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(PHAs) are at the forefront of bioplastics research and 
development efforts (Ganesh Saratale et al. 2021; Park et 
al. 2024; Yukesh Kannah et al. 2022). PHAs can be syn-
thesized by microorganisms to achieve extremely high 
molecular weights at a low cost (Medeiros Garcia Alcân-
tara et al. 2020).

Among the PHA biosynthetic pathways, poly(3-
hydroxybutyrate) (PHB) is the most extensively studied 
(Choi et al. 2020; Ganesh Saratale et al. 2021; Yukesh 
Kannah et al. 2022). Introducing a lactate monomer into 
the PHB chain enables the formation of poly(lactate-co-
3-hydroxybutyrate) [P(LA-co-3HB)] and effectively 
enhances the properties of the polymer. These enhanced 
properties are dependent on the lactate fraction (Yamada 

Introduction
Bioplastics, which are biodegradable and biocompatible, 
offer a promising solution to mitigate increasingly severe 
resource and environmental challenges posed by fossil-
fuel derived plastics (Ali et al. 2024; Choi et al. 2020; 
Guo et al. 2021; Liao et al. 2024; Lv et al. 2022; Zhong 
et al. 2023). Among bioplastics, polyhydroxyalkanoates 
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Abstract
Poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)] is a high-molecular-weight biomaterial with excellent 
biocompatibility and biodegradability. In this study, the properties of P(LA-co-3HB) were examined and found to 
be affected by its lactate fraction. The efficiency of lactyl-CoA biosynthesis from intracellular lactate significantly 
affected the microbial synthesis of P(LA-co-3HB). Two CoA transferases from Anaerotignum lactatifermentans and 
Bacillota bacterium were selected for use in copolymer biosynthesis from 11 candidates. We found that cotAl 
enhanced the lactate fraction by 31.56% compared to that of the frequently used modified form of propionyl-CoA 
transferase from Anaerotignum propionicum. In addition, utilizing xylose as a favorable carbon source and blocking 
the lactate degradation pathway further enhanced the lactate fraction to 30.42 mol% and 52.84 mol%, respectively. 
Furthermore, when a 5 L bioreactor was used for fermentation utilizing xylose as a carbon source, the engineered 
strain produced 60.60 wt% P(46.40 mol% LA-co-3HB), which was similar to the results of our flask experiments. 
Our results indicate that the application of new CoA transferases has great potential for the biosynthesis of other 
lactate-based copolymers.
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et al. 2011) (Table 1). Microbial synthesis of lactate-based 
PHAs involves two key processes: the efficient conver-
sion of lactate into lactyl-CoA, and the selection of a 
PHA synthase that can accept lactyl-CoA as the substrate 
(Dundas and Dinneny 2022; Taguchi et al. 2008). Signifi-
cant efforts have been made to achieve the first goal.

P(LA-co-3HB) was biosynthesized for the first time 
using propionyl-CoA transferase (Pct) from Megasphaera 
elsdenii (Taguchi et al. 2008). Subsequently, Pct from 
Anaerotignum propionicum, due to its toxicity and inef-
ficient conversion of lactate into lactyl-CoA, was modi-
fied to generate Pct532Ap and Pct540Ap (Yang et al. 2010). 
PctMe and Pct540Ap have been widely used to produce 
various lactate-based copolymers (Choi et al. 2016; Li 
et al. 2016, 2017). Pcts from Clostridium perfringens (Jin 
et al. 2016) and several butyryl-CoA transferases (Bcts) 
(David et al. 2017) have also been used. The production 
of other products derived from the conversion of lactate 
into lactyl-CoA, including propionate (Balasubrama-
nian et al. 2020; Baur et al. 2022; Kandasamy et al. 2013), 
1,2-propanediol (Niu and Guo 2015; Niu et al. 2019), 
lactate esters (Lee and Trinh 2019; Ren et al. 2020), and 
polylactate (PLA) (Lajus et al. 2020; Shi et al. 2022; Tan 
et al. 2022; Ylinen et al. 2021), uses Pcts from A. neopro-
pionicum (Baur et al. 2022), Cupriavidus necator (Lajus 
et al. 2020; Ren et al. 2020), and Moorella thermoacetica 
(Ren et al. 2020). In addition, acyl-CoA: acetate/3-keto-
acid CoA transferase from Megasphaera sp. DISK 18 
(Zhang et al. 2019), 3-ketoacid CoA transferase from A. 
lactatifermentans (Zhang et al. 2019), and acetate CoA 
transferase from Bacillota bacterium (Zhang et al. 2019) 
and Escherichia coli (ydiF) (Dong et al. 2022) have the 
ability to convert CoA to lactate.

The composition of P(LA-co-3HB) can be affected by 
the intracellular lactyl-CoA concentration, as it influ-
ences the mobility of the polymerized product (Matsu-
moto et al. 2018). The enzyme activity of the converting 
lactate into lactyl-CoA affects the composition of the 
copolymer. Therefore, we tested various CoA transferases 
in the copolymer biosynthesis system in order to select 

enzymes that are more conducive to the copolymeriza-
tion of the high-lactate fraction. In addition, multiple 
strategies were used to further amplify the advantages of 
the selected enzymes. Finally, in addition to CoA trans-
ferases, several CoA synthetases were tested to deter-
mine whether CoA can be directly linked to lactate.

Methods
Strains and plasmids
The strains and plasmids used in this study are listed 
in Table S1. Strain WXJ01 and plasmids pTrc99aABC 
and pBad33-Ptrc-pct540Ap were obtained from previ-
ous studies (Lu et al. 2019; Wei et al. 2021; Yang et al. 
2010). CoA transferases and synthetases from different 
sources were codon optimized, synthesized, and inserted 
into pBad33-Ptrc using gene synthesis and plasmid 
DNA preparation services (GenScript, Nanjing, China). 
The original promoter of pBad33 was replaced with the 
IPTG-induced trc promoter (pTrc99a source) to form 
pBad33-Ptrc. The plasmids were transformed into strains 
by electroporation.

Medium and culture conditions
Luria-Bertani medium with 10 g NaCl, 10 g tryptone, and 
5 g yeast extract per liter was used for the seed culture. 
Fermentation medium with 15.12 g Na2HPO4·12H2O, 3 g 
KH2PO4, 0.5  g NaCl, 1  g NH4Cl, 0.493  g MgSO4·7H2O, 
0.0111  g CaCl2, and 0.002  g vitamin B1 per liter was 
used for the shake flask culture. Ampicillin (100  mg/L) 
and chloramphenicol (34  mg/L) were added to ensure 
plasmid stability, and the seed was cultured at 37℃ 
and 220 rpm. A 2% (v/v) seed was added to shaker flask 
and cultured overnight. The shake flask was cultured at 
30℃ and 220 rpm and allowed to ferment for 60 h. For 
the substrate, 10 g/L glucose or xylose was added. IPTG 
(0.1 mM) was added at the beginning of the fermenta-
tion process to induce enzyme expression. All shake flask 
experiments were performed in triplicates.
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Fed-batch fermentation
The 5 L bioreactor experiment was performed according 
to previously described instrumentation and inoculation 
methods (Wu et al. 2023). The bioreactor medium con-
tained 50 g/L xylose and 5 g/L yeast extract. The culture 
temperature was maintained at 30  °C and the pH was 
maintained at 7.0 by using NH4OH (25%, v/v). Feeding 
was set at 36 h, and the xylose concentration was main-
tained at 50 g/L.

Analytical methods
Optical density was measured at 600 nm. The concentra-
tions of glucose, xylose, and lactate were measured using 
high-performance liquid chromatography (HPLC) (LC-
20 A, Shimadzu, Japan) with a refractive index detector 
(RID-20  A, Shimadzu, Japan) and cation exchange col-
umn (HPX-87  H, Bio-Rad, United States). The detector 
temperature was 45℃ and the column temperature was 
65℃. For the mobile phase, 5 mM H2SO4 was used at a 
flow rate of 0.6 mL/min. The intracellular polymer con-
tent and fraction of lactate in the copolymer after 60  h 
were determined using a previously described method 
(Wu et al. 2021, 2023).

Results and discussion
Selecting and applying CoA transferases and synthetases 
for P(LA-co-3HB) production
The Pct from C. necator was not considered a good 
choice because of its poor specificity (Lindenkamp et 
al. 2013; Volodina et al. 2014). The catalytic efficiency 
(kcat/Km) of the CoA transferase from Megasphaera sp. 
DISK 18 was lower than that of cotAl and cotBb (Zhang et 
al. 2019). Thus, cotAl, cotBb, and ydiF were selected, which 
are all members of the OXCT1 family (Hackmann 2022) 
of CoA transferases. We also selected other enzymes, 
including cotDm, cotSe, and cotSc. With the exception of 
cotSc, which has DXGXXG and GXGG(A/F) motifs, all of 
the other selected enzymes contain the highly conserved 
EXGXXG and GXGG(A/F) sequence motifs (Fig. S1) 
(Rangarajan et al. 2005). The identical sequence motifs 
show that these six enzymes belong to the same enzyme 

family, indicating the possibility of the latter three (cotDm, 
cotSe, and cotSc) catalyzing lactate.

In addition, several CoA synthetases were selected 
based on their ability to catalyze the production of 
short-chain fatty acids (acetate, propionate, and butyr-
ate) (Yoshimura et al. 2017). It has been speculated 
that the active pocket of these enzymes accepts lactate 
(2-hydroxypropionate) to generate lactyl-CoA. Com-
pared to acyl-CoA synthetase short-chain (ACSS) fam-
ily members ACSS1 and ACSS2, the preferred substrate 
of ACSS3 is propionate (Yoshimura et al. 2017). Thus, 
ACSS3Mm (Wang et al. 2024) and ACSS3Hs, which is 
89.50% identical to ACSS3Mm (Fig. S2), were selected. 
Acetoacetate is the simplest 3-ketoacid, and cosPa, which 
uses acetoacetate as a substrate, may catalyze lactate. 
Therefore, the effect of cosPa was also tested. Previ-
ous studies have shown that propionyl-CoA synthetase 
(prpE) from E. coli cannot catalyze the conversion of lac-
tate to lactyl-CoA (data not shown). However, the effect 
of medium-chain fatty acid CoA synthetase (fadK) from 
E. coli, which prefers C6-C8 chain fatty acid substrates 
(Morgan-Kiss and Cronan 2004), was tested as well as 
cosSf, which is 97.35% identical to fadK (Fig. S3).

The pre-constructed plasmids (Fig.  1A) were trans-
formed into E. coli and pct540Ap was used as a control 
to verify the effect of the selected 11 enzymes. Results 
of MG1655-01–12 using glucose are shown in Fig.  1B 
and C. Only cotAl and cotBb added the lactate fraction to 
the polymer, which produced 69.00 wt% P(13.88  mol% 
LA-co-3HB) and 69.35 wt% P(8.12  mol% LA-co-3HB) 
respectively. Of these, only the effect of cotAl was bet-
ter than that of pct540Ap [69.65 wt% P(10.55  mol% 
LA-co-3HB)].

Although cotAl and cotBb had better kcat/Km values than 
that of pct540Ap (Zhang et al. 2019), cotBb did not dem-
onstrate an advantage in the copolymer biosynthesis sys-
tem. These results may be due to the differences in the in 
vitro and in vivo activities of these enzymes. The applica-
tion of cotAl increased the lactate concentration (Fig. 1E), 
indicating that the large flux of cotAl drives the carbon 
flow toward lactate, thereby producing a copolymer 

Table 1  Molecular weights and mechanical properties of P(LA-co-3HB)s with various LA fractions (Yamada et al. 2011)
Monomer composition 
(mol%)

Molecular weightsa Mechanical properties

LA 3HB Mw (×10− 4) Mw/Mn Tensile strength (MPa) Young’s modulus (MPa) Elongation at break (%)
0 100 70 2.3 19 ± 1 1079 ± 215 9 ± 1
4 96 74 4.6 30 ± 4 905 ± 136 7 ± 1
15 85 82 2.4 10 ± 0 194 ± 5 75 ± 2
29 71 9 2.2 7 ± 7 154 ± 5 156 ± 34
40 60 7 3.5 6 ± 0 148 ± 10 64 ± 7
47 53 7 2.3 7 ± 2 153 ± 15 84 ± 20
100 0 20 52 ± 2 1020 2
a Mw, weight-averaged molecular weight; Mw/Mn; polydispersity
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containing a higher lactate fraction. The glucose con-
sumption rate of MG1655-02 increased slightly (Fig. 1D), 
possibly because the increased lactate overflow enahnced 
carbon source utilization  (Wei et al. 2021). The protein 
structures of pct540Ap and cotAl are highly similar (Fig. 
S4), confirming the ability of cotAl to catalyze the conver-
sion of lactate into lactyl-CoA. Therefore, a copolymer 
biosynthesis system containing cotAl was the starting 
point for subsequent research.

Xylose enhances the lactate fraction in the P(LA-co-3HB) 
copolymer
Compared to glucose, xylose utilization enhanced the 
lactate fraction in the copolymer (Nduko et al. 2013; 
Wu et al. 2023). When xylose was used, MG1655-02 
produced 76.03 wt% P(30.42  mol% LA-co-3HB) with a 
significantly higher lactate fraction compared to that of 
glucose (Fig. 2A and E).

The final optical density of MG1655-02 using xylose 
was lower than that of MG1655-02 using glucose 
(Fig.  2B), which is consistent with the slower substrate 
consumption rate of xylose (Fig. 2C). This phenomenon 
has been observed in a previous study (Wu et al. 2023) 
and may be caused by lower energy production and 
higher CO2 release from xylose metabolism (Gonzalez 
et al. 2017). Although the total production of NADH 
and NADPH was similar for both sugars, the xylose 

utilization pathway via the pentose phosphate pathway 
and the greater tricarboxylic acid (TCA) cycle flux of 
xylose caused xylose to produce NADH and NADPH at a 
different production source ratio than glucose (Gonzalez 
et al. 2017), which may explain why the copolymer pro-
duced from xylose contained a higher lactate fraction.

Blocking the D-lactate degradation pathway improves the 
lactate fraction in the P(LA-co-3HB) copolymer
In E. coli, quinone-dependent D-lactate dehydrogenase 
(dld) converts D-lactate into pyruvate (Fig. 3A) (Dym et 
al. 2000). It is believed that knocking out dld causes the 
accumulation of lactate and the formation of more lac-
tyl-CoA, thereby enhancing the lactate fraction in the 
copolymer (Choi et al. 2016; Lu et al. 2019; Nduko et al. 
2014; Wei et al. 2021; Wu et al. 2021). WXJ01-02 pro-
duced 64.38 wt% P(32.08 mol% LA-co-3HB) from glucose 
and 59.93 wt% P(52.84  mol% LA-co-3HB) from xylose 
(Fig. 3E).

Xylose was found to be better than glucose as carbon 
sources for P(LA-co-3HB) biosynthesis. The final opti-
cal density of glucose was still higher than that of xylose 
(Fig.  3B), which is similar to the results in the previous 
section (Fig.  2B). Both sugars were utilized at slightly 
faster rates (Figs.  2C and 3C). The increase in carbon 
source utilization may be due to the fact that lactate can-
not enter the TCA cycle via pyruvate after lactate reflux 

Fig. 1  P(LA-co-3HB) biosynthesis of MG1655 using CoA transferases and synthetases from different sources with 10 g/L glucose. A, the schematic dia-
grams of 3-hydroxybutyrate-CoA and copolymer synthesis module and lactyl-CoA synthesis module [the red-labeled enzymes in pBad33-Ptrc can ef-
ficiently provide lactyl-CoA required for P(LA-co-3HB) biosynthesis]; B, the optical density at 60 h; C, the P(LA-co-3HB) content and the lactate fraction; D, 
the glucose consumption; E, the lactate production
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Fig. 2  P(LA-co-3HB) biosynthesis of MG1655-02 with 10 g/L glucose or xylose. A, the metabolic pathway of P(LA-co-3HB) biosynthesis from glucose or 
xylose (solid lines represent reactions, blank circles represent compounds, and dotted lines connect same compounds at both ends); B, the optical den-
sity; C, the substrate consumption; D, the lactate production; E, the P(LA-co-3HB) content and the lactate fraction
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is blocked  (Wei et al. 2021). The lactate concentration 
peaked at 24  h (Fig.  3D) and was significantly higher 
compared to that without dld deletion (Fig.  2D), which 
explains why the lactate fraction in the copolymer was 
significantly enhanced with dld deletion.

We explored the effects of dld deletion on cell metabo-
lism and physiology without introducing the copolymer 
synthesis module. The dld deletion only significantly 
increased lactate production without affecting cell 
growth, substrate consumption, and acetate production 

(Fig. S5A-H). This further demonstrates that dld deletion 
is an effective strategy to increase the lactate fraction in 
the copolymer. Environmental acidification caused by 
a high acetate concentration and the toxicity of acetate 
(Chun et al. 2014) inhibited cell metabolism (Fig. S5B and 
D). The introduction of the copolymer synthesis mod-
ule can significantly pull the carbon flow toward lactate 
(Fig. 3D and Fig. S5C and G).

Fig. 3  P(LA-co-3HB) biosynthesis of WXJ01-02 with 10 g/L glucose or xylose. A, the schematic diagram of the intracellular conversion of D-lactate and 
pyruvate; B, the optical density; C, the substrate consumption; D, the lactate production; E, the P(LA-co-3HB) content and the lactate fraction
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P(LA-co-3HB) biosynthesis using the bioreactor
The effects of MG1655-02 and WXJ01-02 were scaled 
up in a 5  L bioreactor. The two strains eventually pro-
duced 74.14 wt% P(33.73  mol% LA-co-3HB) and 60.60 
wt% P(46.40  mol% LA-co-3HB) respectively, and their 
polymer contents reached a stable level at 36 h (Fig. 4B 
and D), which indicates that xylose did not flow into the 
copolymer after feeding.

MG1655-02 consumed all xylose at 72  h, whereas 
WXJ01-02 had 28.15 g/L of xylose remaining (Fig. 4A and 
C). However, the optical densities ​​of both strains were 
similar (Fig. 4B and D), indicating that xylose did not flow 
into the biomass after feeding. No obvious byproducts 
except lactate and acetate were detected using HPLC. 
However, MG1655-02 produced more bubbles than 
WXJ01-02 after feeding during fermentation, indicat-
ing that MG1655-02 converted xylose into gas (possibly 
CO2 or H2). WXJ01-02 converted xylose into lactate and 
acetate (Fig.  4C). In contrast to the results obtained in 
the shake flask (Figs. 2C and 3C), the xylose consumption 
rate of WXJ01-02 was much lower than that of MG1655-
02 (Fig.  4A and C). This may be because a high lactate 

concentration is toxic to cells (Chun et al. 2014), thus 
affecting the metabolism of WXJ01-02. At 48 h, MG1655-
02 showed obvious consumption of lactate (no flow into 
the copolymer) and acetate, and this process began with 
the massive consumption of xylose (Fig.  4A), indicat-
ing the existence of a non-strict hierarchical carbon 
utilization (Okano et al. 2021). The polymer content of 
MG1655-02 was higher than that of WXJ01-02, whereas 
the lactate fraction of MG1655-02 was lower than that of 
WXJ01-02 (Fig.  4B and D). The incorporation of lactyl-
CoA in the polymer chain leads to premature termina-
tion of the polymer chain (Matsumoto et al. 2018); thus, 
the higher the lactate fraction, the lower the polymer 
content. The lactate fraction of WXJ01-02 increased over 
time. However, the polymer content did not change sig-
nificantly (Fig. 4D), indicating that the produced polymer 
was not uniform. When the lactate concentration was 
low, a polymer with a low lactate fraction was produced. 
When the lactate concentration was high, a polymer with 
a high lactate fraction was produced. Without affecting 
the polymer content, the bioreactor increased the lactate 
fraction of MG1655-02 but decreased the lactate fraction 

Fig. 4  P(LA-co-3HB) biosynthesis of MG1655-02 and WXJ01-02 with 10 g/L xylose in a 5 L bioreactor. A, the xylose consumption and the lactate and the 
acetate production of MG1655-02; B, the optical density, the P(LA-co-3HB) content, and the lactate fraction of MG1655-02; C, the xylose consumption and 
the lactate and the acetate production of WXJ01-02; D, the optical density, the P(LA-co-3HB) content, and the lactate fraction of WXJ01-02
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of WXJ01-02. The decreased lactate fraction may be due 
to the toxicity of lactate and influenced by the lactyl-CoA 
concentration. Therefore, the lactate concentration in the 
bioreactor should be strictly controlled.

Conclusions
Among the selected 11 enzymes, cotAl and cotBb sup-
ported P(LA-co-3HB) production. Compared with 
pct540Ap, cotAl performed better in the copolymer bio-
synthesis system. Xylose was a more favorable carbon 
source than glucose. Knockout of dld further enhanced 
the lactate fraction. Ultimately, 59.93 wt% P(52.84 mol% 
LA-co-3HB) was produced in a shake flask. Furthermore, 
when a 5 L bioreactor was used for fermentation utiliz-
ing xylose as a carbon source, the engineered strain pro-
duced 60.60 wt% P(46.40 mol% LA-co-3HB). The results 
indicate that the application of new CoA transferases has 
great potential for the biosynthesis of other lactate-based 
copolymers.
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