CK 0.19

20(S)-I 5.60

Rg1 19.35 Rk3 3.61

Rh4 6.42

R1 32.52 — —
Re 24.74 — —
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The transformation pathway of ginsenoside Rg1 is 
proposed in Fig. S1B. Using the same method as above, 
we proposed the pathway of ginsenoside Rg1 as follows: 
Rg1→20 (R)-Rh1→Rh4; Rg1→20 (R)-Rh1→20 (S)-pro-
topanaxatriol; Rg1→20 (R)-Rh1→Rk3, respectively (Fig. 
S1B). We also proposed the pathway of ginsenoside Re 
as follow: Re→20 (R/S)-Rg2→20 (R)-Rh1→20 (S)-proto-
panaxatriol (Fig. S1C). Lastly, we proposed the pathway 
of notoginsenoside R1 as follow: R1→20 (R/S)-R2→20 (R)-
Rh1→20 (S)-protopanaxatriol (Fig. S1D).

Antimicrobial activity
The antimicrobial activities of compounds 1–14 against 
2 pathogenic microbial were tested. As shown in Table 2, 
Compounds 5 and 7 have moderate antimicrobial activ-
ity against Staphylococcus aureus and Candida albicans, 
with MIC values of 6.25, 1.25 μg/mL and 1.25, 25 μg/mL, 
respectively. Additionally, compounds 10 and 11 also 
had certain antimicrobial activity against Staphylococcus 
aureus and Candida albicans. The antimicrobial activity 
of compounds 1–14 as shown in Table 2

Conclusion
Rare ginsenosides is a group of dammarane triterpe-
noids that exist in low natural abundance, which can be 
produced by physicochemical processing or metabolic 
transformation of major ginsenosides. Due to their small 
polarity and molecular weight, they exhibited potent bio-
logical activity comparing to the primary ginsenosides. 
The fungus A. fumigatus has the ability of transform PNS 
to rare ginsenosides. We isolated 14 rare ginsenosides 

from the transformation products. The structure analy-
sis of 14 rare ginsenosides showed that they were the 
metabolites of ginsenosides Rb1, Rg1, Rd, Re and notogin-
senoside R1 (they are the major ginsenosides of PNS), 
respectively. Based on the structure of the transformation 
products, we speculate on the possible biological trans-
formation pathways of saponins (Fig. S1). The conversion 
rates of four ginsenosides were calculated by HPLC anal-
ysis, and it was found that the conversion rates of ginse-
nosides Rb1, R1, Rg1, Re were 100, 32.52, 19.35, 24.74%, 
respectively. The yield of ginsenoside 20 (R)-Rg3, which 
has good anti-tumor effect, can reach 22.29%. The yield 
of other ginsenosides 20 (S)-Rg3, Rh4, 20 (S)-I, Rg5, Rk3, 
Rk1 and C-K could reach 17.90, 6.42, 5.60, 6.30, 3.61, 3.25 
and 0.19%, respectively. We found that the products of 
PNS converted by A.fumigatus were rich and varied, and 
the conversion rate of ginsenoside Rb1 could reach 100%, 
which completely transformed components in PNS.

Our study found that the process of PNS transformed 
by A.fumigatus, involved a variety of reactions, includ-
ing deglycosylation, dehydration, and oxygenation. So, 
we can obtain multiple products through transformation 
from PNS by this fungus. Compared with other studies 
(Song et al. 2023 and Jiang et al. 2021), our transforma-
tion products are more abundant, we can not only obtain 
Rg3 and CK as other literatures, but also can obtain many 
other rare ginsenosides (Rh4, 20 (S)-I, Rg5, Rk3, Rk1, 
et  al.). So, this study provided an active fungus to pre-
pare diversity rare ginsenosides. Besides this, we deduced 
the transformation pathway of saponins, which can pro-
vide theoretical basis for the acquisition of target rare 
ginsenosides.

Through the transformation of PNS by A. fumigatus, 
this study can provide a method for obtaining the rare 
saponins, lay a foundation for the efficient utilization P. 
notoginseng, improve the pharmacological activity and 
economic value of saponins in P. notoginseng, and provide 
a basis and theoretical support for large-scale industrial 
preparation of rare saponins.
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PNS	� Panax notoginseng Saponins, mainly including notoginsenoside R1, 

ginsenosides Rg1, Re, Rb1, Rd
TLC	� Thin layer chromatography
HPLC	� High performance liquid chromatography
PDA	� Potato Dextrose Agar
PDB	� Potato Dextrose Broth
MIC	� Minimum inhibitory concentration

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40643-​024-​00794-0.

Additional file1 Fig. S1. Proposed possible biosynthetic pathways of major 
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Table 2  Antimicrobial activity of compounds 1–14 (MIC, μg/mL)

Compounds pathogenic microbia

Staphylococcus aureus Candida albicans

1  > 100  > 100

2  > 100  > 100

3  > 100  > 100

4  > 100  > 100

5 6.25 1.25

6  > 100  > 100

7 1.25 25

8  > 100  > 100

9  > 100  > 100

10 25 25

11 50 50

12  > 100  > 100

13  > 100  > 100

14  > 100  > 100

ciprofloxacin 1.56 0.78
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Table S1~S7 1H and 13C NMR spectral data of compounds 1-14. Figs. 
S3~S16. 1H NMR and 13C NMR (C5D5N) of compounds 1-14. Fig. S17. 
Separation flow diagram of compounds 1-14. Fig. S18. TLC analysis of 
transformation products at different times during the conversion process.
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