Pothiraj et al. Bioresources and Bioprocessing 2014, 1:27
http://www.bioresourcesbioprocessing.com/content/1/1/27

® Bioresources and Bioprocessing

a SpringerOpen Journal

RESEARCH Open Access

Sustaining ethanol production from lime
pretreated water hyacinth biomass using mono
and co-cultures of isolated fungal strains with
Pichia stipitis

Chinnathambi Pothiraj'”, Ramasubramanian Arumugam’ and Muthukrishnan Gobinath?

Abstract

Background: The high rate of propagation and easy availability of water hyacinth has made it a renewable carbon
source for biofuel production. The present study was undertaken to screen the feasibility of using water hyacinth's
hemicelluloses as a substrate for alcohol production by microbial fermentation using mono and co-cultures of
Trichoderma reesei and Fusarium oxysporum with Pichia stipitis.

Results: In separate hydrolysis and fermentation (SHF), the alkali pretreated water hyacinth biomass was
saccharified by crude fungal enzymes of T. reesei, F. oxysporum and then fermented by P. stipitis. In simultaneous
saccharification and fermentation (SSF), the saccharification and fermentation was carried out simultaneously at
optimized conditions using mono and co-cultures of selected fungal strains. Finally, the ethanol production kinetics
were analyzed by appropriate methods. The higher crystalline index (66.7%) and the Fourier transform infrared
(FTIR) spectra showed that the lime pretreatment possibly increased the availability of cellulose and hemicelluloses
for enzymatic conversion. In SSF, the co-culture fermentation using T. reesei and P. stipitis was found to be promising

(0344 g g ') at 96 h.

with a higher yield of ethanol (0411 g g~') at 60 h. The additional yield comparable with the monocultures was
due to the xylanolytic activity of P. stipitis which ferments pentose sugars into ethanol. In SHF, the pretreatment
followed by crude enzymatic hydrolysis and fermentation resulted in a significantly lesser yield of ethanol

Conclusions: It is evident from the study that the higher ethanol production was attained in a shorter period in
the co-culture system containing T. reesei and the xylose fermenting yeast P. stipitis. SSF of pretreated water hyacinth
biomass (WHB) with P. stipitis instead of traditional yeast is found to be an effective biofuel production process.
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Background

The global depletion of fossil fuels that are the dominant
sources for supplying cheap energy for the world's econ-
omy has prompted recent significant research efforts in
finding viable and sustainable alternatives [1]. Among
various options, conversion of abundant lignocellulosic
biomass to biofuels has received significant attention. Cur-
rently, bioethanol production from corn and sugarcane
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has posed a threat to the food supply [2], and the cost of
these raw materials accounts for up to 40% to 70% of the
production cost [3]. Lignocellulosic biomass serves as a
cheap and abundant feedstock [4], which has the potential
to produce low-cost bioethanol at a large scale. In recent
days, screening of such substrates for biofuel has gained
new speed and still there are many factors to be taken into
consideration for the large scale production.

The performance of enzymatic saccharification is one
of the foremost limiting factors which may strongly be
dependent on the diverse species, complex chemical com-
positions, and structural characteristics of the feedstock
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materials. The sugar yields from enzymatic hydrolysis vary
from plant to plant as a result of the differences mainly in
cellulose content [5]. Like cellulose, hemicellulose is also a
viable source of fermentable sugars such as xylose for
biorefining applications. It was suggested that the produc-
tion of fuel-grade ethanol from xylose requires a micro-
organism capable of producing 50 to 60 g/L ethanol
within 36 h with a yield of at least 0.4 g ethanol per gram
of sugar [6]. But only few xylose-fermenting microorgan-
isms have been reported earlier [7], and it is generally
known that Pichia stipitis is superior to all other yeast spe-
cies for ethanol production from xylose.

Water hyacinth (Eichhornia crassipes) is a fast growing
perennial aquatic weed invasively distributed throughout
the world. This tropical plant can cause infestations
over large areas of water resources and consequently
leads to series of problems like reduction of biodiver-
sity, blockage of rivers and drainage system, depletion
of dissolved oxygen, and alteration on water chemistry
that leads to severe environmental pollution. In the
past, attempts have been geared towards the use of
biological, chemical, and mechanical approaches for
preventing the spread of, or eradication of, water hya-
cinth. On the other hand, much attention has been
focused on the potentials and constrains of using
water hyacinth for a variety of applications since it has
a lignocellulosic composition of 48% hemicelluloses,
18% cellulose, and 3.5% lignin [8,9]. Since the biomass
productivity of this plant is very high, it can be a suit-
able feedstock for ethanol production.

The technologies for the possible conversion of
water hyacinth to biogas or fuel ethanol using fungal
extracellular enzymes are well documented in a num-
ber of developing countries [10-13]. Saccharomyces
cerevisiae and Zymomonas mobilis are being used as
candidate organisms in the large-scale production of
ethanol from cellulosic biomass. These organisms are
capable of utilizing hexose sugars efficiently but not
the pentoses, which are the second dominant sugar
source in lignocellulosic biomass [14]. From earlier
research, P. stipitis has been identified as an efficient
strain for the conversion of pentose sugars into alco-
hol [15]. Fermentation technologies utilizing strains
of P. stipitis instead of traditional yeast have been pro-
posed by a number of authors [14,15], as they have
been shown to ferment under fully anaerobic condi-
tions with faster specific rates of pentose sugar uptake
and ethanol production as well as an ethanol yield
close to theoretical yield. The present study, therefore,
was carried out to screen the feasibility of using
hexose- and pentose-utilizing fungal strains (Tricho-
derma reesei, Fusarium oxysporum, and Pichia stipitis)
for the effective conversion of water hyacinth biomass
into ethanol.
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Methods

Biomass and culture organisms

Fresh water hyacinth biomass (WHB) was collected from
a local pond at Karaikudi, Tamilnadu, India (10.07°N,
78.78°E). The collected samples were washed to remove
adhering dirt, cut into small piece (2 or 3 mm) thick-
nesses, and dried in sunlight. The proximate analysis for
biomass was done using standard methods for moisture
content, ash, crude protein, crude fibre, cellulose, hemi-
celluloses, and lignin [16,17]. The fungal strains of T.
reesei and F. oxysporum were isolated by primary selec-
tion from a naturally contaminated water hyacinth, and
the isolates were confirmed by their morphology and
colony characteristics [18]. The isolated organisms were
maintained on modified potato dextrose agar (PDA)
slants at 4°C. Fresh colonies were used for saccharification
and fermentation studies. The pure culture of P. stipitis
(NCIM 3497) was procured from the National Collection
of Industrial Microorganisms, Pune, India.

Alkaline pretreatment

The dried WHB (10% w/v) was pretreated with calcium
hydroxide solution (0.5% w/v) with a soaking time of 3 h
at 100°C. The pretreated WHB washed to neutrality with
distilled water, oven dried to a constant weight, and then
milled to powder was used for enzymatic hydrolysis and
fermentation [19].

Experimental design

Two modes of bioconversion methodologies for ethanol
production were trialed in the present study. Mode I
comprised of a separate hydrolysis and fermentation
(SHF) process using crude fungal enzymes with yeast.
Mode II was designed to conduct a simultaneous sac-
charification and fermentation (SSF) process using mono
and co-cultures of selected fungal strains.

Separate hydrolysis and fermentation (SHF)

The cellulolytic enzymes (cellulases and xylanases) were
produced by growing the isolated fungal strains of T.
reesei and F. oxysporum separately at 35°C in a simple
liquid medium (4.2 g L™ (NH4),SO,, 2 g L™ KH,PO,,
0.05 g L' yeast extract, 2 mL L™ Tween-80, 2% (w/v)
poultry manure with 1.6% total N, pH 4.8) containing
100 g L' water hyacinth biomass as the chief C source
for 5 days as optimized earlier [20]. The culture superna-
tants were separated at the end of the incubation period
from each organism and used as crude enzymes source for
hydrolysis. Cellulase and xylanase activities were measured
in the culture supernatant as per standard methods.
Cellulase was measured according to the IUPAC
methods [21] using Whatman filter paper no. 1 as the
substrate and glucose as the standard. Xylanase was
assayed by the optimized method described by Bailey
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et al. [22], using 1% birchwood xylan as the substrate
and xylose as the standard. One unit (IU) of enzyme
activity is defined as the amount of enzyme releasing
1 umol glucose or xylose/mL per minute

Enzymatic hydrolysis was carried out by incubating
the pretreated WHB (10% w/v) with the crude fungal
enzymes (10% (v/v)) of T. reesei and F. oxysporum separ-
ately at 35°C for 48 h with agitation at 200 rpm [23].
The pH of the reaction mixture (6.0) was maintained at
constant. Samples were aliquoted from hydrolysates at a
regular interval (24 and 48 h) to estimate the released
sugar content using standard methods [24,25]. The hydro-
lysates obtained after 48 h from both the fungal cultures
were centrifuged at 10,000 rpm for 10 min. The superna-
tants were collected separately and supplemented with
basal medium (1 g L1t yeast extract; 2 g L1 (NH,)SOg;
1 g L' MgSO,+7H,0) (pH 6.0) [23]. The culture suspen-
sion of P. stipitis (10% v/v) was added to initiate the fer-
mentation by incubating the mixture at 35°C for 48 h with
agitation at 200 rpm.

Simultaneous saccharification and fermentation (SSF)

SSF represents a single step process in which ferment-
able sugars get released by enzymatic hydrolysis and are
simultaneously exploited by yeasts for fermentation in
the same medium. The microbial fermentation was carried
out using mono and co-cultures as previously described
[9]. The influences of various parameters such as micro-
bial biomass (5% to 25%), temperature (25°C to 45°C), and
incubation time (24, 36, 48, 60, 72 h) on SSF were also
optimized by step-wise experiments where the specified
parameters were changed by keeping all other parameters
constant. The pH of the reaction mixture in all the
optimization experiments was kept constant at 6.0

Mono and co-culture fermentations

For monoculture experiments (F1 and F2), previously
sterilized (121°C for 60 min) pretreated WHB supple-
mented with a basal medium (without C source) was
inoculated with late log-phase cultures of 7. reesei (F1)
and F. oxysporum (F2), separately. For co-culture fer-
mentation (F3 and F4), separate sets of reaction mixtures
consisting of pretreated WHB supplemented with basal
medium were treated with P. stipitis simultaneously with
T. reesei (F3) and F. oxysporum (F4). The fermentation
process was carried out at optimized conditions.

Estimations

Samples were withdrawn from the fermenting media at
regular intervals of time for the determination of etha-
nol, residual sugar concentration, and microbial biomass.
Estimation of xylose was done by the Trinder method
[24] and glucose by the DNS method [25]. Ethanol esti-
mation was done spectrophotometrically by potassium
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dichromate method [26]. The microbial biomass was de-
termined by harvesting cells by centrifugation, drying
them at 70°C under vacuum to a constant weight, and
expressed as gram dry cell weight (DCW) per liter [27].
The kinetic parameters of ethanol fermentation were de-
termined followed by Abate et al. [28] as follows:

Ethanol concentration (Ec) = |[ethanol produced (g)/

volume of reaction mixture (L)]
Ethanol productivity (E,) = [ethanol produced (g)/

volume of reaction mixture (L)/
time (h)]

[ethanol produced (g)/

Ethanol Yield (EY)
weight of substrate (g)]
Specific ethanol yield (Eiy) = [ethanol produced (g)/

sugar consumed (g)]

The results obtained were analyzed by using analysis
of variance (ANOVA), and the group means were com-
pared with Duncan's Multiple Range Test (DMRT) [29].

Fourier transform infrared (FTIR) analysis

Fourier transform infrared spectra were studied on
treated and untreated WHB using a Shimadzu spec-
trometer (Shimadzu, Kyoto, Japan). For this, 3.0 mg of
the sample was dispersed in 300 mg of spectroscopic
grade KBr and subsequently pressed into disks at
10 MPa for 3 min. The spectra were obtained with an
average of 25 scans and a resolution of 4 cm™ in the
range of 4,000 to 400 cm ™.

X-ray diffraction (XRD) analysis

The crystallinity of cellulose in the pretreated and
treated water hyacinth was analyzed by X-ray diffraction
method in a PANalytical X'pert® PRO Diffractometer
(PANalytical B.V., Almelo, Netherlands) set at 40 KV,
30 mA; radiation was Cu Ka(A = 1.54&) and the grade
range between 10 to 30° with a step size of 0.03°. The
crystallinity index (Crl) was determined based on the
equation shown below [30]:

Tooa—1
Crl = % % 100

am
where Iyo, is the intensity of the diffraction from the 002
plane at 260=22.6° and I,,, is the intensity of the back-
ground scatter measured at 26 = 18.7°. It is known that the
Iooz peak corresponds to the crystalline fraction and the
I, peak corresponds to the amorphous fraction [31].

Results and discussion

The lignocellulosic biomass composition of WH includes
cellulose (20.2 g 100 g’1 dry matter (DM)), hemicellulose
(34.3 g 100 g”' DM), lignin (4.4 g 100 g' DM ), crude
protein (13.3 g 100 g~* DM), crude fibre (182 g 100 g™*
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Table 1 Proximate composition of water hyacinth biomass (WHB) comparable with earlier literatures

Content Present study Previous literature
[g 100 g~' DM] [g 100 g~ DM] (8] lg 100 g~' DM] [12] [g 100 g~' DM] [32]

Moisture (%) 928 - - -

Ash 154 20.0 - 200

Crude protein 133 180 10.2 18.0

Crude fibre 182 - - -

Cellulose 20.2 250 19.02 250
Hemicellulose 343 350 32.69 350

Lignin 44 10.0 437 10.0

DM, dry matter.

DM), and ash (15.4 g 100 g’1 DM) (Table 1). The results
obtained in the present study on the proximate compos-
ition of WHB are basically consistent with previous
literatures [8,12,32]. The digestibility of lignocelluloses is
hindered by many physicochemical, structural, and com-
positional factors which required a suitable pretreatment
in order to enhance the susceptibility of biomass for
hydrolysis. It is highly essential for the economical produc-
tion of ethanol that both the cellulose and hemicellulosic
sugars present in the biomass should be utilized efficiently.
The FTIR and XRD data in the present study clearly sug-
gested that the pretreatment with lime could increase the
availability of polysaccharide for enzymatic hydrolysis.
Among different pretreatment methods used in earlier re-
searches for water hyacinth, maximum reducing sugar was
observed in diluted H,SO, (0.342 g g~* biomass) [33], HCI
(0277 g g biomass), acetic acid (0.097 g g~* biomass),
and formic acid (0.088 g g~' biomass) [31,34]. In compari-
son with the above reports, it is evident that the lime
pretreatment used in the present study is a promising
method for higher sugar yield. The pretreatment with Ca
(OH), is preferable because it is less expensive, more safe
as compared to NaOH, and it can be easily recovered from
the hydrolysate by reaction with CO,. Lime has been used
to pretreat many lignocellulosic materials such as wheat
straw [35], poplar wood [36], and corn stover [37].

XRD - cellulose crystallinity

Cellulose crystallinity, usually measured as Crl, is con-
sidered an important parameter determining the enzym-
atic hydrolysis susceptibility of cellulose. The Crl of a
cellulose sample is an indication of the degree of formed
crystallinity in the sample when the cellulose aggregates.
The crystallinity has been found to have a greater impact
on enzymatic hydrolysis than other structural characteris-
tics such as the degree of polymerization (DP) of cellulose
or the specific surface area (SSA) [38]. The XRD profile of
WHB indicated that the Crl of untreated WHB is 28.6%
and alkali-treated WHB is 66.7% (Figure 1). The X-ray dif-
fractogram clearly revealed that the lime pretreatment

increased the crystallinity of cellulose in water hyacinth.
Similar results were reported earlier by Kim and Holtzapple
[39] who found that the degree of crystallinity of corn
stover slightly increased from 43% to 60% through delignifi-
cation with calcium hydroxide and by Li et al. [40] who
have reported high cellulose CrI of 70.6% in Metasequoia
chips by nitric acid-ethanol method. The increase in Crl of
alkali-treated WHB might be due to the removal of
amorphous components including lignin during the pre-
treatment process [41,42]. According to Satyanagalakshmi
et al. [33], the amorphous cellulose portions in aquatic
plants are more prone to recrystallization to form crystal-
line cellulose, resulting in greater increases in Crl.

160
140 Untreated WHB
120
100

80

Intensity

60
40
20

160 —
140 4
Alkali pretreated WHB
120 4

100 4

Intensity
(2] [o2]
o o
1 1

o
o
|

20

— 71 T 1 T 1 T 1 1T T T T 1
5 10 15 20 25 30 35 40 45

2 Theta

Figure 1 XRD analysis of untreated and lime pretreated WHB.
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FTIR analysis

FTIR spectra of the untreated and treated samples indi-
cated structural changes in the biomass upon pretreat-
ment (Figure 2). The increased absorption bands at
1,000 to 1,200 cm ™" were related to structural features of
cellulose and hemicelluloses [43]. The spectra of alkali-
treated WHB sample (Figure 3) showed increase in
absorbance in the above-mentioned range. The peak at
1,635 cm™" was observed due to either the acetyl and ur-
onic ester linkage of carboxylic group of the ferulic and

Page 5 of 10

p-coumeric acids of lignin and/or hemicelluloses [44]. A
sharp band at 896 cm ™, corresponding to the C1 group
frequency or ring frequency, was attributed to the glyco-
sidic linkages between xylose units in hemicelluloses
[45]. The peaks in the pretreated sample had the highest
absorbance suggesting increase in cellulose and hemicel-
lulose content. In the FTIR spectrum, the peaks ob-
served at 1,092 and 842 cm™' were attributed to C-O
stretching and C-H rocking vibration of the cellulose
structure.
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Enzyme activity

In recent decades, the use of fungi in bioprocesses has
grown in importance because of the production of nu-
merous enzymes with different biochemical properties
and excellent potential for biotechnological applica-
tion. The cellulase and xylanase activities reached
their maximum values on the 6th day of incubation
for both the fungal isolates. Cellulase production
on WHB with nutrient supplements indicated higher
cellulase production by T. reesei (0.923 IU/mL) com-
pared to F. oxysporum (0.432 IU/mL). However, it
is less than the value of 1.35 IU/mL reported by
Deshpande et al. [46] on the substrate water hyacinth
with Toyama-Ogawa medium [47]. The xylanase produc-
tion was slight, but significantly higher in F. oxysporum
(0.764 TU/mL), compared to T. reesei (0.611 IU/mL). Ac-
cording to Kang et al. [48], high xylanase production in
some fungi has been shown to be linked strictly to the
ratio of cellulose to xylan of the growth substrate and
substrate degradation due to time course or incubation
period.

According to Polizeli et al. [49], filamentous fungi are
widely utilized as enzyme producers and are generally
considered more potent xylanase producers than bacteria
or yeast. Several mesophilic fungal species have been
evaluated in relation to xylanase production, including
members of Aspergillus, Trichoderma, and Penicillium.
Currently, most commercial xylanolytic preparations
are produced by genetically modified Trichoderma or
Aspergillus strains [50].

Sugar yield

The vyield of sugars from enzymatic hydrolysis of WHB
using crude enzymes produced by fungal isolates was sum-
marized in Table 2. The saccharification was significantly
higher (40.8%) while using crude enzyme from T. reesei
when compared to F. oxysporum (38.2%). The release of
total sugars by the crude enzymes of both monocultures in-
creased slowly to reach a peak value at 48 h of incubation.
The maximum yield of total sugar (0.531 g g”' WHB) in-
cluding glucose (0.444 g g~* WHB) and xylose (0.057 g g~
WHB) was observed after 48 h of hydrolysis using crude
enzymes of T. reesei. The crude enzymes obtained from F.
oxysporum produced comparably lower reducing sugar
(0.428 g g~' WHB) and xylose (0.038 g g~* WHB). Thus, it
substantiates that the amount of sugar released increases
with time which may be due to the increased action of
cellulolytic and xylanolytic enzymes of 7. reesei and F.
oxysporum [51]. The cellulolytic fungus 7. reesei looks
promising for on-site cellulase production due to its
superior features, i.e., capability to produce all components
of cellulase complex, endocellulase, exocellulase, and (-
glucosidase in good proportions as well as production of
other enzymes such as xylanases or laccases in comparison
to other enzyme producers [52].

Ethanol

The optimization studies in SSF showed that the yield of
ethanol is found to be proportional to fermentation time
where the yield increases with the increase in time up to
60 h and then declines (Figure 3). Maximum yield of

Table 2 Sugar composition (g g~' WHB) of enzymatic hydrolysates of pretreated WHB at 48 h

Enzyme source Glucose Xylose Total sugar Saccharification %
T. reesei 0444%+0.12 0.057%+0.09 05317+0.12 40.2
F. oxysporum 0428°+031 0038°+0.11 0488°+0.17 382

Values are the mean of three replicates + SE. Means followed by the same letter within treatment do not differ significantly (p = 0.05).
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ethanol is 0.413, 0.378, 0.194, and 0.187 g g' of WHB
at 60 h of fermentation for F3, F4, F1, and F2, respect-
ively. After 60 h of time, the yield of ethanol decreases
in all treatments, and therefore, fermentation time of
60 h is taken as the optimum time for ethanol fermenta-
tion. With the increase in temperature, the yield of
ethanol increased up to 35°C and then it decreased
(Figure 4). At high temperature (>35°C), death rate ex-
ceeds the growth rate, which causes a net decrease in
concentration of viable fungal populations with lower
generation of ethanol. With the increase in loading of
biomass, the yield of ethanol increased up to 10% and
then decreased in all the samples (Figure 5). The de-
crease in ethanol yield with the increase in biomass
loading can be attributed to the inhibitory effect of ei-
ther the product or the biomass. Inhibitory compounds
limit efficient utilization of hydrolysates by the ferment-
ing organism resulting in less ethanol production [33].

In the SHF process, a maximum of 14.3 g L™" ethanol
was produced at the end of the process (96 h) which is
equivalent to 0.143 g g~' WHB (Table 3). The mini-
mum production of ethanol observed in the submerged

fermentation of pretreated water hyacinth biomass
using monocultures of 7. reesei and F. oxysporum was
due to the inability of these organisms to convert pen-
tose sugars into ethanol. A similar finding was reported
earlier where 0.11 g ethanol was obtained from alkali-
pretreated water hyacinth through SHF [23]. According
to Preez et al. [53] P. stipitis is known to produce etha-
nol up to 33 to 57 g/L; however, 30 g/L is known as a
critical concentration above which cells cannot grow at
30°C.

In SSE, monocultures of T. reesei (F1) and F. oxysporum
(F2) produced 19.3 and 17.8 g L™ ethanol, respectively,
after 60-h fermentation (Table 4). Simultaneous co-
culturing of T. reesei (F3) and F. oxysporum (F4) with P.
stipitis resulted in a higher ethanol production (40.8 and
36.8 g L, respectively) at the same time. The maximal
ethanol yield was 0.411 g g* WHB when P. stipitis was
used along with T. reesei which is positively correlated to
the theoretical yield 0.429 g on the basis of biomass. Since
xylose was present as a predominant sugar in the WHB
hydrolysate, P. stipitis was used to make the biomass-to-
ethanol process more economical. Mishima et al. [34], on
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Figure 5 Effect of microbial biomass on ethanol yield from pretreated WHB using mono and co-cultures. F1, T. reesei; F2, F. oxysporum; F3,
T. reesei + P. stipitis; F4, F. oxysporum + P. stipitis.
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Table 3 Ethanol production in SHF process using crude fungal enzymes and P. stipitis with pretreated WHB at 96 h

Sample (s) E. E, E, Esy Ete
S 143°+0.12 0.24% +0.09 0.143°+0.11 0.322°+0.11 0261+ 0.11
S, 1289+0.13 021%+0.17 0.1289+008 0.299° +0.08 02439+0.17

E,, ethanol concentration (g L™"); E,, ethanol productivity (g L™ h™"); E,, ethanol yield (g g~' WHB); Esy, specific ethanol yield (g g™" sugar); Erg, theoretical yield
(g 9! WHB); S1, hydrolysate from T. reesei; S2, hydrolysate from F. oxysporum. Values are the mean of three replicates + SE. Mean followed by the same letter

within treatment do not differ significantly (p = 0.05).

the other hand, reported a lesser ethanol yield of 0.14
g g ' dry substrate through SSF of pretreated water hya-
cinth using commercial cellulase and S. cerevisiae. The
overall production could be enhanced by co-culture rather
than monoculture of test organisms. Similarly, direct mi-
crobial conversion of cellulosic or lignocellulosic biomass
into ethanol using co-cultures had been reported by sev-
eral authors [32,34,54]. S. cerevisiae or Z. mobilis utilize
glucose or sucrose efficiently but their inability to utilize
pentose sugars make them inappropriate candidates for
refineries, but the candidate organism P. stipitis used in
the present study showed efficient conversion of pentose
sugars into alcohol. Among the pentose-fermenting organ-
isms, P. stipitis has been shown to have the most promise
for industrial applications [55]. Earlier reports showed
that the hemicellulosic hydrolysates of Prosopis juliflora
(18.24 g sugar/L broth) when fermented with P. stipitis
produced 7.13 g/L ethanol [56]. Kuhad et al. [57] observed
0.33 g g* ethanol yield from detoxified xylose-rich hydrol-
ysate of Lantana camara fermented with P. stipitis at
pH 5 for 36 h. Similarly, the detoxified water hyacinth
hemicellulose acid hydrolysate (rich in pentose sugars) fer-
mented with P. stipitis NCIM-3497 at pH 6.0 and 30°C re-
sulted in 0.425 g ethanol/g lignocelluloses [15]. The yield
of ethanol per unit biomass of water hyacinth obtained
through the bioprocess in the present study was compar-
able to or even better than those reported earlier. The
current results clearly demonstrated the saccharification
potential of T. reesei and F. oxysporum, where the per-
formance of both strains in co-cultures with P. stipitis was
significantly higher than their respective single culture.

Microbial biomass

All the co-culture processes reached a higher value of
microbial biomass than the single fermentation process.
A maximum of 3.12 g DCW L™ biomass content was

obtained in the co-culture of T. reesei and P. stipitis at
60-h fermentation (Table 4). Inoculation of P. stipitis
with F. oxysporum resulted in a biomass content of
2.64 g DCW L' over the monocultures. Statistically, a
less significant difference was observed with monocul-
ture's fermentation when compared with co-culture [58].

Conclusions

The fermentation of bioethanol from pretreated water
hyacinth biomass with mono and co-cultures of fungal
strains along with P. stipitis is found to be an effective bio-
fuel production process. The yield of ethanol recovered
from WHB through enzymatic hydrolysis and fermentation
from simultaneous inoculation of co-cultures of fungal
isolates with P. stipitis was significantly higher than that re-
covered through monocultures. The optimum parameters
for bioethanol fermentation are as follows: time 60 h,
temperature 35°C, and WHB loading 100 g ™!, The max-
imum vyield of ethanol in the fermentation process was
found to be 0.411 g g' of WHB which is equivalent to
a specific yield of 0.456 g g™' total sugar consumed.
The use of crude fungal enzymes produced on-site
would be a cost-effective approach towards enzymatic
hydrolysis of alkali-pretreated WHB biomass instead
of using commercial cellulases. The aquatic menace
water hyacinth, which is currently being used in waste
water treatment for its unique ability to absorb heavy
metal pollutants, could also be utilized as abundant
cheap feedstock for the production of fuel ethanol.
This study proved that water hyacinth has a potential
renewable and low-cost biomass for alcohol produc-
tion on the commercial scale. Present cost effective-
ness of respective process at a commercial scale
needs to be standardized, and the water hyacinth
biomass could be a better substrate source for alco-
hol production.

Table 4 Ethanol production in mono and co-culture fermentation process (SSF) using pretreated WHB at 60 h

Culture (s) E. E, E, Esy Microbial biomass (g DCW L
T. reesei 193°+0.12 032°+0.09 0.196°+0.11 0377°+0.11 21454001
F. oxysporum 178%+0.13 029%+0.17 0.176% + 0.08 0348 +0.08 2.06°+0.08
T. reesei+ P. stipitis 40.8° 009 068 +0.14 041124003 0798 +0.11 31224012
F. oxysporum + P. stipitis 36.8°+006 061°+0.12 0371 +0.07 0.720° +0.08 264°+020

E,, ethanol concentration (g L™"); E,, ethanol productivity (g L™ h™); E,, ethanol yield (g g~' WHBY); E,, specific ethanol yield (g g™' sugar). Values are the mean of
three replicates + SE. Mean followed by the same letter within treatment do not differ significantly (p = 0.05).
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