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An overview on biofuel and biochemical
production by photosynthetic microorganisms
with understanding of the metabolism and by
metabolic engineering together with efficient
cultivation and downstream processing
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Abstract

Biofuel and biochemical production by photosynthetic microorganisms such as cyanobacteria and algae is attractive to
improve energy security and to reduce CO2 emission, contributing to the environmental problems such as global
warming. Although biofuel production by photosynthetic microorganisms is called as the third generation biofuels,
and significant innovation is necessary for the feasibility in practice, these fuels are attractive due to renewable and
potentially carbon neutral resources. Moreover, photosynthetic microorganisms are attractive since they can grow on
non-arable land and utilize saline and wastewater streams. Highly versatile and genetically tractable photosynthetic
microorganisms need to capture solar energy and convert atmospheric and waste CO2 to high-energy chemical
products. Understanding of the metabolism and the efficient metabolic engineering of the photosynthetic organisms
together with cultivation and separation processes as well as increased CO2 assimilation enables the enhancement of
the feasibility of biofuel and biochemical production.
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Background
International Panel on Climate Change (IPCC) keeps
warning the global society on global warming caused by
green-house gases such as CO2 based on the accumulat-
ing data and the reliable prediction model. IPCC asks
world societies to make decisions to invest for the reduc-
tion of CO2 emissions mostly caused by human activ-
ities. This may be also considered from the point of view
of future cost caused by the severe climate change due
to global warming. Namely, the global warming may
cause serious local climate change as well as the rise in
the sea level, which give severe damage to the societies
worldwide. In fact, we have often experienced disastrous
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climate change year by year, and it seems to be more
and more severe.
The global carbon cycle has been perturbed by emis-

sions from the combustion of fossil fuels and by changes
in land use and land intensity. These perturbations have
led to cumulative anthrogenic CO2 emissions of 570 ± 70
petagrams carbon since 1750 to 2012 [1]. Seventy percent
of these emissions originated from the combustion of
fossil fuels [1].
According to the data of International Energy Agency

(OECD, 2011), total energy consumption in the world
increased more than 78% over the last three decades.
Major usage of fossil fuels causes serious environmental
problems worldwide, and much attention has been fo-
cused on reducing their usage by alternative clean fuels.
Namely, due to the global warming problem caused by
the increased use of fossil fuels together with limited
amount of fossil fuels and the fluctuating cost caused
by unstable political disturbances, alternative renewable
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energy sources have recently been paid much attention
[2]. In fact, at the present staggering rate of consump-
tion, the world fossil oil reserves will be exhausted
in less than 50 years [3]. Carbon neutral biofuels are
needed to replace the petroleum oil which causes global
warming caused by the emission of green house gases.
Currently, the world consumes about 15 terawatts of
energy per year, and only 7.8% of this is derived from
renewable energy sources [4]. Moreover, in comparison
with other forms of renewable energy such as wind,
tidal, and solar energy, liquid biofuels allow solar energy
to be stored and also to be used directly in existing en-
gines and transport infrastructure [5].
Annually, about 5,500 × 1021 J of solar energy reaches the

Earth’s atmosphere [6]. Photosynthetic organisms including
higher plants, microalgae, and cyanobacteria play the cru-
cial roles of capturing solar energy and storing it as chem-
ical energy [7]. The amount of solar energy currently
captured by arable crops is limited by arable land area
(about 3.9% of the Earth’s surface area), fresh water (about
1% of global water), nutrient supply, and solar energy-to-
biomass conversion efficiency [8-10]. Terrestrial plants cap-
ture 121.7 × 109 metric tons of carbon from the atmosphere
each year [11] using solar light and CO2 as the energy and
carbon sources. Photosynthesized carbon is then chemically
converted to a variety of chemical compounds, and it is at-
tractive to use photosynthetic organisms as green factories
for producing carbohydrates, liquid fuels, and pharmaceut-
ical drugs as well as food and feed, thus contributing to the
balancing of the atmospheric carbon [12].
The advantages of using photosynthetic microorgan-

isms include the photosynthetic efficiency, location on
non-arable land (about 25% of the Earth’s surface), and
the use of saline and wastewater source [7], where less
than 1% of the available solar energy flux is converted
into chemical energy by photosynthesis [13], and much
effort has been focused on the enhancement of photo-
synthetic carbon fixation.
The so-called first generation biofuels have been pro-

duced from corn starch and sugarcane. However, this
causes the problem of the so-called ‘food and energy is-
sues’ as the production scale increases. The second gener-
ation biofuels production from lignocellulosic biomass has
thus been paid recent attention. However, it requires
energy-intensive pretreatment for the degradation of lig-
nocellulosic biomass [14]. The third generation biofuel
production from photosynthetic organisms such as cyano-
bacteria and algae has been also attracted some attention,
but the cell growth rate is quite low, and thus the product-
ivity of the metabolites is significantly low [15].
Although the biofuel and biochemical production by

photosynthetic organisms has a big hurdle to overcome,
it is still highly attractive due to CO2 fixation with sun-
light (and water) from environmental protection point of
view, and thus contributing to the global warming prob-
lem as well. A variety of host organisms such as bacteria,
fungi, and microalgae may be considered for the produc-
tion of biofuels and biochemicals from CO2 with sun-
light. Although photosynthetic organisms offer the
ability to produce biofuels and biochemicals directly
from CO2 and sunlight, significant innovation is inevit-
able for the process development in relation to large-
scale cultivation, harvesting, and product separation,
since the production rate is significantly low.
The commonly used photosynthetic organisms for bio-

fuel and biochemical production are algae and cyanobac-
teria [16,17]. Microalgae are photosynthetic eukaryotic
organisms with size ranging from 1 to 100 μm, while
cyanobacteria are prokaryotic organisms with size ran-
ging from 1 to 10 μm. Cyanobacteria gave rise to the
chloroplasts of eukaryotic algae and also land plants,
and they share many features such as the ability to drive
photosynthetic water photolysis and thereby contribute
to the production of both atmospheric oxygen and re-
duced organic carbon [7].
Microalgae are unicellular photosynthetic microorgan-

isms that can convert solar energy to chemical energy
with efficiency of 10 to 50 times greater than terrestrial
plants [18]. Algae have far higher cell growth rates than
plants and, therefore, have much smaller footprints for
land required for producing energy [19-21]. Many
microalgae are rich in oil especially under nitrogen-
starved condition, which can be converted to biodiesel
using existing technology. The productivity of these
photosynthetic microorganisms in converting CO2 into
carbon-rich lipids, only a step or two away from bio-
diesel, significantly exceeds that of agricultural oleagin-
ous crops, without competing for arable land [22]. They
require aquatic environments that may vary from fresh-
water to seawater. Not only do these organisms fix CO2,
but they also have the potential to be used for the
production of inexpensive bulk chemicals, because the
major inputs to the system (light and CO2) are essen-
tially free [23]. Microalgae cells contain approximately
50% of carbon, in which 1.8 kg of CO2 is fixed by produ-
cing 1 kg of microalgae biomass [19].
Recent studies have reported that Chlorella sp., Scene-

desmus sp., and Botryococcus braunii are among the
microalgae strains that have shown promising result to
bio-mitigate O2 emission with typical CO2 consumption
rate of 200 to 1,300 mg/L/day [24-28]. Successful com-
mercial utilization of microalgae has been established in
low-volume, high-value derivatives such as nutritional
supplements, antioxidants, cosmetics, natural dyes, and
polyunsaturated fatty acids (PUFA) [29].
In the case of plants, it is frequently found that metabol-

ite pools exist in more than one location or that the sub-
cellular location of one or more reactions is uncertain
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[30]. Entire sections of metabolic pathways like glycolysis
are duplicated between organelles, particularly the plastid
and cytosol, with both being potentially active and carrying
flux [31]. The simplest way is to examine metabolites which
are formed in only one of the compartments [32-36].
Another method involves the fraction of cellular mater-
ial prior to metabolite analysis [37]. Unfortunately, even
with the supplemental information provided by analyzing
compartment-specific metabolites, it may still be difficult
to statistically distinguish different configurations of the
metabolic map [38].
In the present article, we focus on the typical photosyn-

thetic microorganisms such as algae and cyanobacteria and
attempted to make a review on the metabolic regulation,
metabolic engineering, and process development with effi-
cient operation for the production of biofuels and chemi-
cals to understand the current status and expect future
perspectives.

Candidate photosynthetic microorganisms for biofuel
production
Perhaps the most comprehensive evaluation of algal spe-
cies has been orchestrated by the US Department of
Energy’s Aquatic Species Program (ASP) to develop
microalgae as a source of biodiesel [29]. Over 3,000 strains
of microalgae have been isolated from ponds and seas.
Cellular oil content varies with growth phases [39]. The
cells of the chlorophyte microalga Parietochloris incise
synthesize almost twice as many triacylglycerols (TAGs)
in the stationary phase than in the exponential growth
phase [40]. Although microalgae have a high level of bio-
diversity, only a few species can be subjected to genetic
manipulation [41]. The algae with the best developed gen-
etic toolbox are the unicellular green microalgae Chlamy-
domonas reinhardtii [42]. It is a well-established model
organism for the study of various cellular processes such
as photosynthesis, flagella, starch metabolism, and photo-
biological production of hydrogen [42]. Like many other
algal species, C. reinhardtii can accumulate significant
amount of oil when subjected to unfavorable environmen-
tal conditions [43-47]. C. reinhardtii has proven to be a
useful model organism to study the improvement of bio-
diesel production by microalgae [48,49]. It is unicellular
and stays as haploid during most of its life cycle [42], thus
it is particularly useful in the context of a forward genetic
approach, because the mutant phenotype can be observed
during the first generation and does not need to reach a
diploid homozygous stage [50]. The freshwater green
microalgae P incise enhances not only its production of
TAG under nitrogen starvation but also the production of
arachidonic acid, a valuable nutraceutical [51]. Green algae
including Spirogyra sp. and Chlorococum sp. have been
shown to accumulate high levels of polysaccharides both
in their complex cell walls and as starch [4]. This starch
can be used for bioethanol production. Bioethanol pro-
duction from algae shows significant potential due to their
low percentage of lignin and hemicelluloses as compared
to other lignocellulosic plants [52]. Microalgae and cyano-
bacteria are also able to directly produce biohydrogen
through photofermentation in an anaerobic process in-
volving oxidation of ferredoxin by the hydrogenase en-
zyme [53].
Many species of macroalgae are known to have high

levels of carbohydrate, although in many cases these car-
bohydrates consist of galactose [54]. Recent research has
shown that the red algae Gelidium amansii and the
brown algae Laminaria japonica are both a potential
biomass source for biohydrogen production through an-
aerobic fermentation [54,55]. Recently, microalgae have
also been paid attention from the point of view of biogas
production in the anaerobic fermentation [4].

Metabolism of photosynthetic microorganisms
Oxygenic photosynthesis is the process by which plants,
algae, and cyanobacteria convert sunlight and CO2 into
chemical energy and biomass. The algal photosynthesis
is at least able to convert approximately 5% to 7% of in-
cident light energy to biomass, where a systems-based
approach to understand the stresses and efficiencies as-
sociated with light energy harvesting, CO2 fixation, and
carbon partitioning is necessary to make headway to-
ward improving photosynthetic yields [56].
The cell growth conditions are roughly classified as

autotrophic condition for the case of using only CO2

under light condition, mixotrohphic condition for the
case of using both carbohydrate and CO2 under light
condition, and heterotrphic condition for the case of
using carbohydrate under dark condition. Although
autotrophic condition is preferred from the environmen-
tal protection point of view using only CO2 as a carbon
source, the cell growth rate is significantly low, and thus
the productivity of the metabolic products is low.
The atmospheric CO2 is fixed either by C3 photosyn-

thesis where the three carbon molecule such as 3-
phosphogrycerate (3PG) is used as the product of ribulose
1,5-bisphosphate carboxylase (RubisCO) reaction or by C4

photosynthesis where four carbon molecule such as oxalo-
acetate (OAA) is used as the product of phosphoenol
pyruvate (PEP) carboxylase (Ppc) reaction followed by the
decarboxylation at malic enzyme (Mez) from malate yield-
ing pyruvate. The C4 photosynthesis may be created by
evolution from ancestral C3 photosynthesis during a glo-
bal decline in atmospheric CO2 level [57]. The C4 pathway
will have higher efficiency than the C3 pathway in CO2 fix-
ing with which they consume water and nitrogen [58].
Since CO2 fixation is attractive from the environmen-

tal protection point of view, several strategies have been
considered for the efficient carbon fixation for the cell
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synthesis [59], where carbon fixation can be enhanced
by amplifying carboxysome expression [60] or heterol-
ogous expression of RubisCO gene rbcLS [61]. The CO2

fixation can be also enhanced by a hybrid RubisCO,
which contains both plant and microalgae subunits [62].
The green organisms such as plants and algae gain en-

ergy via aerobic respiration, and the metabolism changes
depending on the oxygen availability. The green organ-
isms are exposed to a variety of oxygen availability in the
environment that may vary from fully aerobic state (nor-
moxia) to oxygen deficiency (hypoxia) or the anaerobic
condition (anoxia). In the context of recent climate
change, excess rainfall and frequent flooding may cause
the green cells subjected to hypoxia or anoxia condition
[63]. Oxygen is the final acceptor of electrons in the
mitochondrial oxidative phosphorylation to generate
ATP, while under hypoxia and anoxia conditions, the
small amount of ATP is generated through glycolysis,
and NAD(P)H must be reoxidized by the fermentative
pathways. Under oxygen-limiting condition, the glycoly-
sis flux is accelerated by the so-called ‘Pasteur effect’ ,
and plant metabolism uses pyruvate to direct towards
ethanolic and lactic fermentations [64]. In almost all
plant, a rapid activation of lactate dehydrogenase (LDH)
has been observed under oxygen limitation [63]. Lactate
production causes damage to the cell by lowering cyto-
plasmic pH, and thus lactate production is transient
eventually replaced by ethanolic fermentation. The α-
ketoglutaric acid (αKG) in the TCA cycle can be oxidized
with the incorporation of NH4

+ and NADH to form glu-
tamate (Glu), which is then decarboxylated to ɤ-amino
butyric acid (GABA) by glutamate decarboxylase
(GDC), where some protons are utilized in GDC reac-
tion and stabilizes the cytosolic pH [63].

Metabolism of algae
It is critical to properly understand the metabolism in
response to culture environment, where the systems
biology approaches including metabolite profiling [65]
and integration of different levels of information such as
metabolites, fluxes, transcript, and protein abundance
[66] are useful.
Consider the metabolism of photosynthetic microor-

ganisms [67]. The light energy is incorporated into the
cell, where light quanta absorbed by pigments drive the
photosynthetic electron transport, where NADPH in-
stead of NADH is used to generate ATP at the respira-
tory chain. The primal pathway for CO2 fixation is the
Calvin-Benson-Bassham (CBB) cycle, where the first step
is catalyzed by RubisCO (Figure 1). This enzyme is also
an oxygenase, which can react with O2 and lead to a dif-
ferent pathway called photorespiration. Algae have the
photorespiration pathway, and photosynthesis is inhib-
ited by high O2 concentration. Photosynthesis reactions
such as light reactions, CBB cycle, and starch synthesis
occur in chloroplasts. Algae and plant cells have subcel-
lular compartments such as chloroplast, mitochondria,
and cytoplasm. After the export of GAP from the
chloroplast to cytoplasm, the carbon flow is divided into
the sugar synthesis pathway or the glycolytic pathway to
form pyruvate. Sugars such as sucrose are the major
storage products in the cytoplasm of plant cells. In plant
cells, replenishment of carbon to maintain the operation
of the TCA cycle is achieved by anaplerotic reactions in-
volving CO2 fixation by PEP carboxylase (Ppc). The pen-
tose phosphate (PP) pathway operates in the cytoplasm,
where CBB cycle is functioning in the chloroplast.
Of all the pigments, chlorophyll takes a major fraction.

δ-aminolevulinic acid (δ-ALA) is the key chlorophyll pre-
cursor molecule. The classical succinate-glycine pathway
is the condensation of glycine and succinyl-CoA catalyzed
by δ-ALA synthetase. In addition, glutamate and αKG are
incorporated into δ-ALA much more efficiently than are
glycine and succinate in many green cells. Although most
of the fatty acid synthesis occurs in the chloroplast, the
source of acetyl-coenzyme. A (AcCoA) derives from its
synthesis in the mitochondria. The fatty acid composition
of the lipids of Chlorella cells varies considerably, particu-
larly for the α-linolenic acid (C18:3) content [67].
Under autotrophic condition, significant ATP is formed

from mitochondrial oxidative phosphorylation. The CBB
cycle is the main ATP sink in the autotrophic culture. The
ATP yield decreases in the following order: heterotroph >
mixotroph > autotroph [67].
Metabolism of cyanobacteria
Cyanobacteria are commonly used as model systems for
the metabolism of higher plants. Cyanobacteria possess
certain promising properties such as (1) large amounts of
lipids, commonly present in thylakoid membranes, (2)
higher photosynthetic levels and the cell growth rates
compared to algae and higher plants, (3) easy growth with
basic nutritional requirements such as air (CO2 +N2),
water, and mineral salts with light [68].
The central metabolic network in Synechocystis is shown

in Figure 2, which includes those of the glycolysis, PP
pathway, CBB cycle, part of TCA cycle, and the C1 metab-
olism. Cyanobacteria have an incomplete TCA cycle lack-
ing αketoglutarate dehydrogenase (KGDH) [69,70]. The
enzymes, isocitrate lyase (Icl) and malate synthase (MS),
which form the glyoxylate pathway, function in cyanobac-
teria [71]. The Mez and PEP synthase (Pps) are respon-
sible for the gluconeogenetic steps, where the PEP
carboxy kinase (Pck) is absent in Synechocystis. The PP
pathway operates for glucose catabolism mainly in the
heterotrophic conditions, while the CBB cycle is active
under mixotrophic and autotrophic conditions.



Figure 1 Metabolic pathways of photosynthetic microorganism (adapted from [67]).
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The metabolic flux analysis of Synechocystis cultivated
under heterotrophic and mixotrophic conditions has been
made based on 13C-metabolic flux analysis (13C-MFA)
[72,73], and the metabolic regulation analysis has also
been made with integration of different levels of informa-
tion [74]. In the heterotrophic cultivation of Synechocystis,
more than 90% of glucose is channeled through the PP
pathway (Figure 3) [72,73]. The high flux through the
oxidative PP pathway yields a large amount of NADPH, as
well as biosynthetic precursors such as ribose 5-phospate
(R5P) and erythrose 4-phosphate (E4P). In the mixo-
trophic culture, CO2 is fixed through the CBB cycle. The
conventional 13C-MFA is based on the steady state and
thus limited to heterotrophic and mixotrophic conditions
[72,73,75], while 13C-MFA for autotrophic condition can
be made by the isotopically nonstationary metabolic flux
analysis (MFA) [76] with transient measurements of iso-
tope incorporation following a step change from unlabeled
to labeled CO2 (Figure 3) [77].
Since cyanobacteria have negligible photorespiration

and produce little or no glycolate during photosynthesis,
it is unlikely that serine is synthesized, as in higher
plants, from glycine by the glycolate pathway. Serine is
synthesized directly from 3PG through a phosphorylated
route in cyanobacteria [78].
Under both heterotrophic and mixotrophic conditions,

the relative flux through Ppc is high. The reaction cata-
lyzed by Ppc contributes to about 25% of the assimilated
CO2 under mixotrophic condition [72,73], indicating that
Ppc is important for the fixation of CO2 in cyanobacterial
cells [79], where cyanobacterial cells fix significant
amounts of carbon as C4 acids under light conditions.
Considering that Mez in cyanobacteria is NADP-linked
[80], it is more likely that Ppc and Mez serve as a device
to fix a large amount of CO2 as C4 acids and then release
CO2 and produce NADPH by the decarboxylation of mal-
ate. This Ppc and Mez pathways can effectively bypass the
Pyk reaction, where its activity is repressed under light
condition [77]. This is similar to the carbon metabolism in
C4 plants, for which CO2 and NADPH generated by Mez
are utilized by the CBB cycle. In fact, although the major
pathway of CO2 fixation in the CBB cycle is similar to that
in C3 plants, cyanobacteria have many of the physiological
characteristics of C4 plants.
In the mixotrophic culture, copious amounts of redu-

cing power are required in the CBB cycle to fix CO2 to



Figure 2 Metabolic pathways of cyanobacteria.
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carbohydrates. Hence, there has to be a supply of NADPH
in large amounts to fulfill the biosynthetic demands. The
PP pathway in the heterotrophic culture and the photo-
synthetic electron transport in the mixotrophic culture
accounts for a major fraction of NADPH production.
Moreover, cyanobacteria utilize NADPH as an electron
donor of the respiratory electron transport chain. There-
fore, the excess NADPH is reoxidized during respiration
to provide energy. The CBB cycle is the main ATP sink in
the mixotrophic culture.

Catabolic regulation and carbon storage regulation under
nitrogen limitation
Like many bacteria on earth, photosynthetic organisms
are found in diverse ecological habitats, where the or-
ganisms are exposed to periods of severe nutrient starva-
tion. In particular, cyanobacteria are found in a wide
range of ecological habitats including oceans and lakes
[81]. They also survive in deserts, polar regions, and hot
springs, where the nutrient starvation is much more
severe.
Under unfavorable growth condition such as nitrogen

starvation, TAG is typically produced in microalgae,
where its fraction ranges from 20% to 60% (weight/dry
weight) [82]. The efficient production of TAG in micro-
algae requires a thorough understanding of lipid metab-
olism and TAG accumulation [83]. It is important to
analyze different levels of information to uncover the
molecular mechanism underlying the increased TAG ac-
cumulation for microalgae such as C. reinhardtii and its
starchless and cell wall-deficient mutant strains [84].
Cyanobacteria have sophisticated mechanisms to cope

with nitrogen limitation, where the primary step is the
capture of nitrogen-containing compounds with high af-
finity, where nitrate, nitrite, and ammonium are the typ-
ical nitrogen sources with a preference for ammonium
[85]. Some strains can fix dinitrogen gas and may use also
urea, cyanate, and amino acids as additional nitrogen



(a) (b) (c)
Figure 3 13C-Metabolic flux distribution of Synecocystis sp. PCC6803 cultivated under heterotrophic (a), mixotrophic (b), and (c) autotrophic
conditions. The flux values were obtained from [73] for (a) and (b) and from [77] for (c).
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sources [85-87]. Nitrogen compounds are eventually con-
verted to ammonium and assimilated for biosynthesis via
the glutamin synthetase (GS)-glutamine oxoglutarate ami-
notransferase or glutamate synthase (GOGAT) cycle,
where glutamate dehydrogenase (GDH) pathway does not
function, probably due to low affinity to ammonium.
For survival under nitrogen starvation, cyanobacteria

accumulate reserve materials in the form of inclusions
and granurs, where the induction for their accumulation
is made upon high light or CO2, nutrient starvation as
well as addition of arginine or chloramphenicol [88].
Cyanophycin (multi-l-arginyl-poly-[L-aspartic acid]) is a
nitrogen reserve and is a non-ribosomally synthesized
peptide consisting of equi-molar quantities of alginine
(Alg) and aspatic acid (Asp), where cyanobacteria may
consume internal storage compounds such as cyanophy-
cin as nitrogen source upon nitrogen starvation [88,89].
After cyanophycin is exhausted, cells degrade the phy-

cobilisomes that are large protein-rich right-harvesting
antennae attached to the outside of the thylakoid mem-
branes and support the light-dependent reactions of
photosynthesis [90], where it is composed of rod and
core proteins to provide nitrogen, which leads to a color
change of cells from blue-green to yellow-green, known
as bleaching [90]. Upon availability of nitrogen source
again, cyanophycin is immediately synthesized [89].
Nutrient balance is important for the cell growth, since

proteins, nucleic acids, carbohydrates, lipids, and pigments
must be supplied in a suitable ratio for the balanced
growth. In eukaryotic microalgae, autophagy is induced by
nitrogen starvation to degrade cytoplasmic components in-
cluding plastids in the large vacuoles [91]. In cyanobacteria,
a unique Nb1A-dependent mechanism is induced to de-
grade certain phycobiliproteins, where the non-bleaching
phenotype gene, nblA plays an important role for the deg-
radation of phycobiliprotein [92,93]. The phycobilisome
has a role in nitrogen storage as well as photosynthetic an-
tenna [90]. Moreover, NblA1/A2-dependent protein turn-
over contributes to the maintenance of many amino acids
(AAs) in NblA1/A2-dependently, while Lys pool markedly
increased under sulfur starvation in cyanobacteria [94].
The internal C/N ratio is sensed by the PII protein,

GlnB, in particular under N-limitation [95]. The global ni-
trogen regulator NtcA plays important roles for nitrogen
regulation, where it senses αKG levels and regulates the
genes involved in nitrogen assimilation. NtcA directly reg-
ulates the expression of nrrA gene which encodes a
nitrogen-regulated response regulator of the OmpR fam-
ily. NrrA is involved in induction of sugar catabolic genes
as well under nitrogen starvation [96]. NrrA also regulates
glycogen catabolism in Anabaena sp. by directly regulat-
ing expression of glgP gene encoding glycogen phosphly-
lase and sigE gene encoding a group 2 σ factor of RNA
polymerase [97]. Nrr controls cyanophycin accumulation
and glycogen catabolism in cyanobacteria [98], where
glycogen is accumulated, whereas the expression of sugar
catabolic genes is widely upregulated under nitrogen star-
vation [99].
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Microalgae produce certain biomass compounds under
nutrient limitation [100]. In cyanobacteria such as Syne-
chocystis sp., polyhydoxy butyric acid (PHB), one of poly-
hydroxy alcanoate (PHA), is accumulated under nitrogen
or phosphate starvation, where PHB is formed from
AcCoA via β-keto-thiolase (PhaA), acetoacetyl-CoA re-
ductase (PhaB), and PHA synthase (PhaC), where PHA
synthase is activated by acetyl phosphate (AcP) [101].
Since acetoacetyl-CoA reductase requires NADPH, the
pathway modification that causes excess NADPH yields
higher PHB production [102].
Cyanobacteria have nine sigma factors such as SigA-I,

where RNA polymerase sigma factor SigE plays import-
ant roles under nitrogen starvation [103]. SigE activates
the expression of the genes associated with degradation
of glycogen and catabolic genes of glycolysis and PP
pathway [104]. Moreover, SigE activates PHB synthetic
pathway gene expression [105], and thus the overexpres-
sion of sigE allows higher PHB production under nitro-
gen limitation [106]. Moreover, SigE also activates the
expression of hydrogenase gene, and thus the overex-
pression of sigE also allows higher hydrogen production
under anaerobic condition [107].
Cyanobacteria have two types of sunscreen pigments

such as scytonemin and mycosporine-like amino acids,
where these secondary metabolites play roles against en-
vironmental stresses such as UV radiation and desicca-
tion [108].

Systems biology approach and modeling of the metabolism
Although algae and cyanobacteria have been paid recent
attention for the potential to the sustainable biosyn-
thesis, unknown and uncharacterized gene and protein
functions hamper the progress toward the future era of
algae industrial biotechnology. The systems biology ap-
proach plays a crucial role for function prediction based
on the database with proper metabolic modeling [109].
Some attempts have been made for the modeling of

photosynthetic organisms [110,111], while mechanistic
model of photosynthesis in microalgae has also been de-
veloped [112,113]. The sequential statistical analysis
based on experimental design coupled with least squares
multiple regression has been made to analyze the de-
pendence of respiratory and photosynthetic responses
upon concomitant modulation of light intensity as well
as acetate, CO2, nitrate, and ammonia concentrations in
the culture of C. reinhardtii [114].
MFA may be considered to gain insight into the metab-

olism, where the optimal light intensity can be identified
for the biomass yield of C. reinhardtii by considering the
cell maintenance and biomass formation [115]. A mixed
integer linear programming method was used to find the
optimal flux distributions of C. reinhardtii cultivated
under photoautotrophic conditions in photobioreactors
functioning in physical light limitation based on the
constraint-based model, which includes thermodynamic
and energetic constraints on the functioning metabolism,
highlighting the existence of a light-driven respiration de-
pending on the incident photon flux density [116].
Flux balance analysis (FBA) based on the network con-

sisting of 484 metabolic reactions and 458 intracellular
metabolites for C. reinhardtii indicates that aerobic het-
erotrophic growth on acetate has a low yield on carbon,
while mixotrophically and autotrophically grown cells
are significantly more carbon efficient [117]. A genome-
scale extension for C. reinhardtii has been made with
the network consisting of 1,080 genes, associated with
2,190 reactions and 1,068 metabolites (named iRC1080),
that enables quantitative growth prediction for a given
light source, resolving wavelength and photon flux. This
offers insight into algae metabolism and potential for gen-
etic engineering and efficient light source design [118].
Another comprehensive literature-based genome-scale
model with the network of 866 ORFs, 1,862 metabolites,
2,249 gene-enzyme-reaction-association entries, and 1,725
reactions has been developed (named AlgaGEM), where it
predicted observable metabolic effects under autotrophic,
heterotrophic, and mixotrophic conditions, and predicts
increased hydrogen production when cyclic electron flow
is disrupted, and the physiological pathway for H2 produc-
tion, which identified new targets for further improvement
of H2 yield [119].
FBA approach has also been employed for cyanobac-

teria with the emphasis on the alleged glyoxylate shunt
and the role of photorespiration in cellular growth and
analyzed the diurnal light/dark cycles of the metabolism
[120]. Genome-scale metabolic model of Synechococcus
elongates PCC7942 (named iSyf715) has also been devel-
oped with the network of 851 reactions and 838 metabo-
lites, and the applicability has been demonstrated for
autotrophic growth conditions [121].

Metabolic modification for various biofuel and
biochemical production
Algae have the potential for the genetic modification of
their lipid pathways by upregulation of fatty acid biosyn-
thesis or by downregulation of β-oxidation. By knocking
out or modifying enzymes responsible for the synthesis of
polyunsaturated lipids in the cell, it may be possible to
dramatically increase the production of mono-unsaturated
lipids [122]. Under optimal growth condition, the wild-
type Chlamydomonas strains accumulate very low amount
of oil (<1 μg per 106 cells) [45]. When cells are subjected
to nitrogen starvation, oil content can be increased more
than tenfold (up to 10 μg per 106 cells) [43-45]. Intracellu-
lar TAG amounts also fluctuate during the diurnal cycle
because TAGs produced during the day provide a carbon
and energy source for the night [123]. This is the major
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factor to yield loss in open pond microalgae cultivation.
Researchers have not been able to achieve efficient hom-
ologous recombination in the nuclear genome of the com-
monly transformed laboratory algal strain C. reinhardtii,
but this is not the case for the marine alga and biofuel
candidate Nannochloropsis [124].
As a result of genetic engineering, some obligate photo-

autotrophs, formerly unable to partake in a sweet diet, have
been given a taste of heterotrophy through the introduc-
tion of hexose transporters [125]. In the starchless mutant
of Chlamydomonas, the flux through starch production
redirects to lipid accumulation under nitrogen-starved con-
dition. The strain should be designed to switch off com-
pletely for starch accumulation under nitrogen-starved
condition. Blocking oil turnover processes might help in-
crease the level of oil accumulated, as was observed in
Arabidopsis leaves where the oil content was increased
tenfold by knocking out a lipase gene [126].
Most metabolic engineering investigations have been

made using such typical model organisms as Synechocystis
sp. and Synechococcus elongatus sp. as well as Aanabaena
sp., whereas much more complex genetic engineering is
required for algae [16].
Bioethanol can be produced by introducing pyruvate

decarboxylase (PDC) and alcohol dehydrogenase (ADH)
genes from Z. mobilis into the shuttle vector and then
transform Synechosystis sp. [127,128] (Table 1).
As shown in Figure 4, 2-ketoisovalerate can be con-

verted to isobutyraldehyde by introducing ketoacid de-
carboxylase gene kivd from Lactococcus lactis into the
genome of S. elongatus PCC7942 [61]. The flux to 2-
ketoisovalerate can be improved by introducing alsS gene
from Bacillus subtilis and the ilvC and ilvD genes from E.
coli into the chromosome of S. elongatus. Carbon fixation
can be improved by overexpression of RubisCO genes to
increase the productivity of isobutyraldehyde. Iso-butanol
can then be produced by introducing alcohol dehydrogen-
ase YqhD from Escherichia coli [61].
2-Methyl-1-butanol (2 MB) can be produced in S.

elongatus by expressing heterologous enzymes for citra-
malate pathway [129] to direct pyruvate toward isoleu-
cine sysnthesis pathway, where 2-keto-3-methyvalerate is
converted to 2 MB by Kivd and YqhD [130] (Table 1).
1-Butanol can be produced from AcCoA by anaerobic

dark condition by engineered S. elongatus by introducing
acetyl transferase (AtoB) from E. coli, 3-hydroxybutyryl-
CoA dehydrogenase (Hbd) from Clostridium acetobutyli-
cum, trans-2-enoyl-CoA reductase (Ter) from Treponema
denticola, crotonase (Crt) from C. acetobutylicum, and bi-
functional aldehyde/alcohol dehydrogenase (AdhE2) from
C. acetobutylicum [131]. 1-Butanol can be also produced
by aerobic culture of S. elongates PCC7942, where con-
densation of AcCoA is made by consuming ATP with
CO2 evolution [132], where ATP-dependent malonyl-CoA
synthesis enzyme NphT7 was introduced, and NADH-
dependent enzymes were replaced by NADPH-dependent
enzymes in this strain. Butanol tolerance of Synechocystis
can be improved by 150% by evolution by gradually in-
creasing butanol concentration from 0.2% to 0.5% (v/v)
[133] (Table 1).
Lactic acid has been used in the food and pharmaceut-

ical industries and for biodegradable polymers [134], and
this can be produced in Synechosystis after heterologous
expression of LDH [135,136]. Since Pyk is inhibited
under light condition in Synechosystis, heterologous ex-
pression of Pyk can enhance the pyruvate production
and in turn enhance the lactate production, where Pyk is
allosterically activated by fructose 1,6-bisphosphate
(FBP) in the case of Pyk-F originated form E. coli, while
the original Pyk does not show such characteristics
[136]. Moreover, Ppc may be knocked down to direct
the carbon flow from PEP towards lactate production via
PYR, but the cell growth is depressed, since Ppc is also
an important pathway for CO2 fixation [136]. In most
bacteria, LDH requires cofactor NADH, whereas
NADPH is abundant in Synechosystis as mentioned be-
fore, and thus NADPH-dependent LDH may increase
the lactate production, where this may be partly attained
by introducing the LDH from B. subtilis, of which LDH
co-utilizes NADH and NADPH [136,137] (Table 1).
Isoprene is a volatile compound and utilized in the

synthesis of rubber etc., where isoprene is easily evapo-
rated from the culture broth, and thus the toxicity to the
cell can be relaxed by evaporation, where it can be
trapped in the gas phase. Isoprene can be synthesized by
Synechocystis sp. PCC6803 by introducing lspS gene
from vine Pueraria montana and utilizing the naturally
occurring methyl-erythritol-4-phosphate (MEP) pathway
(Figure 4) [138] (Table 1).
Ethylene is another volatile compound, where this can

be also produced by Synechocystis sp. PCC6803 by intro-
ducing ethylene forming pathway gene efe from Pseudo-
monas syringae pv phaseolicola (Figure 4) [139] (Table 1).
Fatty acid and fatty alcohol production can be made

by Synechocystis sp. PCC6803 by overexpression of en-
dogenous fatty acyl-ACP synthase gene slr1609 (Figure 4)
[140]. Only fatty acids can be produced and excreted
outside of the cell by modification of Synechocystis sp.
PCC6803 [141,142]. Fatty alcohols such as hexadecanol
and octadecanol can be produced by introducing fatty
acyl-CoA reductase genes from jojoba, which catalyze a
fatty-acyl-ACP (Figure 4) [143] (Table 1).
Eucaryotic algae have also been considered for fatty

acid production, where they can accumulate lipids up to
about 70% of dry biomass [41,144]. The limitations of
using algae are the complexity of the eukaryotic system
and less available genetic tools, although some attempts
have been done [145]. Some efforts are being made to



Table 1 Biofuel and biochemical production by cyanobacteria

Product Species Titer or productivity Overexpressed or knockout gene (s) Cultivation Reference

Ethanol Synechococcus 230 mg/L in 28 days pdc, adh Shake flask [210]

Synechocystis 552 mg/L in 6 days pdc, adh Photobioreactor [127]

Synechocystis 608 mg/L in 18 days pdc, adh Photobioreactor [128]

Isobutyraldehyde Synechococcus 1,100 mg/L in 8 days alsS, ilvC,D, kivd,rbcls Bottle with NaHCO3 [61]

Isobutanol Synechococcus 18 mg/L kivd, yqhD Shake flask with NaHCO3 [61]

synechococcus 450 mg/L in 6 days alsS, ilvC, D, kivd, yqhD Shake flask with NaHCO3 [61]

2 Methyl-1-butanol Synechococcus 2 mg/L kivd, yqhD, cims Shake flask with NaHCO3 [61,130]

1-Butanol Synechococcus 14.5 mg/L in 7 days hbd, crt, adhE2, ter, atoB Bottle under anoxic cond. [131]

Synechococcus 30 mg/L in 18 days ter, nphT7, bldh, yqhD, phaJ, B Shake flask [132]

Fatty alcohol Synechocystis 0.2 mg/L in 18 days far Photobaioreactor with 5%
CO2

[143]

Synechocystis 0.02 mg/L/OD far,aas Shake flask [140]

Synechocystis 2.87 mg/gDCW Δsll0208, Δsll0209 Flask [211]

Fatty acids Synechocystis 197 mg/L in 17 days tesA, accBCDA, fatB1, B2, tesA137 1% CO2 bubbling [142]

Alka (e) nes Synechocystis 0.162 mg/L/OD accBCDA Shake flask [143]

Synechocystis 2.3 mg/l/OD sll0208, sll0209 Shake flask [212]

Hydrogen Synechococcus 2.8 μmol/h/mgChlorophyll-a hydEF, hydG, hydA Anaerobic condition [153]

Synechococcus 54 mmol/1,017 cells in
4 days

Δldh Anoxic condition [213]

L-Lactate Synechocystis 0.0178 mmol/gDCW/h ldh, sth Shaking incubator [214]

Synechocystis 0.2512 mmol/gDCW/h pyk, ldh Shaking incubator [136]

D-Lactate Synechocystis 2.17 g/L in 24 days gldA, sth Photoautotropic with acetate [215]

1,2-propanediol Synechococcus Approximately 150 mg/L mgsA, gldA, yqhD Shake flask [216]

Isoprene Synechocystis 50 μg/gDCW/d lspS Sealed culture [138]

Ethylene Synechocystis 26 μmol/gDCW/h efe (RS1010) Rotary shaker [217]

Synechocystis 111.6 μmol/gDCW/h efe (slr068) Rotary shaker [217]

Synechococcus 84.8 μmol/gDCW/h efe (pUC303) Flask [218]

Synechococcus 80.5 μmol/gDCW/h efe (psbAl) Flask [219]

Acetone Synechocystis 36.0 mg/L in 4 days ctfAB, adc, ΔphaCE, Δpta Flask [148]

PHAs Synechocystis 1.4 mg/100 mgDCW sigE Bubbled with 1% CO2 in the
air

[106]

Synechocystis 533.4 mg/L in 21 days Δslr1829, Δslr1830 Flask [220]
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identify stress conditions and key enzymes for fatty acid
synthesis in the green algae Haematococcus pluvialis
[146]. Effects of light conditions on fatty acid production
were also investigated for Nannochloropsis [147].
Acetone can be used as the precursor for isopropanol.

This can be produced in Synechocystis PCC6803 by
introducing CoA transferase (CtfAB) and acetoacetate
decarboxylase (Adc) from C. acetobutylicum for convert-
ing AcCoA to acetone (Figure 4) [148], where the PHB-
forming pathway genes phaCE and the acetate-forming
pathway gene pta may be disrupted. Alpha-olefin pro-
duction can be also made by Synechococcus sp. PCC7008
[149] (Table 1).
Methane can be produced by co-culture of C. reinhardtii
and methanogenic bacteria, where glyconate is produced
from the former, while methane is produced from the latter
by assimilating glyconate [150]. Rhodobacter are non-sulfur
photosynthetic bacteria that produce hydrogen (H2) from
acetate etc. Hydrogen production may be enhanced by
introducing aldehyde dehydrogenase (ALDH) gene from
Rhodospirillum rubrum into Rhodobacter sphaeroides
[151]. Hydrogen production can be enhanced by intro-
ducing exogenous hydrogenase into nitrogen fixing [152]
and non-nitrogen fixing cyanobacteria [153]. Hydrogen
production can be improved by introducing hydrogenase
from Clostridium thermocellum into Rhodopseudomonas



Figure 4 A variety of metabolic pathways for the production of biofuels and biochemicals.
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palustris CGA009 and cultivated at 38°C by considering the
outdoor bioreactors [152]. Hydrogen can be produced by
introducing a hydrogenase HydA from C. acetobutylicum
into S. elongates [153], and its production can be signifi-
cantly improved in Arthosporia by continuously removing
it from the culture broth [154].
Another important aspect of utilizing photosynthetic

organisms is their ability of producing pharmaceuticals
due to the reduction of ketones [155-157]. Microalgae
are also attractive for their production of antioxidants,
where Fischerella ambigua and Chlorella vulgaris show
higher antioxidant activities [158]. Phenolic compounds
have also antioxidant properties, where their production
can be enhanced in Spirulina platensis by manipulating
light intensities [159].
Phycocyanin is also attractive, where its production

by Arthospira (Spirulina) platensis was investigated in
marine environment [160]. The pigment sesquiterpene
β-caryophyllene can be produced by Synechocystis sp.
PCC6803 with the aid of a β-caryophyllene synthase
gene from Artemisia annua [161], where this compound
is used in the fragrance and cosmetic industry, and in
natural remedies for its anti-inflammatory and anti-
microbial properties. Lycopene is also important food
additives and pigment, and can be produced by a purple
non-sulfur bacterium, R. rubrum, by deletion of down-
stream phytoene desaturase gene crtC and crtD [162].
Cyanobacteria can excrete fructose, lactate, and glucose

by introducing transport genes from E .coli [134]. Many
cyanobacteria naturally produce sucrose as an osmotic re-
sponse to their saline habitat together with manipulation
of transport and secretion genes [163].
The biodegradable plastic such as PHB can be produced
by Rhodovulum sulfidophilum P5 using inexpensive nitro-
gen and carbon sources [164]. PHB can be also produced
in the filamentous cyanobacterium Nostoc muscorum
under phosphate limitation by recombinant Synechocystis
sp. PCC6803 [165] (Table 1). Glycogen can be produced
in halophilic bacterium A. palentensis by manipulating
growth condition [166]. Even ammonia can be produced
by nitrogen-fixing cyanobacteria Anabaena sp. ATCC
33047 [167].
Cultivation and harvesting methods
Raceway pond
Microalgae can use sunlight more efficiently than other
crop plants to produce oil [168]. The oil production
capacity is almost one or two times higher than any
other crop [169]. The open pond system is better for
large-scale production. The main disadvantage of open
pond systems is that by being open to the atmosphere,
they lose water by evaporation at a rate similar to land
crops and are also susceptible to contamination [122,170].
Some protozoa may contaminate the system and hamper
the growth of microalgae.
An effective culture system may consist of the follow-

ing criteria: (1) effective illumination area, (2) optimal
gas-liquid transfer, (3) easy to operate, (4) low contamin-
ation level, (5) low capital and production cost, and (6)
minimal land area requirement [171]. The system can be
made of paddle wheel to avoid microalgae biomass sedi-
mentation, and CO2 may be sparged at the bottom of
the raceway as carbon source [172].



Figure 5 TCA cycle in cyanobateria.
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Photobioreactor
Closed photobioreactor may be considered to overcome
the limitations encountered in raceway pond [170]. There
are several designs of closed photobioreactor such as
air-lift tubular, flat plate, and vertical-column reactors and
culture parameters such as nutrient levels, temperature,
amount of inlet CO2, etc. [173]. The reactor permits select-
ive culture strain, in which optimum growth condition can
be maintained to give high biomass and lipid productivity.
The tubuler photobioreactor may be one of the most typ-
ical cultivation apparatus, where a vertical tubuler photo-
bioreactor can increase the residence time of sparged gas,
giving higher CO2 utilization efficiency [174]. The higher
intensity of light cannot reach to most of the cell in the
large-scale photobioreactor. As a consequence, the metab-
olism also changes from light to dark condition. This
phenomenon is undesirable for large-scale production.
Harvesting of algal biomass
The microalgae need to be separated from water to
recover their biomass for downstream processing. There
are several methods for microalgae harvest: (1) bulk
harvesting- to separate microalgae from suspension such
as natural gravity sedimentation, flocculation, and float-
ation, and (2) thickening to concentrate the microalgae
slurry after bulk harvesting such as centrifugation and
filtration [169].
Flocculation, the aggregation and sedimentation (or

flocculation) of algal biomass, is also a very common pri-
mary harvesting method used to concentrate algae. Algal
strains can also be engineered such that the addition of
a polymer or a change in an environmental variable trig-
gers flocculation [175,176].
Conventional flocculation method poses several disad-

vantages: (1) high dosage of multivalent slat is required
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to achieve satisfactory result, (2) it produces large quan-
tity of sludge that increases the difficulty to dehydrate
the biomass, and (3) flocculation efficiency is highly
dependent on pH level [169,177]. By introduction of a
coagulant that is positively charged into the culture
medium, the negative charge surrounding the microal-
gae cells will be neutralized. At the same time, flocculant
can be added to promote agglomeration by creating
bridges between the neutralized cells to become dense
flocs and settle down due to natural gravity [178]. An-
other possible method to harvest microalgae is through
immobilization, in which microalgae are embedded in an
entrapment matrix and continuously grow within the
matrix. Only alginate gel entrapment method is feasible to
immobilize microalgae so far [179]. Some of the advan-
tages of using alginate gel are the requirement of only
mild condition during immobilization process with negli-
gible toxicity and high transparency [179,180]. Immobi-
lized microalgae beads can be applied in diverse research
areas such as for high-value product synthesis, organic
pollutant removal, heavy metal removal, and toxicity
measurement (biosensor) [180-186]. A few issues need
to be addressed in immobilization of microalgae before
the process can be upgraded to commercialization stage
such as (1) stability, (2) leakage of microalgae cells, and (3)
mass transfer limitation.

Downstream processing
Oil extraction
Effective lipid extraction is required particularly for micro-
algae with low lipid content, since the loss of the lipid dur-
ing extraction process brings a serious problem for the
production cost of microalgae biofuels [187]. The energy
consumed in lipid extraction from dried microalgae bio-
mass is a relatively small portion to the overall energy
[172,188]. Various cell disruption methods are microwave
application, sonication, bead beating, autoclaving
[189,190], grinding, osmotic shock, homogenization, freeze
drying [189], and 10% (w/v) NaCl addition [190,191].

Solvent extraction method
The solvent must be inexpensive, nontoxic, volatile, non-
polar, and it must selectively extract the lipid of the cell
[189]. The potential of using co-solvent mixtures of ionic
liquids and polar covalent molecules has been shown for
lipid extraction [192]. The Soxhlet extraction method
uses hexane, while the Bligh and Dyer’s method uses
mixture of chloroform and methanol as solvents to ex-
tract lipids [193]. The other solvents include benzene
and ether, but hexane has gained more popularity as a
chemical for solvent extraction, and it is also relatively
inexpensive [194]. Although n-hexane is widely used to
extract oil from various seed crops, it is inefficient to ex-
tract microalgae lipid. This is because microalgae lipid
contains high concentration of unsaturated fatty acid,
while n-hexane is a nonpolar solvent. Thus the selectiv-
ity of lipid towards the solvent is reduced [187]. Metha-
nol and n-hexane are not sustainable, since both
solvents are conventionally derived from nonrenewable
fossil fuels. On the other hand, ethanol is a greener solv-
ent, since it has a low toxicity level and can be derived
from renewable source such as sugar-based plant (e.g.,
sugar cane and sweet sorghum) and lignocellulosic ma-
terial (e.g., weed and corn stover) [170]. The ethanol,
however, gives low extraction efficiency. Ultrasonication
and microwave can be also used for cell disruption. The
cell wall-less mutant is better for oil extraction.

Super critical fluid extraction
Several supercritical fluids are CO2, ethane, methanol, etha-
nol, benzene, toluene, and water [195,196]. The basic
principle of this technology is by achieving a certain phase
(supercritical) that is beyond the critical point of a fluid, in
which meniscus separating the liquid and vapor phase dis-
appears, leaving only a single homogeneous phase [196].
Supercritical CO2 has received much interest typically in
extraction of pharmaceutical and health-related products
from microalgae [197-200]. In fact, supercritical CO2 offers
several advantages in comparison with chemical solvent ex-
traction such as (1) nontoxic and provide nonoxidizing en-
vironment to avoid degradation of extracts, (2) low critical
temperature (around 31°C) which prevents thermal degrad-
ation of products, (3) high diffusivity and low surface ten-
sion which allow penetration of pores smaller than those
accessible by chemical solvents, and (4) easy separation of
CO2 at ambient temperature after extraction [195,197,200].

Transesterification of oils
The most suitable catalyst for transesterification of oils
with low free fatty acids (FFA) content is necessary. The
presence of high free fatty acid content in microalgae lipid
(more than 0.5% w/w) prevents the use of homogeneous
base catalyst for transesterification reaction [201-203]. Al-
kaline metal alkoxides, even in small concentration of
0.5 mol %, are highly active catalysts [194]. Metal alkox-
ides (e.g., potassium methoxide) in methanol are better
options than metal hydroxides (NaOH, KOH). In a short
reaction time of about 30 min, they give high yields of
about 98% [194]. They performed better in absence of
water, which makes them inappropriate for industrial pro-
cesses [204]. FFA will react with base catalyst to form soap
leading to lower biodiesel yield and increase the difficulty
to separate biodiesel from glycerol.
Acid catalyst (e.g., H2SO4) is not sensitive towards FFA

level in oil, and thus esterificaiton (FFA is converted to alkyl
ester) and transesterification can occur simultaneously. A
chemically catalyzed transesterification process requires a
high amount of energy, and separation of catalyst from the
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product is cost effective. Glycerol, produced as a byproduct
of alcoholysis, readily adheres to the surface of immobilized
lipase and decreases its enzyme activity, where glycerol re-
moval is a complex process, which may hinder the large-
scale operations [189].
Free fatty acids contained in extracted oil have to be re-

moved prior to reaction in order to maintain activity of
the alkaline catalysts. In the superheated method, free fatty
acid and triglycerides are converted to fatty acid methyl
ester directly. Academic and commercial enterprises have
realized the importance of such research on this topic,
and a direct transesterification method for total microalgal
lipid content has produced appreciable levels of biodiesel
even when there are undetectable levels of neutral lipids
[205,206]. The advantages of non-catalytic alcoholysis
reaction for the production of biodiesel are as follows:
(1) the purification process to remove catalyst after re-
action is not required, (2) the by-product (glycerol) can
be directly utilized in other industry, (3) not only the
triglycerides but also the free fatty acid might be con-
verted into fatty acid methyl ester, (4) neutralization
process for removal of free fatty acid is not required
prior to the reaction process, and (5) the yield of the
total system will be improved, and the cost required for
the process will be reduced.

Improvement of product recovery
In a large-scale operation, the presence of microorganisms,
medium composition, and process condition may cause
emulsion formation, which lowers the product recovery ef-
ficiency. A better understanding on the mechanism of
emulsion formation is necessary for the performance im-
provement based on nanotechnology as well as electro-
chemical properties such as ion, charge, viscosity, interface
stabilization [207].

Conclusions
The fluctuation in global prices of crude oil, increasing
threats to the environment by exhaust emissions, global
warming, and threats of supply instabilities have ad-
versely impacted the developing countries, more so to
the petroleum-importing countries. The rising of sea
level caused by green-house gas (CO2) also threatens the
most populated areas of the world. It is important to
find a safe alternative fuel to relieve the escalating en-
ergy crisis and to protect the environment. Photosyn-
thetic microorganisms have emerged as one of the most
promising sources for biodiesel production.
Although algae and cyanobacteria have been paid re-

cent attention from the point of view of sustainable bio-
synthesis as well as biofuel and biochemical production,
the cell growth rate is significantly lower as compared to
the typical biofuel-producing microorganisms such as E.
coli and yeast. It is, therefore, strongly desirable to
design microbial cell factories by means of a synthetic
biology approach with in-depth understanding of the
metabolic regulation mechanism with the aid of a sys-
tems biology approach such as modeling.
Several attempts are being made for improving the ef-

ficiency of capturing light energy and CO2 fixation as
mentioned before. One of the reasons of the lower cell
growth rate in cyanobacteria may be due to an incom-
plete TCA cycle lacking KGDH and succinyl CoA syn-
thetase (SCS). Recent investigation on Synecococcus sp.
PCC7002 indicates that the genes encoding αKG decarb-
oxylase (or 2-oxoglutarate decarboxylase) and succinic
semialdehyde dehydrogenase are present, where NADPH
instead of NADH is produced without producing guano-
sine triphosphate (GTP) by substrate level phosphoryl-
ation (Figure 5) [208]. It is important to elucidate the
nature of such TCA cycles in cyanobacteria and plants
from the point of view of functional significance of
the metabolic feature in a broader evolutionary context
[209]. Further investigation is necessary to improve the
cell growth rate with balanced energy generation and
biosynthesis.
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