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Abstract

Background: An economical and integrated high-throughput primary screening strategy was developed for
high-aerobic microbe Monascus purpureus cultivation. A novel and effective mixture culture method was proposed
and used to realize the whole mutant library being high-throughput screened after mutagenesis.

Results: The good correlation of fermentation results between differing-scale cultivations confirmed the feasibility
of utilizing the 48-deep microtiter plates (MTPs) as a scale-down tool for culturing high-aerobic microbes. In
addition, the fluid dynamics of 24-, 48-, and 96-deep MTPs and 500-mL shake flask were studied respectively using
the computational fluid dynamic (CFD) tool ANSYS CFX 11.0 to get better understanding of their turbulent regimes.

Conclusions: The by-product citrinin production had no significant change while the pigment production had
improved. As a result, the high-yield strain T33-6 was successfully screened out and the pigment was more than
50% higher than that of the parental strain in the shake flask.
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Background

Natural colorants derived from plants and microorgan-
isms have recently gained popularity over synthetic color-
ing agents because of undesirable toxic effects including
mutagenicity and potential carcinogenicity in some cases
[1]. Monascus pigments produced by Monascus purpureus
(M. purpureus) fermentation are now used in processed
seafood, sausages, and sauces in Asia to replace some food
additives such as cochineal, potassium nitrate, and nitrites
[2-4]. However, M. purpureus is also a toxigenic strain that
can produce the nephrotoxic and hepatotoxic mycotoxin
citrinin which greatly limits the wide application of the
Monascus-related products [5-7]. Monascus pigments are
safe, especially characterized with high protein adhesion
and heat stability and can be used in a wide pH range
[8,9]. Hence, the investigations on the improvement of the
pigment production are of commercial importance in the
food coloration market.
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The high-yield strain is a key factor for the production of
fermented foods. However, most traditional fermentation
experiments were performed in shake flasks. The extraction
of Monascus pigments was time consuming and inconve-
nient for treatment of large numbers of samples. A large
amount of material was required, so it was uneconomic
and impractical for high-throughput system. Therefore, a
simple high-throughput primary screening strategy that can
culture and evaluate a large number of isolates simul-
taneously with a fair degree of accuracy and reproducibility
becomes imperative [10]. Microtiter plates (MTPs) are at-
tractive for high-throughput cultivation due to its small
working volume and high degree of parallelization [11,12].
Oxygen mass transfer rate (OTR) and mixing studies in MTPs
have been extensively reported [13,14]. It proved that the
square-shaped vessel can provide higher OTR. Forty-eight-
deep-well microtiter plates (48-deep MTPs) were used in
the present high-throughput strategy, and the correlation
was good with shake flasks. Furthermore, the success of
any strain improvement program mainly depends on the
number of positive isolates that can be screened after muta-
genic treatment [15]. However, only a small part of mutants
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selected randomly have the chance to be screened in trad-
itional screening method [16,17].

In this paper, the mixture cultivation was effectively pro-
posed to realize the whole mutant library of high-aerobic
microbe M. purpureus being high-throughput screened
after mutagenesis integrating the subsequent high-
throughput pigment microassay. The high-yield mixture
in one well of the microtiter plate was screened out first.
The subsequent isolation of the desirable high-yield col-
onies was further selected and screened from this specific
high-yield mixture. The method greatly increased screen-
ing efficiency compared with conventional method.

Methods

Microorganisms

M. purpureus M-403 used in this study was a parent
strain preserved in our laboratory at 4°C on peptone-
malt extract agar slants (g/L): peptone 30.0, malt extract
12.0, and agar 20.0.

Seed medium adjusted to pH 4.2 by lactic acid was
composed of (g/L): starch 30.0, NaNOj; 2.5, KH,PO, 2.5,
MgSO47H,0 1.3, soybean meal 10.0, and corn steep li-
quor 15.0. Fermentation medium adjusted to pH 4.5 was
composed of (g/L): glucose 40.0, peptone 5.0, NaNO3
3.0, KH,PO, 1.5, and MgSO,7H,O 1.0. Media were
sterilized by autoclaving for 25 min at 121°C.

Culture of microorganism

Traditional culture in shake flask

M. purpureus M-403 and its mutants were precultured in
500-mL shake flask containing 50 mL seed medium at 33°C
on a rotary shaker at 220 rpm for 42 h (50-mm shaking
diameter, 30/300, ZHWY-3212, Zhicheng Analytical
Instrument Manufacturing Co., Ltd., Shanghai, China). Nine
percent (v/v) precultures were inoculated in 500-mL shake
flask containing 50 mL fermentation medium at 33°C, 220
rpm. The samples were taken every 6 h. All the expe-
riments were carried out in triplicate at least.

Microculture in 48-deep MTPs

M. purpureus M-403 and its mutants were inoculated
with toothpicks in 48-deep MTPs containing 1.0 mL
seed medium at 33°C on a rotary shaker at 220 rpm for
42 h. Nine percent (v/v) precultures were inoculated in
the corresponding wells of new 48-deep MTPs contain-
ing 1.0 mL fermentation medium. The other culture
conditions were the same as shake flasks.

High-throughput system for screening

Mutagenesis procedure

M. purpureus (M-403) was subjected to mutagenesis using
UV irradiation and LiCl treatment. M-403 was grown on
agar slant at 33°C for 7 days. A piece of 2 x 2 x 3 (cm x
cm x mm) slant was dug into the homogenizer, gently
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homogenized with 10 mL sterile water to obtain homoge-
neous hypha suspension. All the hypha suspension was col-
lected to expose to UV irradiation at 254 nm for 3 min at a
distance of 20 cm in petri dish, and the isometric 10 mL
1.2% LiCl solution was added in the petri dish, mixed, and
contacted for 20 min, which resulted in 90% kill rate at least.

Mixture cultivation and high-throughput screening
Firstly, screen the high-yield mixture from the mutant li-
brary: 20 mL treated hypha suspension was equally allotted
into the 48-deep MTPs, roughly 30 plates were needed.
Fifteen-microliter mutant suspension called a mixture, was
cultured in a well containing 1.0 mL seed medium shaking
at 220 rpm for 42 h at 33°C. Nine percent (v/v) seed culture
was inoculated in another sterile corresponding well of 48-
deep MTPs at 220 rpm for 48 h; the remaining seed cultures
were preserved in 4°C refrigerator with parafilm until assay
results were obtained. The pigment was determined by high-
throughput determination. It can be speculated that the
more high-yield mutants dominate in the mixture, the higher
pigment production could be observed from the correspond-
ing wells. The subsequent isolation of the desirable colonies
from the high-yield mixture should have much higher prob-
ability than that only isolated from the parts of treated hypha
suspension directly by traditional dilution-plate method.
Secondly, isolate the high-yield strain from the high-
yield mixture: The preserved seed of high-yield mixture,
approximately 300 pl, was inoculated on the fresh slant
for 7 days at 33°C. Single colonies were isolated by a
traditional dilution-plate method. The integrated pro-
cedure chart is shown in Figure 1.

Extraction of pigments

Traditional determination

Extraction of pigments from 500-mL shake flask: 1 mL of
the culture broth was mixed with 9 mL of 70% (v/v) ethanol
in a test tube, rest for 15 min; the supernatant was filtered
by a filter paper (45 um, Xinhua Paper Industry Co., Ltd.,
Hangzhou, China); and the pigment concentrations were
measured by a spectrophotometer at 517 nm after dilution.
The pigment production (U/mL) = ODs;, x dilution factor.

High-throughput determination

Extraction of pigments from 48-deep MTPs: 0.1 mL of
the culture broth was mixed with 0.9 mL of 70% (v/v)
ethanol in new 48-deep MTPs, rest for 15 min and the
supernatant was obtained by MTP centrifuge (TDZ5-
WS, Jiachuang Biotechnology Co., Ltd., Shanghai, China;
3,000xg, 5 min) and pipetted 300 pl into each well of a
new 96-well microtiter plate. The pigment concentrations
were measured by a microplate reader (Multiskan Go,
Thermo Fisher Scientific Inc., Massachusetts, MA,
USA) at 517 nm after dilution. The pigment production
(U/mL) = ODg3;- x dilution factor.
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Citrinin analysis

Pure citrinin was purchased from Sigma Chemical Com-
pany, St. Louis, MO, USA. All solvents used were high-
performance liquid chromatography (HPLC) grade. Citrinin
was extracted by methanol, 1 mL fermentation broth mixed
fiercely with the same volume of methanol for 10 min and
centrifuged at 15,000xg for 20 min. The supernatant was de-
termined by HPLC (Agilent 1100 Series, Shanghai, China).
The samples were separated on a TSK-gel ODS-100S C18
column at a flow rate of 1 mL/min, 28°C, automatic injector

50 pl. Fluorescence detection was performed with a FP-920
fluorescence detector (Jasco Corp., Tokyo, Japan) set at
331-nm excitation wavelength and 500-nm emission wave-
length. The mobile phase consisted of acetonitrile/water
(35/65, v/v), and the pH was 2.5 adjusted by phosphoric acid.

k a value measurements

The sulfite oxidation method [18] was employed to de-
termine the k;a in MTPs and shake flask. The sulfite so-
lution system contained 0.5 M sodium sulfite, 10~/ M



Tan et al. Bioresources and Bioprocessing 2014, 1:16
http://www.bioresourcesbioprocessing.com/content/1/1/16

cobalt sulfate, 0.012 M Na,HPO,/NaH,PO, phosphate buf-
fer (pH 8.0), and 2.4 x 10> M bromothymol blue. The ini-
tial pH was adjusted to 8.0 using 2.0 M sulfuric acid. The
pH of the sulfite solution remained at an almost constant
value of pH 8.0 before dropping sharply to a value of pH
5.0 at the end of the reaction. The time of the color changes
from blue to yellow was measured accurately to calculate
the ka value of MTPs and shake flask. All the experiments
were performed at 220 rpm, five parallelisms at least.

Results and discussion

Performance evaluation of MTPs and shake flask
Computational fluid dynamic (CFD) methods based on
the Navier-Stokes equation have become a powerful tool
to predict the fluid flow and homogenization in stirred
tanks [19,20]. Many papers published the simulation
methods of mixing [21], mass transfer [22], and shear
environment [23] in different kinds of stirred tanks. The
fluid dynamics of 24-, 48-, and 96-deep MTPs and 500-
mL shake flask were studied respectively using the CFD
tool ANSYS CEFX 11.0 to get better understanding
of their turbulent regimes. Power consumption, shear
strain, and oxygen mass transfer coefficient were calcu-
lated by numerical simulation, and the results were veri-
fied by experimental data. The parameter values are
shown in Table 1. The shear strain presented the shear
force in MTPs and shake flask, the result revealed that
the shear effect of 24- and 48-deep MTPs was superior
or comparable to shake flask, while 96-deep MTPs were
unsatisfied. Figure 2 shows the distribution of shear
force in MTPs and shake flask. The maximum shear
force distributed near the wall of 24- and 48-deep MTPs
and 500-mL shake flask, while the maximum shear force
mainly distributed at the bottom of the 96-deep MTDPs.
It indicated that the liquid mixing was insufficient in the
96-deep MTPs, directly influenced the oxygen transfer.
The properties of 24- and 48-deep MTPs were compar-
able with 500-mL shake flask. Furthermore, the power
consumption of 24- and 48-deep MTPs was only 5% of
the shake flask. These parameters illustrated that the
MTPs were very practical equipment for high-throughput
screening. Considering the oxygen transfer capability and
the screening throughput, 48-deep MTPs were selected
for M. purpureus cultivation.

Table 1 The performance evaluation of MTPs and shake flask
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High-throughput screening system

The general method for supernatant collection was time
consuming and laborious for the sample treatment, es-
pecially for the samples from 48-deep MTPs which was
impractical for rapid and high-throughput screening. In
order to develop a simple, rapid, and high-throughput
screening strategy, it is preferential to establish a simple
and accurate analytical method. Therefore, 48-deep MTPs,
MTP centrifuge, and microplate reader were employed to
solve the problem. Thousands of samples could be deter-
mined simultaneously in a short time, meanwhile, could
also save more material consumption.

Commercially available standard pigment (98.2%, Sigma)
was used to determine the maximum absorbance by micro-
plate reader from 300 to 700 nm; the pigments have max-
imum absorbance at 517 nm.

Twenty mutants derived from M. purpureus M-403 were
fermented in shake flasks, the Monascus pigment was de-
termined by a spectrophotometer and microplate reader.
The data based on a microplate reader were higher than
the results from a spectrophotometer (Figure 3a), but the
high correlation coefficient (0.95) was obtained by statistical
analysis. This high-throughput assay could be effectively
used for the determination of Monascus pigment instead of
traditional methods. The comparisons of differing-scale cul-
tivations are assessed as shown in Figure 4b. The strain M-
403 was fermented in shake flasks and in 48-deep MTDPs,
respectively, both the Monascus pigments were determined
by a microplate reader. The comparison results between
differing-scale cultivations were generally good (Figure 3b).
Both Monascus pigments in 48-deep MTPs and shake
flasks were increased to their maximum values at 42 h and
were kept constant until 78 h. Although the pigment pro-
ductions in shake flasks were higher than that in 48-deep
MTPs, the results had the same tendency. The correlation
coefficient was 0.98 by statistical analysis. The data sug-
gested that the 48-deep MTPs could be used as a scale-
down tool for high-aerobic microbe screening applica-
tions. The data also illustrated that this scale-down system
could be effectively used to determine pigment production.
Thus, we had developed an integrated high-throughput
screening strategy combined the 48-deep MTPs culture
system with the microplate assay. All experiments were
performed in triplicate.

Filling volume (mL) kea (1/h)? P/V (W/m3)° SSR (1/s)° kea (1/h)®
24-deep MTPs 12 176 79.1 76.8 1488
48-deep MTPs 07 170 738 853 1443
96-deep MTPs 0.5 714 73 27.8 58.77
500 mL SF 30 130.1 13489 614 150.7

2k_a: oxygen mass transfer coefficient calculated by numerical simulation; °P/V: power consumption per unit volume; “SSR: shear strain; “k_a: oxygen mass transfer

coefficient determined by experiment.
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seed culture well of the T33 preserved in 4°C refrigerator
was traced back, and all the remaining seed culture of
T33 was inoculated on the fresh slant timely for further
single colony isolation.
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Table 2 Amount of citrinin detected in the samples of M.
purpureus M-403 and T33-6
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Figure 4 High-throughput screening of pigment high-yield
strain (a) results of mixtures and (b) high-yield strain isolated
from the mixture T33.

Among the colonies isolated from the high-yield
mixture T33, ten available colonies were selected by
our practical experience and their submerged cultiva-
tions in shake flasks were carried out with the parent
strain (M-403) as the control (Figure 4b). Except col-
ony T33-3, the productions of other nine colonies were
almost 190.0 U/mL averagely, higher than that of the
parent strain (137.0 U/mL). There was only a small
part of low-yield mutants mixed in the high-yield mix-
ture, so there was a high possibility to isolate the de-
sired strain from the high-yield mixture compared
with traditional shake flask screening. Repeated studies
showed that the production of single colony T33-6
remained at the same level after several consecutive
generations by submerged fermentation, three paralle-
lisms for shake flasks at least. To the best of our know-
ledge, this is the first report to buildup an integrated
HTS strategy for M. purpureus applications.

Parent strain M-403 High-yield strain T33-6
Citrinin (mg/L) 12.7 10.5
RSD (%) 4.21 3.72

RSD, relative standard deviation.

Comparison of citrinin production between mutant M.
purpureus T33-6 and parent strain M. purpureus M-403
The parent strain and the high-yield strain were fermen-
ted in shake flasks; the amounts of citrinin are summa-
rized in Table 2. The amounts of citrinin produced by
M. purpureus M-403 and T33-6 were 12.7 mg/L and
10.5 mg/L, respectively; there was no significant change
while the pigment production was improved, so this
high-yield strain was satisfactory.

Conclusions

In summary, a novel high-throughput screening method
was established for screening the whole mutant library
of M. purpureus after mutagenesis. The high-yield strain
T33-6 was screened out by mixture cultivation success-
fully. The production was 205.5 U/mL fermented in
shake flasks, nearly 50% higher than that of parent
strain. The amount of citrinin had no significant change
produced by M. purpureus T33-6 (11.9 mg/L) and the
parent strain (12.7 mg/L) while the pigment production
had improved, so this high-throughput strategy was
feasible. High-throughput technology played an import-
ant role in strain improvement screening, significantly
increased throughput and reduced assay volume, effi-
caciously solve the low-throughput problem encountered
in conventional strain screening. High-throughput screen-
ing field will continue to be promising and dynamic in the
future.
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