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Abstract

Despite breakthroughs in the development of cancer diagnosis and therapy, most current therapeutic approaches
lack precise specificity and sensitivity, resulting in damage to healthy cells. Selective delivery of anti-cancer agents

is thus an important goal of cancer therapy. Scorpion venom (SV) and/or body parts have been used since early civili-
zations for medicinal purposes, and in cultures, SV is still applied to the treatment of several diseases including cancer.
SV contains numerous active micro and macromolecules with diverse pharmacological effects. These include potent
anti-microbial, anti-viral, anti-inflammatory, and anti-cancer properties. This review focuses on the recent advances

of SV-derived peptides as promising anti-cancer agents and their diagnostic and therapeutic potential applications

in cancers such as glioma, breast cancer, prostate cancer, and colon cancer. Well-characterized SV-derived peptides
are thus needed to serve as potent and selective adjuvant therapy for cancer, to significantly enhance the patients’
survival and wellbeing.

Keywords SV-derived peptides, Anticancer agents, Cancer therapy, Drug development, Drug discovery, Peptide
therapeutics

*Correspondence:

Nagwa El-Badri

nelbadri@zewailcity.edu.eg

Full list of author information is available at the end of the article

. ©The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
@ SPrlnge]_‘ O pe n permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
— original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http//creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40643-024-00805-0&domain=pdf

El-Qassas et al. Bioresources and Bioprocessing (2024) 11:93

Page 2 of 23

Graphical abstract

I SV or/ SVPs target key steps in cancer progression

Scorpion

Anticancer peptides ¥ "Q ‘
pep! g

- sihat .@ P
o -

Inhibit tumor growth Induce DNA damage Inkibit angiogeneziz

(" Activity )
Scorpion venom (SV) \ * A
J
v
7
MIDOT

Ameliorate reziztance to

Introduction

Scorpions are the most dangerous predators among the
Arachnids class (Ruiming et al. 2010) as shown in Fig. 1a.
Figure 1b shows that scorpions are easily recognized by
their characteristic elongated body, which is divided
into an anterior region (prosoma), middle region (meso-
soma), and posterior region (metasoma). Scorpions pos-
sess a specialized venom apparatus composed of a pair of

venom glands connected by ducts to the aculeus at the
tip of the telson on their posterior end, which produce
venom for both offense and defense (Simone et al. 2021).
Scorpions are terrestrial arthropods, that live mainly in
deserts and can be adapted to a wide range of environ-
mental terrains including caves, savannas, rain forests,
and subtropical as well as tropical forests (Ruiming et al.
2010). They are classified phylogenetically into about 22
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El-Qassas et al. Bioresources and Bioprocessing (2024) 11:93

distinct families including over 2500 different species and
subspecies. At least 25 species (fewer than 1%) are con-
sidered poisonous to humans (Ahmadi et al. 2020). The
Buthidae family members contain many fatal scorpions
(more than 70 genera and 770 species) represented by the
following genera Androctonus, Buthus, Leiurus, Mesobu-
thus, and Parabuthus (Soleglad et al. 2003).

Pathological effects of scorpion venom

According to global public health data, about one mil-
lion scorpion envenoming are recorded annually world-
wide, resulting in approximately 3000 deaths (Ward
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Fig. 2 Clinical signs and symptoms of mild, oderate, and severe
scorpion stings
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et al. 2018). The pathology of scorpion stings ranges
from mild local inflammatory reactions (Cupo 2015)
to moderate and severe envenoming causing heart fail-
ure, pulmonary edema, and pancreatitis, which may
provoke lethal systemic responses, Fig. 2 (Pucca et al.
2016).

Despite the mortality associated with their stings,
scorpions have been the target of much research inter-
est due to their observed medicinal benefits and a wide
range of pharmaceutical activities. Both crude SV and
its derived proteins and peptides were used in appli-
cations ranging from cosmeceuticals and diagnostics
to treatment of various ailments of the cardiovascular
system, convulsions, cancer (Ahmadi et al. 2020; Srairi-
Abid et al. 2019). Because of the lethality of scorpion
toxins, the challenges associated with collecting the
toxins, and the small amount of venom obtained from
scorpions, marketing SV products for large-scale appli-
cations has been limited. Nevertheless, several toxin-
based drugs have been approved and marketed over the
last decade (Bordon et al. 2020). Of special importance
is chlorotoxin (CTX) which showed remarkable target-
specific activities in cancer patients (Wang et al. 2019).
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Classification and biochemical profile of scorpion
toxins

Scorpions employ their paralytic and lethal venom for
defense and prey capture (Possani et al. 2000), although it
has also been reported to be used during mating (Inceo-
glu et al. 2006). Scorpion toxins are classified based on
the peptide length, receptor, or ion channel molecules to
which the toxin specifically binds (Ca™, Na*, CI"}, and
K™). They can be also classified based on induced recep-
tor response (activation/blocking) and the toxin’s three-
dimensional structure (DeBin et al. 1993; Dueiias-Cuellar
et al. 2020; Mendes et al. 2023), Fig. 3. SV is composed of
more than 500 different components including peptides
that present promising sources for new pharmaceuticals,
as shown in Figs. (2—-6) and (2-7) (Uzair et al. 2018). Neu-
rotoxic peptides in SV are responsible for the main path-
ological manifestations of envenoming. These include
hyaluronidases, phospholipases, serotonin, histamine,
sphingomyelinases (Cordeiro et al. 2015), acetylcho-
linesterase, alkaline phosphatases, proteolytic enzymes,
enzyme inhibitors, mucopolysaccharides, low-molecu-
lar-weight peptides (3—10 kDa), mucoproteins, and oli-
gopeptides. SV harbors potent neurotoxic peptides that
specifically target ion channels in the nervous system
that are crucial for nerve signaling, leading to paralysis
(Mendes et al. 2023). Neurotoxins binding to ion chan-
nels on cell membranes cause various effects by blocking
nerve impulses and modulating cell function leading to
excessive stimulation or cell death (Mendes et al. 2023).

SV in traditional medicine

The long-established tradition of using scorpion bod-
ies and their venoms to treat ailments was reported in
diverse parts of China, India, and Africa and was espe-
cially popular in Spanish folk medicine (Goudet et al.
2002). In traditional Chinese medicine, whole scorpions
of the Buthus martensii karsch (Bmk) species have been
used as a painkiller and to treat chronic inflammatory
arthritis, spasms, convulsions, and spondylitis “Scorpio-
analgesia” (Chen et al. 2022). The dry scorpion body
contains components such as Makatoxin-3 which was
shown to have significant pain-relieving effects (Chen
et al. 2022). The venom of Mesobuthus martensii spe-
cies, which is abundant in Eastern Asia was effectively
used to treat chronic pain, rheumatoid arthritis, epi-
lepsy, and apoplexy (Ahmadi et al. 2020; Monge-Fuentes
et al. 2015). Interestingly, SV itself can be a source of
antivenom. For instance, in Sudan, scorpion stings are
treated by processed or diluted SV, or by immersing the
whole scorpion body in sesame oil and applying this infu-
sion to the site of the sting (Cloudsley-Thompson 1993).
Traditional medicine practices have explored SV for a
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wider range of ailments, including cancer, infections,
malaria, and immune disorders (Ling et al. 2019). Stud-
ies from traditional Chinese medicine showed that SV
contained anti-cancer ingredients. For example, peptides
purified from the Chinese scorpion Buthus martensii
karsch (Bmk) (Jia et al. 2024; Shao et al. 2014), which a
history back to the Song Dynasty of China (960-1279
AD) and well known as having potential on epileptic
(Zhou et al. 1989), analgesic (Shao et al. 2014), rheumatic
and cancer. Bmk displayed dose-dependent effects on
MCE-7 cells and anti-proliferative effects on a panel of
cancer cell lines (Gao et al. 2010). BmK prevented human
lymphoma cells (Jurkat and Raji) growth and arrested
the cell cycle at the GO/G1 phase triggering apoptosis
(Heinen et al. 2011). Many of these studies however lack
appropriate risk aversion, as improper preparation or use
can lead to precarious outcomes and use can be danger-
ous and result in significant side effects. Deviation from
recommended temperature or dosage protocols was also
reported to cause unexpected adverse effects (Ahmadi
et al. 2020). These include local reactions in the form of
pain, swelling, redness, and itching, allergic reactions,
and muscle tissue damage (muscle necrosis) caused by
myotoxins in the SV (Ahmadi et al. 2020). Resurgent
interest in SV and SVPs as remedies for cancer however
is fuelled by the increasing spread of the disease and
inadequate current therapy.

SV: a natural compound with biological properties
and a range of applications in cancer research

and drug discovery

Biological properties of SV and their derived peptides
Anti-microbial activity

SV and their peptides have been shown to exert a mul-
titude of therapeutic effects, as shown in Fig. 4, because
of their specific binding affinity to ion channels (Mendes
et al. 2023; Quintero-Hernéndez et al. 2013) such as chlo-
ride (Lippens et al. 1995), potassium (Giangiacomo et al.
2004), and sodium (Possani et al. 2000). A significant
number of non-disulfide-bridged peptides (NDBPs) from
SV have demonstrated anti-bacterial properties (Table 1).
For example, BmTXKS-2, a peptide purified from Buthus
martensii triggered an antibacterial activity against N.
gonorrhoeaes (Shao et al. 2014). Smp-24 (2578 Da) and
Smp-43 (4654.3 Da), isolated from Scorpio maurus pal-
matus, demonstrated anti-bacterial activity that was spe-
cifically effective against Gram-positive bacteria, albeit of
limited activity against C. albicans (Harrison et al. 2016).
Among 11 scorpion venom-derive non-disulfide-bridged
peptides, ToAP-1, ToAP-2, and ToAP-3 purified from
T. obscuru showed effectiveness against human patho-
gens Cryptococcus neoformans and Candida spp. (Guil-
helmelli et al. 2016). SV-derived peptides have shown
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Fig. 4 Biological properties of scorpion venom

inhibitory effects on various bacteria (Symeonidou et al.
2018). SV peptides such as A. Aeneas and T. stigmurus
were reported to inhibit the viral infection spread (Kraw-
czyk et al. 2013; Thakur et al. 2012), while others dis-
played anti-fungal properties (Table 2).

Immunosuppressive activity of SV-derived peptides

Immune cells, similar to cancer cells, express voltage-
gated potassium channels (KV) designed to control
various physiological functions and immunological
responses (Petricevich 2004). In immune cells, charged
ions inserted within the hydrophobic membrane pores
through ion channels help in the regulation of negative
membrane potential (Vm), which indirectly controls Ca*?
ion influx and immune cell signaling/activation (Feske
et al. 2015). One specific example is the KV1.3 potassium
channel in T Helper 17 (Th17) cells, known to be a criti-
cal regulator of autoimmune disorders by controlling cal-
cium ion influx (Zhao et al. 2015). Neurotoxic substances
in SV were reported to directly and indirectly modulate
voltage-gated Na™, K*, and Ca™ ion channels (Quintero-
Herndndez et al. 2013). SV and its peptides interact with
potassium channels and preferentially trigger KV1.3 to
modulate channel expression and plasma membrane
activity (Zhao et al. 2015). Studies on SV-derived pep-
tides with immunosuppression activity that target ion
channels and their clinical importance (Al-Asmari et al.

2018b; Jacoby et al. 2010; Kampo et al. 2019; Song et al.
2012) are summarized in Table 3.

Anti-cancer activity of SV peptides

Cancer cells have been shown to use ion channels (Mikae-
lian et al. 2020) in their progression and metastasis, as
shown in Fig. 5, via the modification in the cell volume
and morphology (Capatina et al. 2022). For instance, in
glioma, CI™ and K" ions cause electrochemical efflux
mediated by intracellular Ca*? ion increase resulting
in tumor shrinkage (McFerrin et al. 2006; Sontheimer
2008). In breast cancer, the Ca™? channels’s deactivation
was reported to prevent tumor growth and proliferation
(Aydar et al. 2009). Similarly, CI~ channels were dysregu-
lated in human colorectal cancer (Bustin et al. 2001), and
modified in glioma to regulate the migration and invasion
of cancer cells (Ullrich et al. 1996). Voltage-gated potas-
sium channels-Kv and/or calcium-activated potassium
channels-KCa and their subtypes were shown to be over-
expressed or dysregulated in multiple cancers including
glioblastoma (Griffin et al. 2020), breast (Northcott et al.
2012), colon, and prostate cancer (Comes et al. 2013) and
lymphoma (Comes et al. 2015). Other studies showed
that voltage-gated sodium channels (VGSCs) Navl.5,
Navl.6, and Navl.7 were also over-expressed in many
cancers like breast cancer, colon cancer, cervical cancer,
prostate cancer, and lung cancer. This overexpression
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Table 2 SV-derived peptides with anti-fungal activities
Peptide/venom Sequence Species Dose Anti-fungal activities Reference
against
Ts-1 (8300 Da) KEGYLMDHEGCKLS- T serrulatus — (1.5,3 and 6 pg/well, Inhibited the fungal (Santussi et al. 2017)
CFIRPSGYCGRECGIK- which correspond to 2.18, growth of A. nidulans
KGSSGYCAWPACYCYG 4.36,and 8.72 uM, respec-
LPNWVKVWDRATNKC tively)
StigA-16 (1949 Da) FFKLIPKLVKGLISAFK T stigmurus ~ 1.17-9.38 uM Inhibited fungal growth  (Parente et al. 2018)
of C. albicans, C. glabrata
and C krusei
ToAcP EEDDLLGFSEEDLKAIKEH- T obscurus 12.5 uM Reduced the viability (Guilhelmelli et al. 2016)
RAKNA-NH, of Candida sp. as well
as Cryptococcus neofor-
man
ToAP-2 FFGTLFKLGSKLIPGYMKLF- T obscurus 12.5 uM Reduced the viability (Guilhelmelli et al. 2016)
SKKKER of Candida sp. as well
as Cryptococcus neofor-
man
Serrulin (3564 Da) GFGGGRGGFGGGRGG T serrulatus 12-24 ug/mL (3-6 M) Reduced the growth of A, (de Jesus Oliveira et al.

ToAP-3

AaeAP-1(2016.18 Da)

AaeAP-2 (1986.15 Da)

StigA-6 (1908 Da)

ToAP-1

ToAP-4

Hypotensin/or TistH

(2700 Da)

Stigmurin (1795.22 Da)

FGGGGI-GGGGFGGGYGG

GKIKG

FIGMIPGLIGGLISAIK-NH,

FLFSLIPSVIAGLVSAIRNa

FLFSLIPSAIAGLVSAIRNa

FFSLIPKLVKGLISAFK

FIGMIPGLIGGLISAFK-NH,

FFSLIPSLIGGLVSAIK-NH,

ADMDFTGIAESIIKKIKET-

NAKPPA

FFSLIPSLVKGLISAFK

(hemolymph)

T.obscurus

A. aeneas

A. aeneas

T.stigmurus

T.obscurus

T. obscurus

T. stigmurus

T. stigmurus

for Aspergillus niger,
and 6-12 pg/mL
(1.5-3 uM) for Candida
albicans

25 uM for Candida sp,
and 100 uM for Cryptococ-
cus neoforman

32mag/L

1.17-37.5 uM

50 uM for Candida sp,
and 25 uM for Cryptococ-
cus neoforman

50 uM for Candida sp,
and 25 uM for Cryptococ-
cus neoforman

MIC 128 mg/mL

>150 M

niger and C. albicans

Reduced the viability
of Candida sp. as well
as Cryptococcus neofor-
man

Decreased four-fold
(16>4 mg/L) and eight-
fold (32>4 mg/L), respec-
tively against C. albicans

Decreased four-fold
(16>4 mg/L) and eight-
fold (32>4 mg/L), respec-
tively against C. albicans

Inhibited fungal growth
of C. albicans, C. glabrata
and C. krusei

Reduced the viability
of Candida sp. as well
as Cryptococcus neofor-
man

Reduced the viability
of Candida sp. as well
as Cryptococcus neofor-
man

Showed growth inhibi-
tion against C. albicans, C.
tropicalis and Aspergillus
fiflavus

Inhibited fungal growth
of C. albicans, C. glabrata
and C. krusei

2019)

(Guilhelmelli et al. 2016)

(Du et al. 2015)

(Du et al. 2015)

(Parente et al. 2018)

(Guilhelmelli et al. 2016)

(Guilhelmelli et al. 2016)

(Machado et al. 2016)

(de Melo et al. 2015)

displays as an important player in migration and invasion
and has a distinct role in nerve signal transmission (Bris-
son et al. 2013), and presents a selective target for potent
compounds with better-targeted drug delivery (Bordon
et al. 2020; Uzair et al. 2018). Among these compounds,
chlorotoxin (CTX) is a small venomous peptide (36 a.a.)

that was first isolated in 1993 from Leiurus quinques-
triatus yellow scorpion (L. quinquestriatus). CTX is best
known for its selective binding affinity to chloride chan-
nels on the surface of glioma cells (DeBin et al. 1993). It
disrupts the cancer cell’s ability to invade surrounding
tissue by blocking the influx of chloride ions, which are
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Scorpion Venom (SV)

Chemical composition

l Multitherapeutic action in various cancer

Neurotoxic
peptides

Protease
inhibitor

Inorganic
salts

Phospholipases

Hyaluronidase

=,

Peptide
releasing
histamine

Enzymatic
proteins

l

1- Inhibits the proliferation in cancer cells.
2- Induces cell cycle arrest in cancer cells.

3- Induces cell death in cancer.

l

4- Modulates or blocks ion channels.
5- Inhibits invasion & metastasis in cancer cells.

6- Inhibits angiogenesis in cancer cells.

Fig. 5 Chemical profiles of SV representing the multi-therapeutical actions of SVs and their peptides in various cancers

essential for changes in cell shape and volume required
for cell invasion (Deshane et al. 2003; McFerrin et al.
2006; Soroceanu et al. 1999). Notably, this effect appears
to be specific to glioma cells and has not been observed
in healthy cells (DeBin et al. 1993). Binding CTX to Cy5.5
fluorescence dye (CTX-Cy5.5 conjugated tumor-targeting
peptide) enabled visualization of the tumor site (Veiseh
et al. 2007) and facilitated precise surgery and targeted
therapy without damaging healthy cells (Boltman et al.
2023). CTX conjugated with nanoparticles was shown
to be effective in depositing drugs at specific tumor sites
(Fu, Y. et al. 2012). CTX was conjugated with Iron oxide
nanoparticles and targeting ligands, all connected via
a polyethylene glycol (PEG) linker. This design facili-
tated preferential accumulation and enhanced cytotox-
icity in glioblastoma and neuroblastoma cells (Boltman
et al. 2023). CTX-conjugated with magnetic nano chains
could target non-small-cell lung cancer A549 cells, lead-
ing to the release of free radicals and the production of
reactive oxygen products (ROS). As a result, a significant
increase in cancer cytotoxicity and a halt in tumor pro-
gression was observed when compared to CTX treatment
alone (Zhao et al. 2011). SVPs products including CTX
toxins (Wang et al. 2019) further their anticancer effect
by altering molecular targets in cancer cells (Desales-
Salazar et al. 2020), penetrating the cell membrane of the
tumor cells (Veiseh et al. 2007), and attaching to other
drug carriers for drug delivery (Chung et al. 2023), such

as nanoparticles (Chung et al. 2023), liposomes (Li et al.
2021), and oligonucleotides (Chen et al. 2020).

Tumors of the nervous system

Odontobuthus doriae’s venom was reported to induce
swelling and rupture of the neuroblastoma cell mem-
brane and increase the release of cytosolic materials
(Zargan et al. 2011b). SV-treated neuroblastoma cells
exhibited an increase in lactate dehydrogenase (LDH),
compromised cell viability, and up-regulation of caspase
3 leading to DNA damage, inhibited DNA synthesis,
apoptosis, and necrosis. Bmk -peptide (Bmk-CTx) from
Buthus martensii Karsch-Bmk upregulated tumor sup-
pressor p53 protein in human glioblastoma U87-MG
cells in vitro, as shown in Table 4 (Wu, S. et al. 2018),
and in vivo study by xenografting U251-MG tumor in
SCID mouse models Table 5. Notably, p53 protein was
increased after Bmk -peptide treatment.

Glioblastoma or astrocytoma-IV is the most uncon-
trolled type of primary brain cancer (Minniti et al. 2021).
Current therapies entail surgical resection, radiotherapy,
and chemotherapy; however, the mortality rate remains
high. The post-diagnostic survival of less than 15 months
is due to neoplastic cells’ migration to surrounding brain
tissues (Tewarie et al. 2021), and chemotherapeutic
resistance to drugs such as temozolomide (TMZ) (Jiapaer
et al. 2018). CTX, purified from Leiurus quinquestria-
tus was found to specifically bind to glioma cells (Jacoby
et al. 2010) sparing healthy cells (Lyons et al. 2002). It
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acted by preventing Cl™! ions inflow across glioma cell
membranes by blocking small-conductance CI™! chan-
nels (Soroceanu et al. 1998, 1999).

CITx was reported to target human D54-MG and CCF-
STTG-1 glioma cells and prevent metastasis (Deshane
et al. 2003; McFerrin et al. 2006). Invasion of glioma
cells requires Cl™ ions inflow through the cell membrane
(Soroceanu et al. 1999) and MMPs activation (Sawaya
et al. 1996). CITx was found to selectively bind to glioma
cel-MMP-2, but not to normal glial cells, forming a
CITx-MMP-2 complex (Deshane et al. 2003). This results
in MMP-2 deactivation and reduction in the gelatinase
activity of the glioma cell membrane, leading to inhibi-
tion of glioma cell invasion into the surrounding brain
tissues (Soroceanu et al. 1999). In vitro studies confirmed
that ClTx reduced glioma cell migration by MMP-2
deactivation and reduction in CI~ ions expression, thus
preventing glioma cells from shrinking and migration
(Dardevet et al. 2015). CITx can also serve as a glioma-
specific marker or “tumor paint” by conjugating with
fluorescent dye to delineate the tumor boundaries and
facilitate their surgical removal (Veiseh et al. 2007). Simi-
larly, TM-601, a synthetic product of CITx, retarded the
growth of U87-MG glioblastoma cells (Veiseh et al. 2007)
and reduced angiogenesis in chick and mouse mod-
els through the suppression of both vascular endothe-
lial growth factor (VEGF) and platelet-derived growth
factor (PDGF) signaling pathways (Jacoby et al. 2010).
Iodine-131 radio-labelled CITx peptide (**'I-TM601,
BI_CITx) was retained in patients with recurrent glio-
blastoma for up to 8 days after administration (Wu, X.
S. et al. 2010). Experiments using '*I- and (**'I)-labelled
CTX injected into SCID mice bearing xenografted glio-
mas showed its specific affinity to glioma, and not nor-
mal, thus serving as glioma-specific markers (Soroceanu
et al. 1998).

Bmk peptide, another SV-derived Cl™ channel inhibi-
tor, was reported to inhibit human glioma SHG-44 cell
growth and proliferation at 29 times lower concentration
than that needed to inhibit normal astrocytes (Fu, Y. J.
et al. 2007).

In an in vivo study, Bmk was bound to MMP-2 and
inhibited the glioma C6 cells migration and invasion in
rats via MMP-2 blockage (Fu, Y. J. et al. 2011; Fu, Y. J.
et al. 2007). Bmk -AGAP is a long-chain neurotoxin with
7142 Da and 66 a.a. that is specific to the Na* channel.
It was shown to suppress glioma cell growth by apopto-
sis induction. Iberiotoxin-IbTx peptide (37 a.a.) purified
from Mesobuthus tumulus with about 68% sequence sim-
ilarity to charybdotoxin-ChTX, was reported to selectiv-
ity bind to BK channel (Ortiz et al. 2015). IbTx inhibited
cell growth of human 1321N1 astrocytoma cells (Oua-
did-Ahidouch et al. 2004), and caused S phase halt and
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apoptosis induction in glioma cells (Griffin et al. 2020).
Notably, IbTx inhibited the growth of HeLa cell and
human ovarian cancer (A2780) cell lines (Mikaelian et al.
2020), and in hormone-dependent cancers like breast,
prostate, ovarian, and cervix cancers, IbTx peptide inhib-
ited cancer development and growth via inhibition of
calcium-activated potassium channels (KCNMA1) (Oeg-
gerli et al. 2012; Ramirez et al. 2018). Another peptide,
AaCitx is the first CTX-like peptide isolated from Androc-
tonus australis scorpion venom. Its amino acid sequence
shares 70% similarity with CTX, from which it differs
by 12 amino acids. Due to its very low concentration in
venom (0.05%), AaCtx was chemically synthesized. Both
native and synthetic AaCtx were active on invasion and
migration of human glioma cells. However, their activity
was found to be lower than that of CTX. The molecular
model of AaCtx shows that most of amino acids differing
between AaCtx and CTX are localized on the N-terminal
loop and the a-helix. Based on known compounds that
block CI™! channels, it is suggested that the absence of
negative charged amino acids on AaCtx structure may be
responsible for its weak activity on glioma cells migration
and invasion. This finding serves as a starting point for
structure—function relationship studies leading to design
high specific anti-glioma drugs (Rjeibi et al. 2011).

Hematologic malignancies

In various hematopoietic malignancies including leu-
kemia, lymphoma, and multiple myeloma, SV and their
peptides were shown to modulate the NF-kB signaling
pathway that is accountable for cancer cell growth and
proliferation, and immune cell development and func-
tion, as shown in Table 4. (Escércega et al. 2007). Acti-
vation of the NF-kB signaling pathway by SV showed
selective binding to human leukemia Jurket cell line and
THP-I cells inducing apoptosis (Hayden et al. 2006). SV-
derived SVCIII peptides (70-80 kDa) showed promise as
an anti-cancer agent by selectively inhibiting the growth
and proliferation of human leukemia (THP-1 cells) and
lymphoma (Jurkat cells) cells, while having no effect
on healthy peripheral blood lymphocytes. The peptide
decreased cyclin D1 protein expression levels and led to
G1-phase cell cycle arrest. This was associated with the
deactivation of NF-kB signaling pathways through IxBa
phosphorylation, degradation blocking, and p65 nuclear
translocation (Song et al. 2012). In another study, Ben-
galin peptide purified from the Indian scorpion Heter-
ometrus bengalensis Koch (Hbk) exerted cytotoxicity to
K562 chronic myelogenous leukemia cells at ICy, values
of 4.1 mg/mL. It is also human-inhibited U937 histiocytic
lymphoma cells at 3.7 mg/mL without affecting healthy
lymphocytes, (Gupta et al. 2010). Bengalin-mediated
apoptosis was achieved by the intrinsic mitochondrial
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death pathway, sub-G1 phase cell cycle arrest, silencing
of telomerase activity, and DNA damage (Gupta et al.
2010).

Breast cancer
Breast cancer (BC) is one of the most pervasive cancers,
accounting for nearly 1 in 8 newly diagnosed cases world-
wide (Arnold et al. 2022). Hyaluronidase-BmHYA1 puri-
fied from Chinese red scorpion B. martensi was shown to
specifically inhibit hyaluronan activity in BC cells, with-
out observed toxic side effects (Feng et al. 2008). CITx
peptide from L. quinquestriatus scorpion prevented the
growth of 4T1 cell line, obtained from the most meta-
static and aggressive BCs (Qin et al. 2014), as shown in
Table 4.R

Two novel peptides isolated from Tityus discrepans
(Neopladine-1 and Neopladine-2) displayed effectiveness
against SKBR3 BC cell line. Both peptides were shown
to selectively bind to SKBR3 cell membrane, causing
upregulation in BcL-2 and FasL expression in cancer cells
after less than 5 h. of exposure (Ding et al. 2014). Simi-
larly, peptides from Odontobuthus doriae venom induced
DNA damage and apoptosis in MCF-7 BC cells (Zargan
et al. 2011a, b, c). Another study reported the anti-can-
cer cytotoxic effect of SV-derived ICD-85 on both BC
cell lines (MDA-MB-231 and MCF-7), as well as HELA
HL-60 cancer cells, but not on normal human fibro-
blast MRC-5 cell line (Kheirandish Zarandi et al. 2019).
Recombinant Bmk-AGAP was also shown to be effec-
tive against cancer cells by selectively binding to voltage-
gated Na™ channels (Kampo et al. 2019).

rBmK AGAP peptide was reported to inhibit breast
cancer cell stemness, epithelial-mesenchymal transition
(EMT), migration, and invasion both in vitro and in vivo,
as shown in Tables 4 and 5. This inhibition was mediated
by down-regulating PTX3 through NF-kB and Wnt/p-
catenin signaling pathways, which may be due to selec-
tive binding to one of the voltage-gated- Na'-channel
subunits, Nav 1.5 (Kampo et al. 2019), which is over-
expressed in BC and has a role in its progression (Brack-
enbury 2012). Selective binding of rBmk-AGAP peptide
to Nav 1.5 caused its upregulation and led to an increase
in the pentraxin 3 (PTX3) mediator expression. This led
to the deactivation of tumor necrosis factor (TNF)-a and
modulation of the NF-kB pathway resulting in the pre-
venting of BC progression (Kampo et al. 2019). Intraperi-
toneal administration of 0.5 or 1 mg/kg of rBmk-AGAP
into mice bearing xenograft of MCF-7 or MDA-MB-231
cells led to EMT and inhibition of stem-like features in
both cell lines. This was achieved via down-regulation
of PTX3, N-cadherin, Snail-1, Oct4, Sox2, B-catenin,
pGSK3-B, Nav 1.5, and p65/NF-«B, and upregulation of
E-cadherin and GSK3- expression (Kampo et al. 2019).
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Compared to controls both tumor volume and weight
were significantly reduced in treated mice (Kampo et al.
2019). Another anti-cancer peptide (ANTP, 6280 Da),
purified from Buthus martensi karsch (Bmk) scorpion
showed cytotoxicity against cancer cells in mouse tumor
model with Ehrlich ascites, and in S-180 fibrosarcoma
mouse model (Liu et al. 2002).

Similarly, CTX was shown to inhibit breast cancer by
downregulating ERa expression levels, which suggests
that CTX might disrupt a key pathway involved in breast
cancer progression by interfering with the ERa signalling
pathway (Wang et al. 2019). CTX directly binds to ERa
and affects several globular a-helical folded structures
(H1-H12) in the specific secondary of Era, potentially
leading to altered biological functions of ERa (Wang
et al. 2019). Vasodilator-stimulated phosphoprotein
(VASP) which regulates cell movement (Carmona et al.
2016) was reported to be the target gene of the ER«a sig-
nalling pathway in the same study (Padilla-Rodriguez
et al. 2018). Furthermore, CTX acts as a direct modulator
of ERa function, potentially impacting its role in breast
cancer progression with no effect on normal cells (Wang
et al. 2019).

Lung adenocarcinoma

Lung cancer is classified into small-cell lung cancer
(SCLC) and non-small-cell lung carcinoma (NSCLC),
both of which are among the most cancer-leading deaths
worldwide with a low five-year survival rate (Lee et al.
2018). SV enzymes: acetylcholinesterase, alkaline phos-
phatase, phospholipase A2, and proteolytic enzymes with
gelatinolytic and cytotoxic effects were reported to cause
necrosis, hemolysis, and gangrene in lung cancerous cell
lines (Almeida et al. 2002). Treatment with proteases
from Mesobuthus gibbosus A caused remarkable toxicity
in human lung adenocarcinoma A549 cell lines (Pessini
et al. 2001). From Centruroides margaritatus species,
Margatoxin (MgTX) is a highly selective K* channel pep-
tidyl inhibitor with 39 amino acids (Helms et al. 1997).
MgTX showed significant inhibition of lung adenocarci-
noma cell (A549 cell) growth, Table 4, and halted tumor
growth in nude mice, Table 5 (Jang et al. 2011). In addi-
tion, MgTx peptide was tested to confirm its inhibitory
effect and the results showed that MgTx could induce
up-regulation of p21Wafl/Cipl protein expression and
downregulation of Cdk4 and cyclin D3 expression levels,
both via inhibition of KV1.3 ion channels (Shahzadi et al.
2021).

Cervical cancer

Cervical cancer is classified as the fourth most common
cancer type after BC in women worldwide (Jacobs et al.
2018). In 2016, a study found that the anti-microbial
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peptide (AMP), TistH purified from Tityus serrulatus SV
(TsV) showed a cytotoxic effect on SiHa primary uter-
ine cell line Table 4, without any toxic effect on normal
3T3 embryonic mouse fibroblast cell line (Machado et al.
2016). Another study showed that treatment with crude
venom of Tityus serrulatus scorpion (TsV) decreased
HeLa cell viability in a dose-dependent manner, and
increased caspase-mediated apoptosis of both SiHa
and HeLa human cervical carcinoma lines, (Bernardes-
Oliveira et al. 2019). An in vitro study demonstrated
the anti-proliferative effect of LMWSVP, a low molecu-
lar weight peptide purified from Bmk crude venom, on
SMMC7721 human hepatoma cells in a dose-dependent
manner. LMWSVP also increased the expression of cas-
pase-3 and decreased that of the anti-apoptotic protein
Bcl-2 (Li et al. 2014).

Melanoma (skin cancer)

Venom from the medically important scorpion Leiurus
quinquestriatus demonstrated promising anti-cancer
effects in mice. Treatment with this venom significantly
inhibited the growth and number of tumors induced
by DMBA and croton oil on mouse skin. Furthermore,
the venom reduced the expression of pro-inflammatory
cytokines and downregulated key molecular markers
associated with tumor development, including Ki-67,
nuclear factor kappa-B (NF-kB), cyclooxygenase-2 (COX-
2), B-cell lymphoma-2 (Bcl-2), and vascular endothelial
growth factor (VEGF) as revealed by immunohistochem-
istry analysis (Al Asmari and Khan 2016). A study dem-
onstrated that CTX specifically binds to gliomas and a
variety of peripheral tumors of neuroectodermal origin
(PNET), including melanoma. bCltx is a synthetic mol-
ecule that is biotinylated at the N-terminus which was
found to specifically bind to exhibit high binding affinity,
targeting 50% to 100% of the cells within melanoma tis-
sues (Lyons et al. 2002). Similarly, a study demonstrated
that TM-601 molecules, a synthetic peptide also have an
anti-cancer effect against SK-Mel melanoma, as shown in
Table 4 (Romo Vaquero et al. 2012).

Other cancers
Prostate cancer (PC) is the leading cancer in men world-
wide (Rizzo et al. 2022). PESV is 60 amino acid poly-
peptide derived from Buthus martensi Karsch (Bmk)
scorpion (Li et al. 2019). PESV showed cytotoxic activity
on hormone-refractory, androgen-independent PC cell
lines (Zhang et al. 2009). In mice, PEVS also inhibited
neovascularization and tumor growth in S180-sarcoma
and H22-hepatocellular carcinoma, as shown in Table 5
(Zhang et al. 2009).

In gastric cancer, Bmk venom was shown to decrease
the viability and inhibit the proliferation of NUGC-3
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human gastric cancer cells significantly at a dose of
5 mg/mL, Table 4. Treatment of NUGC-3 cells with
5 mg/ml Bmk venom for 24 h showed a 6% increase
in the sub-G1 cell cycle phase, a 9% increase in the
G1 phase, and an 11% decrease in the G2/M phase,
and increased cell apoptosis (Jian 2014). In oesopha-
geal cancer, a study demonstrated the cytotoxicity of
Heterometrus liangi scorpion venom against human
oesophageal cancer cell lines KYSE-510 cell lines led
to inducing cell death through apoptosis pathway, as
shown in Table 4.

Pancreatic cancer is known for local invasion, early
metastasis, and a strong desmoplastic reaction. An
in vitro study demonstrated that CTX at a concentra-
tion of 300 nM significantly inhibited the cell migration
of PANC-1 pancreatic cancer cells. The monomeric form
of chlorotoxin (M-CTX-Fc) was generated by joining the
CTX peptide to the amino terminus of the human IgG-Fc
domain without a hinge domain. This form inhibited the
migration ability of PANC-1 cells when compared with
the control, suggesting that M-CTX-Fc may be effective
for targeting pancreatic cancer (ElI-Ghlban 2014).

In colorectal cancer, a battery of in vitro biological
functional studies and bioinformatics analyses dem-
onstrated that Gonearrestide peptide, purified from
Androctonus mauritanicus (Ama) exerted a potent anti-
tumor effect (Liscano et al. 2020). Gonearrestide is 18
amino acids long, and 2192 Da It was also found to tar-
get a broad spectrum of cancer cells such as human colon
cancer cell line HCT116, with no reported cytotoxic-
ity on erythrocytes and surrounding epithelial cells (Li,
B. et al,, 2018). Gonearrestide halted tumor growth and
cancer cell proliferation by modulating cell cycle check-
point proteins. It triggered cancer cell cycle arrest in the
G1-phase through inhibition of cyclin-dependent kinases
4 (CDK4) and up-regulating the expression of cell cycle
regulators/inhibitors—cyclin D3, p27, and p21. In vivo,
xenograft mouse model treatment with Gonearrestide
significantly halted the growth of xenografted human
tumors in a mouse model and reduced the tumor vol-
ume in a dose-dependent manner, in Table 5 (Li, B. et al,,
2018).

SVPs targets in mammalian cells are related to key
biological functions, many of which are related to can-
cer development and progress. In addition, studies now
suggested that new molecules from SVs could neglecta-
ble cytotoxic effects by the isolation of each peptide
by owns via unwinding the peptide bonds to facilitate
their targets. Despite these successful discoveries, there
is a gap between the number of peptides with interest-
ing pharmacological properties obtained from SV. Basic
research on scorpion venom faces two main limitations:
the limited quantity obtained from different species and
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the inherent complexity of the venom itself, which makes
isolating specific toxins a challenge.

Conclusion and future directions

SVs are a rich bio-source of molecules with a wide range
of biological and pharmaceutical applications. SVPs
were found to be especially valuable for cancer therapy.
As researchers identify and characterize an increasing
number of peptides from different scorpion species, a
wide range of toxic properties to cancer properties are
discovered and applied to various types of malignancies,
while sparing normal cells. The latter is a highly desirable
character is modern approaches to cancer therapy, and to
avoid the determinantal side effects of current cytotoxic
therapies. Despite their high selectivity, the safety profile
for new SV derived drugs requires extensive research.
Only a few scorpion species have been extensively stud-
ied, but thousands remain unexplored, especially of the
promising Leiurus quinquestriatus scorpion. Novel isola-
tion techniques aim to deliver new molecules from SVs
with neglectable cytotoxic effects by chemical manipu-
lation of the target peptide Expanding the pool of SV
sources still present a challenge since only a small volume
of venom is collected from scorpions. Apply novel tech-
niques in drug synthesis could pave the way to a larger
scale of manufacturing anti-cancer peptides with the
high SV characteristic selectivity and specificity to cancer
cells.

Abbreviations

aa. Amino Acids

A549 Human lung adenocarcinoma

Aa Androctonus aeneas Scorpion

Ama Androctonus mauritanicus Scorpion
BC Breast Cancer

Bcl-2 B-cell ymphoma 2

Bcl-xL Basal cell ymphoma-extra large

BmHYA1 Purified hyaluronidase from Chinese red scorpion Buthus
martensii

BmK Buthus martensii karsch

BmK AGAP Neurotoxin specific to Na*-channels

c6 Rat glioma cells

CDK4 Cyclin dependent kinase 4

ChTx Charybdotoxin

CTX or CITx Chlorotoxin/ or chloride-bound toxins (CI~ channel scorpion
toxins)

DNA Deoxyribonucleic acid

EMT Epithelial-mesenchymal transition

ERa Estrogen receptor alpha

FAK Focal adhesion kinase

H22 Hepatocellular carcinoma in mice

HCT116 Colorectal cancer cell line (human colon-cancer cell line)

Hela Immortalized cell line derived from cervical cancer cells

Hb Heterometrus bengalensis Koch

HI Heterometrus liangi

Lp. Interperitoneally

IbTx Iberiotoxin

ICs Half maximal inhibitory concentration,

ICD-85 Venom derived peptides

IL-2 Interleukin 2

IL-6 Interleukin 6
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Im Isometrus masculatus

Jurkat cells Human T lymphoma

K562 Chronic myelogenous leukemia

KCa Calcium-activated potassium channels
KCNMA 1 Calcium-activated potassium channel
KDa Kilodalton

KTx Potassium-bound toxins (K* channel scorpion toxins)
KV Kilovolt

Kv Voltage-gated potassium channel

LDH Lactate dehydrogenase

MAPK Mitogen-activated proteins

MCF-7 Michigan cancer foundation-7 (breast cancer cells)

MDA-MB-231  Triple-negative breast cancer cells (epithelial human breast
cancer cell line)

MgTx Margatoxin

Mag/L Milligram per liter

MIC Minimal inhibitory concentration

MMP-2 Matrix metallopeptidase 2

MRC-5 Normal fibroblasts

NDBPs Non-disulfide bridges peptides

NF-k(3 Nuclear factor-K3

nM Nanometer

NSCLC Non-small-cell lung cancer

Osk-1 Orthochirus scrobiculosus selective to K+
PANC-1 Pancreatic cancer cells

PC Prostate cancer

PESV Polypeptides Isolated from Buthus martensii kirsch scorpion
PTX3 Pentraxin-3

ROS Reactive oxygen species

S180 Sarcoma

SCLC Small-cell lung cancer

SHG-44 Human glioma cells

SK-Mel Melanoma

Smp Scorpio maurus palmatus

SV Scorpion Venom

Svclll Scorpion venom fraction Il (Bmk fraction)
SVPs Scorpion venom-derived peptides

SVs Scorpion venoms

THP-I Human acute monocytic leukemia cell line
TM601 Synthetical product of CTX

T™Z Temozolomide

TNF-a Tumor necrosis factor

TsV Tityus serrulatus venom

U87-MG Glioblastoma cell line

U937 Human leukemia cell (histiocytic lymphoma)
VGSCs Voltage-gated sodium channels

Vm Negative membrane potential

um Micrometre
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