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Abstract

Background: Enzymatic cascades in metabolic pathways are spatially organized in such a way as to facilitate the flow of
substrates. The construction of artificial cellulase complexes that mimic natural multienzyme assemblies can potentially
enhance the capacity for cellulose hydrolysis. In this study, an artificial cellulase complex was constructed by tethering
three cellulases to a synthetic protein scaffold.

Results: Three pairs of interacting proteins were selected and characterized. The artificial protein scaffolds were
constructed by fusing three interacting proteins. Cellulases were tethered to these synthetic scaffolds in different
orders. The optimal assembly resulted in a 1.5-fold higher hydrolysis of cellulose than that achieved by unassembled
cellulases.

Conclusions: A novel artificial protein scaffold was constructed and used to assemble three cellulases. The resultant
increase in enzymatic activity suggests that this can be used as a strategy for enhancing the biocatalytic capacity of
enzyme cascades.
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Background
Multienzyme pathways in living systems comprise cascades
in which enzymes are tethered together into assemblies that
facilitate substrate flow between components, limit the dif-
fusion of intermediate metabolic products, and increase the
yield from sequential reactions [1,2]. There have been vari-
ous attempts to produce multienzyme assemblies in vitro,
including by gene fusion, protein or DNA scaffold con-
struction, and chemical modification [3]. Although the sim-
plest way is by enzyme fusion, this often results in loss of
enzymatic activity or formation of inclusion bodies [4],
while chemical modification can also impair enzymatic ac-
tivity [5]. Moreover, the high cost of generating DNA scaf-
folds makes this approach infeasible on a large scale [6,7].
Protein scaffolds are an attractive strategy for bringing to-

gether enzymes. A 77-fold enhancement in product concen-
tration was observed in an assembly of three mevalonate
biosynthetic enzymes with a protein scaffold composed
of metazoan signaling proteins [8]. In another study, a self-
assembled enzyme complex using cellulosome achieved a
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13.4-fold increase in reaction rate [9], while a proliferating
cell nuclear antigen-based assembly of P450 with ferredoxin
and ferredoxin reductase showed high catalytic activity
[10]. The protein scaffolds used in these studies were lim-
ited to metazoan signaling proteins and cellulosome com-
ponents [11-14], which may not be amenable to all types of
enzyme cascades. As such, there is an ongoing need for
novel and different types of protein scaffolds.
Cellulose is the most abundant renewable resource on

Earth and plays a significant role in biofuel production
[15]. Cellulose is broken down into oligosaccharides by
endoglucanase (EG) and exoglucanase (CBH) before β-
glucosidase (BGL) hydrolyzes cellobiose into glucose [16].
EG, CBH, and BGL are enzymes in the cellulose degrad-
ation pathway that act synergistically; coexpressing these
enzymes improves the efficiency of cellulose degradation
[17]. It was hypothesized that a highly ordered assembly
containing the three cellulases would enhance their activ-
ities and thereby increase cellulose hydrolysis. Therefore,
CelccA (EG), CelccE (CBH), and Cel2454 (BGL) were
selected as a model system for protein scaffold-mediated
assembly strategy.
In this study, considering the correct expression and

assembly of proteins, three pairs of interacting proteins
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(IPA/IPa, IPB/IPb, and IPC/IPc) from E. coli K12 [18]
were selected to construct a protein scaffold for three
cellulases - namely, CelccA (EG), CelccE (CBH), and
Cel2454 (BGL) (Figure 1). The enzymes were arranged
in different orders and the effect on activity was investi-
gated. The multienzyme complex in best order was char-
acterized in detail and compared with the unassembled
components.

Methods
Strains and medium
Escherichia coli DH5α was used for cloning, and E. coli
BL21 (DE3) was used for protein expression. Cells were
cultured in Luria-Bertani (LB) medium (10.0 g/l tryptone,
5.0 g/l yeast extract, 10.0 g/l NaCl) supplemented with
either 100 mg/l ampicillin or 50 mg/l kanamycin.

Plasmid construction
PCR primer sequences are listed in Table 1. All plasmid
sequences were validated by sequencing. To generate
the pET21a-IPA plasmid, the IPA gene (GenBank acces-
sion no. EU899769.1) was amplified from E. coli K12
genomic DNA using the IPA-F/IPA-R primer pair. The
PCR product was digested with NdeI/XhoI and ligated
into pET21a digested with the same restriction enzymes.
Similarly, plasmids pET21a-IPa, pET21a-IPB, pET21a-IPb,
pET21a-IPC, and pET21a-IPc were constructed by amp-
lifying the DNA sequences of IPa, IPB, IPb, IPC, and IPc
(GenBank accession nos. EU895384.1, EU8971IPC.1,
AB9163IPA.1, EU893769.1, and EU891369.1, respectively)
using the primer pairs IPa-F/IPa-R, IPB-F/IPB-R, IPb-F/
IPb-R, IPC-F/IPC-R, and IPc-F/IPc-R, respectively. Plas-
mids pET28a-celCCA, pET28a-celCCE, and pET28a-
cel2454 were constructed by amplifying the DNA sequences
of celCCA, celCCE, and cel2454, respectively (GenBank
accession nos. M93096.1, M87018.2, and ACL76783.1,
respectively), from the genomic DNA of Clostridium
cellulolyticum DSM 5812 using the primer pairs A-F/
A-R, E-F/E-R, and 4-F/4-R, respectively [19,20].
Plasmid pET28a-IPaA had an expression cassette con-

taining IPa and celCCA at the N and C termini, respect-
ively. A DNA fragment encoding IPa was amplified with
the primer pair IPaA-F/IPaA-R and cloned into pET28a-
celCCA by Seamless Cloning [21]. Plasmid pET28a-AIPa
containing celCCA and IPa at the N and C termini,
Figure 1 Schematic representation for assembly of cellulases on a p
interaction proteins (IPA-IPa, IPB-IPb, IPC-IPc) were used for the assembly.
respectively, was generated with the primer pair AIPa-F/
AIPa-R. Plasmid pET28a-IPbE containing IPb and celCCE
at the N and C termini, respectively, was generated with
primer pair IPbE-F/IPbE-R. Plasmid pET28a-EIPb con-
taining celCCE and IPb at the N and C termini, respect-
ively, was constructed with primer pair EIPb-F/EIPb-R.
Plasmid pET28a-IPc4 containing IPc and cel2454 at the N
and C termini, respectively, was generated with primer
pair IPc4-F/IPc4-R. Plasmid pET28a-4IPc containing
cel2454 and IPc at the N and C termini, respectively,
was constructed with primer pair 4IPc-F/4IPc-R.
Plasmid pET21a-ScafBAC had an expression cassette

containing IPA flanked by IPB and IPC at the N and
C termini, respectively. The DNA fragments encoding
IPB, IPA, and IPC were amplified with the primer pairs
ScafBAC-F1/IPB-R, ScafBAC-F2/IPA-R, and ScafBAC-F3/
ScafBAC-R, respectively. The three fragments were cloned
into pET21a by Seamless Cloning. Plasmid pET21a-
ScafABC was constructed using primer pairs ScafABC-F1/
IPA-R, ScafABC-F2/IPB-R, and ScafABC-F3/ScafABC-R,
and plasmid pET21a-ScafBCA was generated using pri-
mer pairs ScafBAC-F1/IPB-R, ScafABC-F3/IPC-R, and
ScafBCA-F/ScafBCA-R.

Protein expression and purification
Recombinant proteins were precultured overnight at 37°C
in LB medium supplemented with appropriate antibiotics.
The cultures were inoculated in fresh LB medium
containing antibiotics and incubated at 37°C until the
optical density at 600 nm reached 0.8. The cultures
were then cooled to 18°C, and isopropyl-β-D-thiogalacto-
pyranoside was added to a final concentration of 0.1 mM.
After 20 h, cells were harvested by centrifugation for
10 min at 8,000 rpm and 4°C, resuspended in 20 mM
phosphate-buffered saline (PBS; pH 7.0), and disrupted by
sonication on ice. Cellular debris was removed by centri-
fugation for 40 min at 11,000 rpm. Proteins were purified
using a HisTrapFF column (GE Healthcare, Waukesha, WI,
USA), and protein concentration was determined by the
Bradford method.

Biolayer interferometry
Binding affinities between proteins were measured by bio-
layer interferometry (Octet QKe; Fortebio, Menlo Park,
CA, USA), which detects changes in mass (protein density)
rotein scaffold. Three cellulases (CBH, EG, BGL) and three pairs of



Table 1 Primers used in this work

Name Sequence

IPA-F GGAATTCCATATGATGCGAATTCTGGCTATC

IPA-R CCGCTCGAGTTCTTTGCCCGGAAGTTTC

IPa-F GGAATTCCATATGATGCGTGTACTGGGTATTG

IPa-R CCGCTCGAGCGCAGCCGGTAACTCCGCC

IPB-F GGAATTCCATATGATGAACGATGAAATGAAAG

IPB-R CCGCTCGAGGGCTTTATTCTGACGCCAC

IPb-F GGAATTCCATATGATGGCAAGATATTTGGG

IPb-R CCGCTCGAGCTTGGAGTAAAGCTCGAC

IPC-F GGAATTCCATATGATGACTGACAAAATGC

IPC-R CCGCTCGAGCGCTTCAATGGCAGCAC

IPc-F GGAATTCCATATGATGGCAACACGAATTG

IPc-R CCGCTCGAGTGGAATCAGCAGGCTGG

A-F GGAATTCCATATGTATGATGCTTCACTTATTCCG

A-R CCGCTCGAGGTTGCTTGGAAGCTTAC

E-F GTGCCGCGCGGCAGCCATATGATAGGACAAGCATTTGC

E-R GTGGTGGTGGTGGTGCTCGAGAGTTGGAGGAGTCACTGACCC

4-F GGAATTCCATATGCAATACGATCAGATAGATAAA

4-R CCGCTCGAGCAGAGCAAGAGCTATAG

IPaA-F GTGCCGCGCGGCAGCATGCGTGTACTGGGTATTGAAACTTC

IPaA-R AAGTGAAGCATCATACGATCCGCCACCGCCAGAGCCACCTCCGCCCGCAGCCGGTAACTCCG

AIPa-F AAGCTTCCAAGCAACGGCGGAGGTGGCTCTGGCGGTGGCGGATCGCGTGTACTGGGTATTG

AIPa-R GTGGTGGTGGTGGTGCGCAGCCGGTAACTCCGCCAGCGGC

IPbE-F GTGCCGCGCGGCAGCATGGCAAGATATTTGGGTCCTAAGC

IPbE-R AAATGCTTGTCCTATCGATCCGCCACCGCCAGAGCCACCTCCGCCCTTGGAGTAAAGCTCG

EIPb-F GTGACTCCTCCAACTGGCGGAGGTGGCTCTGGCGGTGGCGGCAAGATATTTGGGTCCTAAGC

EIPb-R GTGGTGGTGGTGGTGCTTGGAGTAAAGCTCGACGATCAGGTG

IPc4-F GTGCCGCGCGGCAGCATGACTGACAAAATGCAAAGTTTAG

IPc4-R TATCTGATCGTATTGCGATCCGCCACCGCCAGAGCCACCTCCGCCCGCTTCAATGGCAGCAC

4IPc-F ATAGCTCTTGCTCTGGGCGGAGGTGGCTCTGGCGGTGGCGGATCGACTGACAAAATGCAAAG

4IPc-R GTGGTGGTGGTGGTGCGCTTCAATGGCAGCACGCAATTTTTTC

ScafBAC-F1 TAAGAAGGAGATATAAACGATGAAATGAAAGGTAAAAGCGGC

ScafBAC-F2 CGTCAGAATAAAGCCGGCGGAGGTGGCTCTGGCGGTGGCGGATCGCGAATTCTGGCTATCG

ScafBAC-F3 CTTCCGGGCAAAGAAGGCGGAGGTGGCTCTGGCGGTGGCGGATCGACTGACAAAATGCAAAGTT

ScafBAC-R GTGGTGGTGGTGGTGCTCGAGCGCTTCAATGGCAGCACGC

ScafABC-F1 TAAGAAGGAGATATACGAATTCTGGCTATCGATACCGCGACAGAGGCCTGCTC

ScafABC-F2 CTTCCGGGCAAAGAAGGCGGAGGTGGCTCTGGCGGTGGCGGATCGAACGATGAAATGAAAGG

ScafABC-F3 CGTCAGAATAAAGCCGGCGGAGGTGGCTCTGGCGGTGGCGGATCGACTGACAAAATGCAAAG

ScafBCA-F GCTGCCATTGAAGCGGGCGGAGGTGGCTCTGGCGGTGGCGGATCGCGAATTCTGGCTATCG

ScafBCA-R GTGGTGGTGGTGGTGTTCTTTGCCCGGAAGTTTCTTCCATGC
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on a biosensor; changes in the reflected interference wave
pattern between the sample and an internal reference layer
result in a phase shift that can be followed in real time in
both kinetic and quantitative modes [22]. All experiments
were performed in kinetic buffer (20 mM PBS, pH 7.0;
1 mg/ml bovine serum albumin (BSA), and 0.02% Tween
20). One of the proteins (1 μM) was biotinylated by incu-
bating with 2 μl biotinyl N-hydroxysuccinimide ester for
1 h at room temperature, with excess biotin removed using
a desalting column. The biotinylated protein was loaded
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onto the streptavidin biosensor by incubating for 240 s.
The immobilized protein was equilibrated with kinetic
buffer for 180 s, and the corresponding protein (1 μM)
was associated to the biotinylated protein by incubating
for 800 s. Dissociation was measured for 800 s in kinetic
buffer. For each assay, a control experiment was carried out
using BSA. Binding affinity was independent of which
protein was loaded onto the streptavidin biosensor [23-26].

Enzyme assays
The BGL activity was measured by incubating 135 μl of
2.5 mM p-nitrophenyl β-D-glucopyranoside solution in
20 mM sodium phosphate buffer (pH 7.0) with 7.5 μg of
pure enzyme solution at 37°C for 30 min. The reaction
was terminated by adding 70 μl of 0.4 M Na2CO3 and
the absorbance at 420 nm was measured. One unit of
enzyme was defined as the activity producing 1 μmol of
p-nitrophenol per min under the assay conditions. EG/
CBH activity was measured by incubating 90 μl of 1.5%
(wt/vol) carboxymethyl cellulose (CMC) in 20 mM so-
dium phosphate buffer (pH 7.0) with 5 μg of pure enzyme
solution at 37°C for 30 min. A 100-μl volume of sample
was mixed with 150 μl of 3,5-dinitrosalicylic acid reagent,
and after boiling for 10 min, the absorbance at 540 nm
was measured. One unit of enzymatic activity was defined
Figure 2 Purification of interaction proteins and their binding affinity
interferometry sensorgrams of (B) IPA-IPa, (C) IPB-IPb, (D) IPC-IPc. IPA, I
respectively. Then IPa, IPb, and IPc were bound to the corresponding p
and dissociation. All the response value was normalized by minusing th
as the amount of enzyme required to produce a 1 μmol
reduction sugar per min under the assay conditions.
The activity of free or assembled enzymes was assayed

in the presence of 0.75% (wt/vol) CMC at 37°C in 20 mM
sodium phosphate buffer (pH 7.0). The reduction sugars
were measured as described above. Glucose concentration
was determined using an SBA biosensor analyzer (Biology
Institute of Shandong Academy of Sciences, Jinan, China).
Results and discussion
Selection and characterization of interacting proteins
To synthesize the protein scaffold, three pairs of interacting
proteins from E. coli K12 were expressed in E. coli BL21
(DE3). The six proteins were purified by Ni-chelating affin-
ity chromatography (Figure 2A), and protein-protein affin-
ity was measured by biolayer interferometry [23-26], in
which the obtained values reflect the amount of protein
bound to the biosensor. The response values (Figure 2B,C,
D) confirmed their binding, and the KD calculated by
Fortebio Data Analysis software version 7.0 for IPA-IPa
(7.36 × 10−8 M), IPB-IPb (1.39 × 10−12 M), and IPC-IPc
(5.27 × 10−8 M) demonstrated their high affinity, sug-
gesting that they are suitable for constructing protein
scaffolds.
. (A) SDS-PAGE analysis of purified interaction proteins. Biolayer
PB, and IPC were immobilized to the streptavidin-coated biosensors,
roteins, respectively. The figure shows the response of association
e value of control.
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Fusion of cellulases and interacting proteins
The three cellulases were fused with the interacting
proteins IPa, IPb, and IPc, which endowed them with
an interaction interface. To minimize the effect of fusion
on enzymatic activity, six fusion proteins were generated by
attaching the interacting proteins to the C or N terminus of
cellulases. The commonly used glycine-serine linker (G4S)2
was used to link two proteins and thereby reduce folding
interference [27]. The resultant constructs were expressed in
E. coli with a 6-histidine tag at the N terminus and purified
by Ni-chelating affinity chromatography. IPa could only be
attached to the N terminus of celCCA (IPaA) (Figure 3A),
given that partial proteolysis occurred at the C terminus
[19]. Similarly, the ideal celCCE and IPb fusion was ob-
tained by attaching IPb to the N terminus of celCCE (IPbE).
For the cel2454-IPc fusion, the activity of IPc4 was
slightly higher than that of 4IPc (Figure 3D), and the
former was therefore chosen for the assembly. The three
enzyme fusions that were ultimately selected retained al-
most all of the specific activity of the respective unfused
proteins (Figure 3B,C,D), indicating that protein structure
was not appreciably compromised by the fusion.

Construction of scaffolds and their effect on assembled
enzyme complexes
To determine the appropriate order of cellulases within
assemblies, three protein scaffolds were constructed by
fusing the three interacting proteins (IPA, IPB, and IPC)
Figure 3 Characterization of cellulases fused with interaction proteins. (A)
(C) exoglucanase, (D) β-glucosidase were assayed. The arrows indicate th
in different orders and assembling three tri-enzyme com-
plexes by mixing the scaffolds and cellulases in a 1:1:1:1
stoichiometry for 1 h. The reduction sugars from CMC
hydrolysis catalyzed by the three tri-enzyme complexes
were assayed. The complex assembled with ScafBAC had
the highest sugar reduction (Figure 4), indicating that the
synergistic effect was related to the location of the enzyme
within the complex. Given that the activity of EG is much
higher than that of CBH or BGL, oligosaccharides and
cellobioses produced by EG can be immediately catalyzed
by CBH and BGL when EG is between CBH and BGL.

Characterization of the tri-enzyme complex assembled by
ScafBAC
The fused cellulases and protein scaffold were purified
using a Ni-sepharose column, and the correct formation of
the protein assembly as well as the affinity of each cellulase
fused to the protein scaffold was verified by biolayer inter-
ferometry [28] (Figure 5). The response of biolayer interfer-
ometry is dependent on the amount of proteins bound to
the biosensor which indicates the binding of proteins.
Although different binding responses were observed for
the three cellulase fusions, they were all attached to the
scaffold. Moreover, the binding responses were similar to
values obtained for the interacting proteins, indicating that
the binding affinity was not affected by the fusion.
The potential for synergistic effects on enzyme cascades

is the most interesting property of protein assemblies. The
SDS-PAGE analysis of purified cellulases. The activities of (B) endoglucanase,
e expected fusion proteins.



Figure 4 Reducing sugar production by free cellulases or three
multienzyme complexes assembling with different scaffolds.
1.5 g/l of CMC was catalyzed by 0.6 μM of enzyme for 30 min. ‘Free’
means three fusion cellulases without scaffolds.

Figure 6 Glucose production of catalyzed by multienzyme
complex or by equal amount of free cellulases. 7.5 g/l of CMC
was catalyzed by 0.6 μM of enzyme. ‘Free’ means three fusion
cellulases without scaffolds.
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capacity for CMC hydrolysis was compared between the
tri-enzyme complex and free cellulases. Catalytic activity
was evaluated by glucose production using a SBA biosen-
sor analyzer. After a 4-h reaction, a 1.5-fold enhancement
in activity was observed for the tri-enzyme complex as
compared to the corresponding free enzymes (Figure 6),
suggesting the channeling of intermediates within the
complex; that is, cellobiose generated by EG and CBH
was immediately transferred to the adjacent BGL for
glucose production, thereby resulting in enhanced cel-
lulose hydrolysis.
Figure 5 Biolayer interferometry sensorgrams of cellulases binding
to biotinylated scaffold on streptavidin-coated biosensors.
Biotinylated scaffold was immobilized to the streptavidin-coated
biosensors. Then IPc4, IPbE, and IPaA were bound to the scaffold.
The figure shows the response of association with IPc4, IPbE, and
IPaA. All the response value was normalized by minusing the value
of control.
Conclusions
An artificial tri-enzyme complex was constructed by assem-
bling three cellulases with a novel protein scaffold com-
posed of interacting proteins. The effect of the order of
cellulase within the scaffolds on the catalytic efficiency was
determined. Moreover, the complex had higher catalytic
activity than the individual components. These results
suggest that this novel protein scaffold can serve as a
powerful tool for facilitating multienzyme cascades.
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