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Mitochondrial fusion and fission are involved in
stress tolerance of Candida glabrata
Shubo Li1,2,3,4, Liming Liu1,3,4* and Jian Chen1,3*
Abstract

Background: Recently, cell tolerance toward environmental stresses has become the major problem in the
development of industrial microbial fermentation. Acetoin is an important chemical that can be synthesized by
microbes. Its toxicity was investigated using Candida glabrata as the model in this study.

Results: A series of physiological and biochemical experiments demonstrated that the organic solvent acetoin can
inhibit cell growth by increasing intracellular reactive oxygen species (ROS) production and inducing damage to
mitochondria and cell apoptosis. Integrating RT-PCR experiments, the genes fzo1 and dnm1 were overexpressed
to regulate the balance between mitochondrial fusion and fission. Enhancement of mitochondrial fusion was shown
to significantly increase cell tolerance toward acetoin stress by inhibiting ROS production and increasing the
intracellular adenosine triphosphate (ATP) supply, which was also demonstrated by the addition of citrate.

Conclusions: Regulating mitochondrial fusion-fission may be an alternative strategy for rationally improving the
growth performance of eukaryotes under high environmental stress conditions, and also expands our knowledge
of the mechanisms of cell tolerance through the processes of energy-related metabolic pathways.
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Background
With the development of metabolic engineering, microor-
ganisms have been engineered to produce many important
bulk chemicals, such as ethanol, acetone, and butanol.
However, most of these are toxic to cells as they can dam-
age cell membranes and walls and interfere with essential
physiological processes [1]. Thus, improving cell tolerance
has become a major challenge for microbial fermentation.
To this end, genomic tools (transcriptomics, proteomics,
and metabolomics) have been applied to investigate mi-
crobial responses to various solvents, and a number of
strategies have been exploited to avoid solvent toxicity.
Recently, a visual summary of cellular responses directed
toward overcoming solvent stress and enhancing surviv-
ability was compiled [2-4], as follows: (i) metabolic detoxi-
fication, converting toxic compounds into less harmful
chemicals; (ii) expression of heat shock proteins (HSP),
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assisting in protein folding and preventing aggregation;
(iii) use of proton motive force and associated energy pro-
duction; (iv) molecular efflux pumps, exporting solvents
to the extracellular space; and (v) changes in cell mem-
brane composition and biophysics, combating the fluidiz-
ing effects of solvents. But, interestingly, most of these
involve energy-dependent processes, indicating that energy
and energetic processes play crucial roles in protecting
cells against environmental stress. For example, enhancing
glucose transport and catabolism favors increased energy
production and compensates for the energy expended in
relieving stress in prokaryotes and eukaryotes [5-7]. There-
fore, engineering the energy-generation machinery could
be an alternative approach to improving cell tolerance to-
ward environmental stress.
Mitochondria, as the power plants of the cell, can supply

most of its energy through oxidative phosphorylation, and
play an important role in maintaining cellular functions,
such as the citric acid cycle and cell apoptosis [8,9]. As
highly dynamic organelles, mitochondria maintain a balance
between frequent cycles of fusion and fission, which tightly
regulate mitochondrial number, morphology, and functions
under ever-changing physiological conditions [10-12]. The
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mitochondrial fusion process can be divided into three
events: docking, fusion of the outer membrane, and fusion
of the inner membrane. An increase in fusion events can re-
sult in mitochondrial inner connected networks, which are
protective against apoptotic sensitivity and promote survival
under conditions of stress [13]. In yeast, the mechanisms of
mitochondrial fusion and fission have been identified and
characterized. The fusion apparatus requires the activity of
the large mitochondrial GTPase mitofusin (MFN), consist-
ing of three core components, Fzo1, Ugo1, and Mgm1, of
which Fzo1 is the key component regulating lipid bilayer
fusion of mitochondrial outer membranes [11]. However,
for mitochondrial fission, the core apparatus needs another
large GTPase, a dynamin-related protein that includes
three components, Dnm1, Fis1, and Mdv1, of which Dnm1
is required for mitochondrial fission and apoptosis [12,14].
Therefore, mitochondria have the ability to coordinate a
balance between fusion and fission to handle cellular and
environmental stressors [15,16].
Candida glabrata, a haploid multivitamin auxotrophic

yeast, is an important strain used for industrial production
of pyruvate [17] and α-ketoglutaric acid [18]. Additionally,
C. glabrata was also used to produce malate [19] and acet-
oin [20], which can serve as a high value-added platform
for the food, pharmaceutical, and chemical industries as a
member of the C4-dicarboxylic acid family. However, high
concentrations of acetoin were found to inhibit cell growth
[20], and increasing the tolerance of cells may be favorable
to improving the fermentative performance of a strain.
To this aim, C. glabrata was used to study the effects of
acetoin stress on cellular physiological characteristics
(such as reactive oxygen species (ROS) and cell viabil-
ity), and the balance between mitochondrial fusion and
fission was also regulated to improve cellular physio-
logical characteristics, thus enhancing cell robustness.
These results demonstrated that enhancing mitochon-
drial fusion to increase the adenosine triphosphate
(ATP) supply may be a novel approach to improving cell
tolerance toward environmental stress.
Table 1 Plasmids and strains used in this study

Strains/plasmids Relevant characteristics

Plasmids

pYX212 2 μm, AmpR, URA3, PTPI

pYX212-fzo1 Harboring the gene of fzo1 fr

pYX212-dnm1 Harboring the gene of dnm1

Strains

C. glabrata CCTCC M202019 Multivitamin (thiamine, biotin

C. glabrata Δura3 The mutant derived from C. g

C-pYX C. glabrata Δura3 (pYX212)

C-Fzo1 C. glabrata Δura3 (pYX212- fz

C-Dnm1 C. glabrata Δura3 (pYX212- d
Methods
Strains and plasmids
Escherichia coli JM109 was purchased from Invitrogen
(Carlsbad, CA, USA) and used for plasmid construction. C.
glabrata Δura3 was derived from C. glabrata CCTCCM
202019 (multivitamin auxotroph) and used as the receptor
for gene overexpression. More information about the
plasmids and strains is given in Table 1.

Plasmid construction and transformation
The primers used in this work are listed in Additional
file 1: Table S1, and standard cloning and bacterial trans-
formations were performed according to Sambrook and
Russell [21]. The genes fzo1 and dnm1 were amplified by
polymerase chain reaction (PCR) from genomic DNA of
S. cerevisiae (CEN.PK2-1C), and then inserted into the
desired plasmid multi-cloning sites. In all cases, PCR
was performed using TaKaRa Pyrobest DNA Polymerase
(Takara Bio Inc, Shiga, Japan). All genes were sequenced
to ensure correct identify of the insert prior to transfor-
mations. Yeast strains were transformed using the lith-
ium acetate method [22].

Culture medium and conditions
During construction, strains were grown in complex
(YPD) medium consisting of 10 g/L yeast extract, 20 g/L
peptone, and 20 g/L glucose. All engineered strains were
screened on synthetic complete (SC) medium consisting
of 20 g/L glucose, 7 g/L urea, 5 g/L KH2PO4, 0.8 g/L
MgSO4 · 7H2O, 3 g/L sodium acetate, and 15 g/L agar, at
pH 6.0. They were fermented in a medium (medium A)
consisting of 100 g/L glucose, 3 g/L urea, 7 g/L KH2PO4,
0.8 g/L MgSO4 · 7H2O, and 5 g/L sodium acetate in
shake-flask culture (200 rpm, 30°C) using CaCO3 as the
buffering agent. The inoculum size and the vitamin solu-
tion (0.04 mg/L thiamine-HCl, 0.16 mg/L biotin, 0.4 mg/L
pyridoxine-HCl, and 8 mg/L nicotinic acid) were added to
all media to constitute 15% v/v and 1% v/v, respectively.
When necessary, different acetoin concentrations were
Reference

Lab collection

om Saccharomyces cerevisiae CEN.PK2-1C This study

from S. cerevisiae CEN.PK2-1C This study

, nicotinic acid and pyridoxine) auxotroph [21]

labrata CCTCC M202019 [19]

This study

o1) This study

nm1) This study
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added to the culture. Transformed E. coli JM109 cells
were grown at 37°C in Luria-Bertani (LB) medium con-
taining 100 μg/mL ampicillin.

Spotting assay for evaluation of acetoin tolerance
To evaluate microbial tolerance, a spotting assay was
applied in the presence of acetoin [23]. First, the cells
were incubated overnight in SC medium with shaking
(200 rpm, 30°C), and then they were collected and re-
suspended by centrifugation (10,000×g, 20 s) in sterilized
water. Second, the suspensions were serially diluted to
an OD660 of 1 × 100, 1 × 10−1, 1 × 10−2, 1 × 10−3, 1 × 10−4,
1 × 10−5, 1 × 10−6, 1 × 10−7, and 1 × 10−8, and then spot-
ted (5 μL each) onto agar plates containing different
acetoin concentrations. The plates were sealed with vinyl
plastic tape to prevent evaporation of acetoin and incu-
bated at 30°C.

Analytical methods
The optical absorbance at 660 nm (A660) was converted
to dry cell weight (DCW) according to the following for-
mula [17]: A660 DCW= 1: 0.23 (g/L).

Cell survivability
When the cells were incubated to OD660 = 1.0, some of
cultures were diluted in sterile deionized water and
spread evenly onto SC plates with varied acetoin con-
centrations (0%, 10%, and 15%), and the colony forming
units (cfu) were determined after 24 h of incubation.
Cell survival was expressed as survivability (cfu %), and
defined as below:

Cell survivability ¼ The number of colonies on
acetoin‐containing agar plate

The number of colonies on
non‐acetoin‐containing agar plate � 100%;

Physiological parameters
When the cells had been incubated to the exponential
phase (OD660 = 2.0), different acetoin concentrations
were added and continual cultivation proceeded for 24 h
(200 rpm, 30°C). Cells were then collected and washed
three times with sterilized water. Afterwards, the OD
was adjusted to 1.0 before measuring the following
physiological parameters (parameters were expressed as
mean values with standard error of the mean of at least
three independent experiments):

(1) Mitochondrial membrane potential (ΔΨm): ΔΨm

was measured using Rh123 (Sigma, Shanghai, China)
as described previously [24]. Cells were collected
and washed twice with phosphate buffer saline
(PBS), and the pellets were incubated with 500 μM
Rh123 in the dark for 10 min at room temperature.
Then cells were washed with PBS three times, and
the suspensions were measured using flow
cytometry (FCM, BD Biosciences, Shanghai, China).

(2) ROS level: cells were collected and prepared using
the ROS Assay Kit (Beyotime Institute of
Biotechnology, Jiangsu, China), and ROS production
was detected via flow cytometry.

(3) ATP production: cells were collected and prepared
according to the protocol of the ATP Assay Kit
(Beyotime Institute of Biotechnology, Jiangsu, China),
and ATP levels were measured with a luminometer.
Protein concentrations were determined using a BCA
Protein Assay Kit (Beyotime Institute of
Biotechnology, Jiangsu, China).

(4) Cell apoptosis: cell apoptosis was measured by flow
cytometric analysis using the FACS Calibur (BD
Biosciences, Shanghai, China). Fluorescence
emission was measured through a 500/50-nm
bandpass filter for Rh123-labeled cells, and through
a 660/16-nm bandpass filter for PI-labeled cells.
Propidium iodine (PI, Sigma, Shanghai, China)
staining was used to monitor cell membrane
integrity. Samples (500 μL) were incubated with
3 μL PI stock solution (1 mg/mL) for 5 min at room
temperature in the dark, followed by microscopy
and flow cytometry, and cell viability was calculated
by measuring PI fluorescence on a log scale. Before
measuring cell apoptosis and viability using staining
with flow cytometry, Rh123/PI dual staining was
quantified using samples from fresh cultures with or
without acetoin treatment. A minimum of 10,000
events were analyzed per sample at a low flow rate.
CELL QUEST software was used for data acquisition
and analysis [25].
Transcriptional analysis
Total RNA isolation was carried out using an RNAprep
pure Plant Kit, and reverse transcription (cDNA synthesis)
was performed according to the protocol of the Prime-
Script®RT reagent kit Perfect Real Time (Takara Bio Inc,
Shiga, Japan). Quantitative real-time PCR (RT-PCR) was
done using the β-ACTIN gene as the internal control, and
the primers used in RT-PCR are given in Additional file 1:
Table S1. Each sample was tested in triplicate in a 96-well
plate (Bio-Rad Corp, Hercules, CA, USA).
Statistical analysis
All experiments were carried out in triplicate, and the
results are expressed as mean ± standard deviation. SPSS
18 (SPSS Statistics 18.0, SPSS Institute, Inc., Chicago, IL,
2010, USA) was used for one-way analysis of variance
and canonical correlation analysis (CCA), and significant
differences (P < 0.05) among means were determined by
the least significant difference test.
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Results
Tolerance of C. glabrata toward acetoin stress
To determine the toxicity of the important chemical
acetoin, a spotting assay on agar plates containing different
acetoin concentrations was used. As shown in Figure 1a, C.
glabrata grew on agar plates containing 6 g/L of acetoin,
but was significantly inhibited by 15 g/L of acetoin. Further-
more, cell tolerance was also evaluated in shake-flask cul-
ture, and it was found that cell growth decreased by 7.5%
(6 g/L), 19.8% (12 g/L), 44.4% (15 g/L), and 59.2% (18 g/L),
respectively, compared to the control conditions (without
addition of acetoin) (Figure 1b). Therefore, 6 g/L of acetoin
had a slight effect on cell growth, which was consistent with
the spotting assay results.

Effects of acetoin stress on cellular physiological
characteristics
To investigate the toxic effects of acetoin on cells in
depth, the parameters cell viability and intracellular ROS
were measured under conditions of acetoin stress. Cell
viability was reduced to 22% after treatment with 18 g/L
acetoin (Figure 2a), while intracellular ROS production
increased to 32.5 from 14.1 compared to the control
conditions (without addition of acetoin) (Figure 2b). Fur-
thermore, double staining with Rh123 and PI, which
could discriminate intact, apoptotic, and necrotic cells,
was applied to observe cell apoptosis by flow cytometry.
As shown in Figure 3, Rh123/PI double fluorescent stain-
ing with flow cytometry generated a contour diagram with
three distinct regions: R1, necrotic cells; R2, apoptotic
cells; R3, intact cells. When the concentration of acetoin
increased from 0 to 18 g/L, the percentage of necrotic
cells (R1) increased slightly from 0.8% to 2.15%, but the
percentage of apoptotic cells (R2) increased significantly
to 96.48%. Correspondingly, the percentage of intact cells
(R3) decreased markedly from 99.22% to 1.37%. Therefore,
(a)

Figure 1 Cell tolerance toward acetoin stress. Application of a spotting
with acetoin added at 0 h (b). Error bars represent mean values and standa
the levels of cell apoptosis were effectively increased dur-
ing high levels of acetoin stress. These results demonstrate
that acetoin can dramatically change the levels of cell via-
bility and intracellular ROS, and induce cell apoptosis and
death, and then significantly inhibit cell growth.

Roles of mitochondrial fusion and fission in tolerance
toward acetoin stress
In yeast, mitochondria are the major source of ROS pro-
duction, and the processes of mitochondrial fusion-fission
are closely related to cell apoptosis [26]. Therefore, the
gene expression levels of fzo1 and dnm1 were measured by
RT-PCR under different acetoin conditions. As shown in
Figure 4a, the expression levels of fzo1 and dnm1 were dra-
matically enhanced, increased by 3.4- and 1.8-fold, respect-
ively, at 12 g/L of acetoin. To confirm these results,
engineered C-Fzo1 and C-Dnm1 overexpressing fzo1 and
dnm1, respectively, were constructed using the strain C-
pYX (harboring the plasmid pY212) as the control. As
shown in Figure 4b, no distinct differences were observed
in cell growth between C-pYX, C-Fzo1, and C-Dnm1 in
the absence of acetoin stress. But under high acetoin stress,
the engineered strain C-pFzo1 exhibited superior tolerance
compared to the strain C-pYX, as it grew well on an agar
plate containing 18 g/L of acetoin, and even grew in the
presence of 20 g/L acetoin. In contrast, the strain C-Dnm1
was significantly inhibited in the presence of 15 g/L acet-
oin, showing lower tolerance than strain C-pYX. Therefore,
increasing mitochondrial fusion improved cell tolerance,
whereas increasing mitochondrial fission had a negative
effect on cell tolerance toward acetoin stress.

Effects of mitochondrial fusion-fission on physiological
characteristics
To elucidate the mechanisms by which mitochondrial
fusion-fission regulate cell tolerance, the effects of
(b)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0 20 40 60 80

D
C

W
 (

g/
L

)

Time (h)

assay (a) and time course of cell growth (DCW) in shake-flask culture
rd deviations of three independent experiments.



(a) (b)

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14 16 18 20

C
el

l v
ia

bi
lit

y 

Acetoin (g/L)

0

5

10

15

20

25

30

35

0 6 12 15 18

R
O

S 
(m

ea
n)

Acetoin (g/L)

Figure 2 Effects of different acetoin concentrations on cell viability (a) and intracellular ROS production (b). Error bars represent mean
values and standard deviations of three independent experiments.
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mitochondrial fusion-fission on cellular physiological
characteristics were further investigated. As shown in
Figure 5, the intracellular environment significantly chan-
ged due to the expression of mitofusin in the engineered
strains. Compared to the control conditions (without
addition of acetoin), some different characteristics were
observed in engineered strains cultured with 15 g/L of
acetoin, as follows. (1) Strain C-Fzo1 effectively inhibited
the production of intracellular ROS (increased by only
69.3%), which was far lower than that produced by strains
C-pYX (increased by 144%) and C-Dnm1 (increased
by 180%) (Figure 5a). (2) Strain C-Fzo1 significantly
R1:2.15%

R2:96.48%

R3:1.37%

(18 g/L)

R1:0.80%

R3:99.22%

(0 g/L)

R1:1.1

R3:98

(6 g

Figure 3 Contour diagram of the flow cytometry of C. glabrata cells u
Rh123 staining; FL3-H, PI staining. Region 1 (R1), percentage of necrotic cells;
intact cells.
maintained cell survivability and ATP production, as these
parameters decreased by 44.3% and 40.7%, respectively, to
values that were higher than those of strains C-pYX
(decreased by 64.4% and 69.7%, respectively) and C-Dnm1
(decreased by 75.7% and 76.1%, respectively) (Figure 5b,c).
Furthermore, strain C-Fzo1 more effectively maintained the
balance of mitochondrial membrane potential (ΔΨm, with
a decrease of 18.6%) than strain C-Dnm1 (ΔΨm decreased
by 48.2%), which may be due to lower ROS production and
higher ATP formation (Figure 5d). These results demon-
strate that the enhancement of mitochondrial fusion could
improve the ATP supply and decrease ROS production to
R1:2.21%

R2:96.68%

R3:1.08%

(21 g/L)

0%

.89%

/L)

R1:4.05%

R2:87.98%

R3:6.97%

(12 g/L)

nder the conditions of different acetoin concentrations. FL1-H,
region 2 (R2), percentage of apoptotic cells; region 3 (R3), percentage of
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maintain the balance of ΔΨm, and thus increase cell surviv-
ability and cell tolerance against acetoin stress.

Effect of citrate on C. glabrata adaptation to acetoin stress
According to the results of a previous study [27], 50 nmol/
L of sodium citrate was added to determine its effects on
cell growth and ATP production of the wild-type strain
under different acetoin conditions. As shown in Figure 6a,
compared to the control conditions (without addition of
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Figure 5 Effects of acetoin stress on cell physiological characteristics
viability. (c) ATP production. (d) ΔΨm. Error bars represent mean values an
C-pYX; white square, C-Fzo1; blue square, C-Dnm1) (*P < 0.05 vs. the group
sodium citrate), sodium citrate effectively improved intra-
cellular ATP supply, increasing ATP production by 18.8%
(6 g/L of acetoin), 48.9% (12 g/L of acetoin), and 11.7%
(15 g/L of acetoin). Correspondingly, cell tolerance of
acetoin stress was also enhanced, so that cell growth
increased by 18.2% (6 g/L of acetoin), 30.1% (12 g/L of
acetoin), and 9.5% (15 g/L of acetoin) (Figure 6b).
Therefore, improving the supply of cellular ATP could
indeed increase cell tolerance toward acetoin stress.
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Discussion
In cells, mitochondria continually generate ROS as the
byproduct of electron transport during oxidative phos-
phorylation. If ROS production increases it can damage
mitochondrial components (such as proteins, lipids, and
DNA) and then weaken metabolism and further increase
ROS generation, causing a ‘vicious downward spiral’ of
ROS generation and damage accumulation [28,29]. Add-
itionally, intracellular ROS can participate in signaling
effects to control the activity of protein kinases and
phosphates and regulate gene expression, and thus induce
cell apoptosis and cell death [30,31]. Here, the results indi-
cated that acetoin stress could significantly increase intra-
cellular ROS formation, and then decrease cell viability
and induce cell apoptosis (Figures 2 and 3). Therefore, we
hypothesized that reducing intracellular ROS production
may be an alternative route for enhancing cell tolerance
toward acetoin stress.
In eukaryotes, mitochondrial fusion-fission is important

for maintaining mitochondrial numbers and morphology,
and plays a critical role in sustaining functional mitochon-
dria [32,33]. To date, the processes of mitochondrial
fusion-fission have been used to investigate and explain
cell death induced by different environmental stresses,
such as ethanol [34], hyperosmotic [35], and acetic acid
stress [36]. In such cases mitochondrial fission could fa-
cilitate apoptosis by inducing mitochondrial fragmentation
and ROS production, but fusion could compensate the
contents of partially damaged mitochondria and maintain
energy output to mitigate various stresses. In this study,
the processes of mitochondrial fusion-fission were regu-
lated and used to enhance cellular properties to combat
acetoin stress. As a result, the engineered strain C-Fzo1
overexpressing mitofusin fzo1, which regulates mitochon-
drial fusion and maintains mitochondrial morphology,
could effectively inhibit intracellular ROS formation
and increase cell viability, and thus enhance cell tolerance
during high levels of acetoin stress.
But, interestingly, enhancement of mitochondrial fusion
could also effectively improve ATP production and help
maintain the mitochondrial membrane potential (ΔΨm),
which may be another reason for the high tolerance of
strain C-Fzo1. Apoptosis was apparent through meas-
urement of characteristic apoptotic indicators, such as
decreased ΔΨm, production of ROS, and caspase involve-
ment, in which ΔΨm became transiently increased upon
apoptotic stimulation in yeast cells, resulting in mitochon-
drial fragmentation, the release of apoptogenic factors
including cytochrome c and apoptosis-inducing-factor
(AIF) [37,38], and a permanent decrease in ΔΨm during
subsequent apoptotic processes [39,40]. Therefore, main-
taining the mitochondrial membrane potential may be
favorable for enhancing the tolerance of cells toward
environmental stress. Additionally, citrate was added and
this demonstrated that improving the ATP supply had a
positive effect on cell growth in the presence of acetoin
stress. Actually, mitochondrial fission-fusion has been
shown to alter energy requirements to regulate cell com-
ponents, so that hyperfused mitochondria led to an
increase in mitochondrial oxygen consumption and ATP
formation that enhanced cell growth [41,42]. Therefore,
the results reported here provide an alternative strategy
for rationally improving the growth performance of eukary-
otes, especially those that are organic solvent producers,
under high organic solvent conditions, and also expand
our knowledge of the mechanism of organic solvent tol-
erance through the processes of energy-related meta-
bolic pathways.

Conclusions
In this study, the processes of mitochondrial fusion-fission
were regulated and used to inhibit intracellular ROS pro-
duction, raise the intracellular ATP supply, and maintain
the mitochondrial membrane potential, and therefore
increase cell tolerance toward acetoin stress. However,
mitochondrial fission-fusion can also regulate many other
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physiological functions, such as Ca2+ homeostasis [43],
metabolite transportation, and signaling exchange [32], to
maintain the metabolic stability of mitochondria. Hence,
the roles of mitochondrial fission-fusion in influencing the
intracellular environment and physiological characteristics
require further comprehensive investigation, exploiting
some novel strategies to improve the performance of
industrial microorganisms in a future study.

Additional file

Additional file 1: Table S1. Primers used for RT-PCR and PCR amplification
in this study.
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