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Abstract

Delignification

Ligninolytic fungi and enzymes (i.e, laccase, manganese peroxidase, and lignin peroxidase) have been applied
recently in the production of second-generation biofuels. This review contains the analysis of ligninolytic enzymes
and their applications in second-generation biofuels. In here, each of the ligninolytic enzymes was described analyzing
their structures, catalysis, and reaction mechanism. Additionally, delignification and detoxification, the two most
important applications of ligninolytic enzymes, were reviewed and analyzed. The analysis includes an evaluation
of the biochemical process, feedstocks, and the ethanol production. This review describes the current situation of
the ligninolytic enzymes technology and its future applications in bioethanol industry.
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Introduction

The United States regulation requires 36 billion gallons
of biofuels, and 21 billion should be produced from lig-
nocellulosic material or other new advanced fuels by 2020
[1]. Lignocellulose, the most abundant source of organic
material in the world, is a polysaccharide combination of
cellulose, hemicellulose, and lignin [2]. Bioethanol is one
of the most essential biofuels produced from lignocellu-
losic material. In general, bioethanol production from
lignocellulosic material includes three principal steps: 1)
pretreatment, 2) saccharification, and 3) fermentation.
The pretreatment process modifies the lignocellulose
structure by removing the lignin and altering the cellulose
and hemicellulose structure [3]. Saccharification is the en-
zymatic transformation of cellulose and hemicellulose into
monosaccharides as glucose and xylose. Whereas, fermen-
tation is the transformation of these monosaccharides into
ethanol. The current pretreatment methodologies utilize
energy-intensive processes (high pressures and tempera-
tures) and harsh chemical compounds (NaOH, H,SO,).
This combination generates undesirable compounds and
process inefficiencies. To overcome these issues, biomass
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pretreatment has explored more sustainable technologies
such ligninolytic enzymes.

In nature, different organisms degrade lignin; however,
the most effective ones are the fungi belonging to the
white rot fungi class [4]. These microorganisms possess
an enzymatic system to effectively degrade lignin. This
system contains three principal enzymes laccase, manga-
nese peroxidase (MnP), and lignin peroxidase (LiP) [5].
These microorganisms have been used to delignify dif-
ferent substrates such paper, animal feed, and biofuels
[3,6-8]. In biofuel production, the ligninolytic enzymes
have two principal purposes, delignification and detoxifi-
cation. Delignification methods apply ligninolytic fungus
and their enzymes to reduce the lignin content in several
feedstocks [3,5—-8]. Detoxification utilizes the ligninolytic
enzymes to reduce the toxic compounds present in the
biomass hydrolysates after chemical or physicochemical
pretreatments [9-14].

The aim of this review is to describe the relevant as-
pects of the ligninolytic enzymes laccase, MnP, and LiP
and to analyze the present and future application of this
technology in the production of biofuels.

Ligninolytic enzymes

Laccases

Laccases (E.C. 1.10.3.2) also known as benzenediol: oxy-
gen oxidoreductase or p-diphenol oxidase belong to the
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oxidoreductase class. Yoshida, at the end of the nineteenth
century, was the first to extract laccases from exudates of
the Japanese tree Rhus vernicifera. Laccases are widely dis-
tributed in microorganisms, insects, and plants, showing a
specific function in each of them. From this group, white
rot fungi are the most studied laccases. These fungi use
their enzymes to break the plant’s lignocellulosic wall and
obtain the host’s nutrients. These fungal enzymes degrade
the complex polyphenol structure that constitutes lignin,
the principal recalcitrant component in the lignocellulosic
wall. Besides their catalytic characteristics, these enzymes
are attractive for biotechnological process, because they
are extracellular and inducible, do not need a cofactor, and
have low specificity. Laccase production is induced and
increased by the addition of molecules as copper, dyes, or
other recalcitrant compounds [15]. Laccase employs oxy-
gen as an oxidizing agent and cofactor instead of other
expensive cofactors such as pantothenic acid, thiamine, or
biotin [16].

Laccases have low substrate specificity; this characteris-
tic allows the degradation of several compounds with a
phenolic structure [17]. Therefore, laccases have been
employed in several areas such as bioremediation of aro-
matic recalcitrant compounds [18], treatment of effluents
polluted with lignin [19], chemical synthesis [20,21], deg-
radation of a wide number of textile dyes [22-25], and
biomass pretreatment for biofuel production [26-28].

Laccase structure and catalytic mechanism Laccases
have a primary structure of approximately 500 amino
acid residues organized in three consecutive domains,
with a Greek key [ barrel topology. The three domains
are distributed in a first domain with 150 initial amino
acids, a second domain between the 150 and 300 resi-
due, and a third domain from the 300 to 500 amino acid.
The structure is stabilized by two disulfide bridges local-
ized between domains I and II and between domains I
and III [16,29,30]. However, some laccases present three
disulfide bridges. Melanocarpus albomyces has disulfide
bridges inside domain I, another between domain I and do-
main III, and the last one between domain II and III [31].
Laccase belongs to multicopper oxidases (MCOs) and
blue multicopper oxidases [21]. Laccases have four cop-
per (Cu) molecules in their active site which participate
in oxygen reduction and water production (Figure 1)
[32]. The laccases’ four copper atoms are disseminated
in three types of cores or places: type 1 Cu (T1), type 2
Cu (T2), and type 3 Cu (T3). These cores are in two me-
tallic active sites: the mononuclear location T1 and the
trinuclear location T2/T3 [16,21,29,30]. Type 1 Cu (T1)
or blue Cu is a paramagnetic copper with a strong
absorption at 600 nm (blue coloration). This signal is
generated by the covalent union between Cu-Cys in the
mononuclear location [16,33]. In addition, T1 has the
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H,0 Laccase (Cu®") SH

0, Laccase (Cu®) Se
Figure 1 General diagram of laccase redox mechanism (SH reduced
substrate, S- oxidized substrate).

highest redox potential in the enzyme and participates
in the enzymatic catalysis by oxidizing the substrate [16].
Laccase’s oxidative power is affected by the amino acids
surrounding T1 [16]. Similar to T1, T2 is a paramagnetic
cooper; however, it lacks absorption in the visible region
of the spectrum. This Cu exhibits a strong absorption
under electron paramagnetic resonance (EPR); technique
employed to identify this spot [16]. In addition, the T2/T3
core participates in the inhibition of the enzymatic activity
by its interaction with anions such as fluoride or cyanide
[34]. On the other hand, T3 Cu is a binuclear core formed
by a Cu (II) dimer. This site presents absorption at
330 nm and a lack of EPR signal. Type 3 coppers are
diamagnetic and have a Cu-Cu union which participates
in the compound oxidation as an electron acceptor.

In laccases, the different types of coppers have varia-
tions associated with the coordination between them
and the amino acids in the active site. T1 Cu exhibits a
different triangular planar coordination similar to other
MCOs. Laccases display two histidines (His) and one
cysteine (Cys) as equatorial ligands. Meanwhile, the
other MCOs have an additional axial ligand with a me-
thionine. In contrast, laccases did not have this axial
extra bond, they have a leucine (Leu) or a phenylalanine
(Phe) substituting methionine [16,29-31]. On the other
hand, T2 Cu exhibits coordination with two His and a
water molecule; whereas, T3 Cu interacts with a water
molecule and six His. In T3 Cu, the two Cu molecules
share the water molecule and split the six His in two
groups of three [16,29,30]. The two T3 Cu interact with
the oxygen atom; however, the interaction between water
and the two Cu at the same time only happens when the
enzyme is in its oxidized form [16,29-31,33].

Laccase crystalline structures evidenced that T2 Cu
(EPR active) could be any of the three Cu in the trinuc-
lear site. In this site, two of the Cu reduce and become
silent to EPR. Meanwhile, the other one remains active
to EPR [35]. This interchange between T2 Cu and one
of T3 coppers could be related to the reduction mechan-
ism of the two oxygen molecules (cofactor), mechanism
which is not clear for blue multicopper oxidases [35].

The enzymes’ redox potential oscillates between 300
and 800 mV; these fluctuations depend on different factors
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such Cu ligands, distance among Cu, and the second
sphere of amino acids in the active site. The last factor is
associated with the degradation of recalcitrant compounds
as lignin or industrial dyes [16].

Another structural characteristic in laccases is the
presence of ligands: monosaccharides (mannose, N-acetyl
glucosamine), ions like Ca**, and organic molecules like
glycerol [16,29-31,35]. The presence of these ligands pro-
duce significant differences between laccases, an example
of that is the glycosylations exhibited in the isoenzymes
from Trametes versicolor [30].

Heme-peroxidases
After laccases, lignin peroxidase (LiP) and manganese
peroxidase (MnP) are the most significant ligninolytic
enzymes. These enzymes belong to the heme-proteins
because they have the protoporphyrin IX as a prosthetic
group. Similar to other heme-peroxidases such cytochrome
c peroxidase and horseradish peroxidase, the catalytic cycle
of LiP and MnP have three reactions [32,36—39].

Hydrogen peroxide causes the enzyme oxidation to
produce the compound I and water:

Reduced peroxidase + H,O, — Compound I + H,O

The modified enzyme (compound I) catalyzes the pro-
duction of a free radical (S¢) and a second modified form
of the enzyme (compound II) by an electron transfer
from the substrate (SH: reduced substrate):

Compound I + SH — Compound II + Se

Finally, compound II reacts with a second substrate
molecule to produce another free radical and water;
meanwhile, the enzyme reduces to its original form.

Compound II + SH — Reduced peroxidase + Se + H,O

Lignin peroxidase (LiP) LiPs (E.C. 1.11.1.14) were ori-
ginally discovered in nitrogen- and carbon-limited cul-
tures of Phanerochaete chrysosporium [32]. LiP possess
high redox potential (700 to 1,400 mV), low optimum
pH 3 to 4.5, and the ability to catalyze the degradation of a
wide number of aromatic structures such veratryl alcohol
(3,4-dimethoxybenzyl) and methoxybenzenes [32,36,38].
LiP oxidizes aromatic rings moderately activated by elec-
tron donating substitutes; in contrast, common peroxi-
dases participate in the catalysis of aromatic substrates
highly activated (ammine, hydroxyl, etc.). An explanation
for this type of catalysis is the production of veratryl alco-
hol radicals. These radicals have higher redox potential
than LiP’s compounds I and II and can participate in the
degradation of compounds with high redox potential [40].

LiPs are monomeric glycosylated enzymes of 40 kDa,
with 343 amino acids residues, 370 water molecules, a
heme group, four carbohydrates, and two calcium ions
[39]. Their secondary structure is principally helicoidal.
It contains eight major helixes, eight minor helixes, and
two anti-parallel beta sheets. LiPs contain two domains
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at both sides of the heminic group. This group is inlaid
in the protein but accessible to solvents via two small
channels [39]. The heminic cavity includes 40 residues,
and it bonds to the protein via hydrogen bridges. Add-
itionally, the heminic iron (Fe) coordinates with a His
and a molecule of water. This His is associated with the
high redox potential of LiP. The enzyme’s redox potential
rises when the His has a reduced imidazol character [39].
In addition, a greater distance between the His and the
heminic group increases the redox potential of the en-
zyme. This increment in the redox potential is a response
to the electronic deficiency in the Fe of the porphyrin ring.
In fact, this distance causes most differences among
enzymes with similar porphyrin cores [39,41].

Another characteristic related with LiP’s high redox
potential is the invariant presence of a tryptophan resi-
due (Trpl71) in the enzymes’ surface. Trpl71 seems to
facilitate electronic transference to the enzyme from
substrates that cannot access into the heminic oxidative
group [41]. Additionally, Trpl71 participates with the
catalysis of veratryl alcohol, a metabolite produced by
some ligninolytic fungi. Veratryl alcohol participates in
the oxidation of different aromatic molecules. Some
researchers conceptualized that this alcohol protects the
enzyme from the action of H,O, and participate as a
redox mediator between the enzyme and substrates
which cannot get inside the heminic center [38,39].

Manganese peroxidase (MnP) Kuwahara in 1984 found
the first MnP (E.C. 1.11.1.13) in batch cultures of
Phanerochaete chrysosporium [32]. They are glycopro-
teins with a molecular weight between 38 and 62.5 kDa
[42], approximately 350 amino acid residues, and a 43%
of identity with LiP sequence. MnP structure has two
domains with the heminic group in the middle, ten
major helixes, a minor helix, and five disulfide bridges.
One of those bridges participates in the manganese
(Mn) bonding site. This site is a characteristic that
distinguishes MnP from other peroxidases [37].

The enzyme’s catalytic cycle starts with the transfer-
ence of two electrons from the heminic group to H,Oo;
it produces compound I and water. After that, com-
pound I catalyzes the oxidation of one substrate mol-
ecule with the production of a free radical and
compound II. Compound II oxidizes Mn** to produce
Mn?*, the cation responsible to oxidize aromatic com-
pounds. It is important to keep in mind that compound 1II
demands Mn** presence for its reaction; in contrast, com-
pound I can oxidize Mn>* or the substrate. After Mn>" is
stabilized by organic acids, it reacts non-specifically with
organic molecules by removing an electron and a proton
from the substrates [42]. Mn>* is a small size compound
with high redox potential, which diffuses easily in the
lignified cell wall. Therefore, Mn>" starts the attack inside
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the plant cell wall which facilitates the penetration and
action of the other enzymes [38,41].

Sources of ligninolytic enzymes

The ligninolytic enzymes are a ubiquitous group of
enzymes found in different types of organisms as plants,
bacteria, insects, and fungi. In plants, laccases are the
most documented ligninolytic enzyme; these are extra-
cellular glycoproteins composed by a monomeric protein
with a sugar component. Laccases have been found in
different types of plants: the Japanese lacquer tree, mango,
mung bean, peach, tobacco, zea mays, etc. [43]. In plants,
laccases realize different kind of functions such as lignin
synthesis [43], iron oxidation from Fe(II) to Fe(III) [44],
and regeneration of injured tissue [43]. In plants, lignin
synthesis is laccases’ most significant function. In these
organisms, they catalyze the monolignol dimerization, the
basic molecules of lignin polymers and oligomers [43].

In bacteria, lignin breakdown is exhibited by three groups:
actinomycetes, a-proteobacteria, and y-proteobacteria [45].
These three groups of bacteria were described in insects
degrading wood microflora. These types of bacteria
showed delignification in both iz vitro and in vivo analyses
[45]. Streptomyces viridosporus, actinomycetes species,
and Thermobifida fusca exhibited LiP activities [45—-47].
In contrast, Azospirillum lipoferum, Thermus thermophi-
lus, Marinomonas mediterranea, Bacillus subtilis, and
Streptomyces cyaneus showed laccase activity [48-51]. Bac-
terial laccases are intracellular enzymes with a monomeric,
multimeric, or homotrimeric structure without carbo-
hydrate moiety [43]. In nature, bacteria use laccases in
spore protection and pigmentation. This type of en-
zymes exhibited resistance to high pH and tempera-
tures [43,45,52].

In insects, the delignification process is done by ligni-
nolytic enzymes produced by the insects or by the in-
sects’ microflora. The ligninolytic enzymes have been
identified in different insects and different parts of them.
An example of that are Nephotettix cincticeps (salivary
glands) [53], Manduca sexta (Malpighian tubules, mid-
gut, fat body, and epidermis) [54], Reticulitermes flavipes
(gut) [55], and Tribolium castaneum (cuticles) [56]. The
principal functions of insect’s ligninolytic enzymes are
cuticle sclerotization and pigmentation, toxic compound
oxidation, and polymerization reactions [43,53].

The fungal ligninolytic enzymes are the most well-known
enzymes, and they occur in ascomycetes, basidiomycetes,
and deuteromycetes [57]. Inside these groups are several
fungal species; however, the most studied fungi are: Tra-
metes versicolor, Phanerochaete chrysosporium, Pleurotus
ostreatus, Dichomitus squalens, Lentinula edodes, Irpex lac-
teus, and Cerrena maxima [32,58]. The principal functions
of fungal ligninolytic enzymes are lignin degradation, spore
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and fruiting body formation, and degradation of plant’s
toxic compounds [32,57].

Biofuel applications

In the last years, ligninolytic fungi and their enzymes
have appeared as a new alternative for pretreatment
processes. This technology has been useful principally in
two processes, delignification and detoxification. In
delignification, ligninolytic fungi or their enzymes have
been used to reduce the lignin content in different types
of feedstock [3,4,59]. Whereas, in detoxification, lignino-
lytic enzymes have been used in the removal of chemical
compounds from sugar hydrolysates after traditional
pretreatments.

Delignification

In delignification process, ligninolytic enzymes have
been applied in four different methods: 1) fungal deligni-
fication, 2) enzymatic delignification, 3) laccase-mediator
system (LMS), and 4) integrated fungal fermentation
(IFF). Table 1 resumes the application of these four
delignification technologies. Fungal delignification uti-
lizes the complete ligninolytic microorganisms for bio-
mass delignification. In those cases, the microorganisms
grow with the target biomass in a submerged culture
[8,60] or a solid state fermentation [3,7]. Both cultiva-
tions achieved good delignification percentages; however,
these were not always related with high glucose yields.
The work of Salvachta et al. (2011) is an example of
that; in that case, the fungi with higher glucose yield
were different from the ones with the highest delignifica-
tion percentage. However, the lack of relation between
high glucose yield and high delignification percentage
occurs in different pretreatments and not only in micro-
bial delignification. In fact, the principal issue with fun-
gal pretreatment is the large duration of the process
compared with the other pretreatment technologies [5].
The length of time used by the microorganisms to
obtain high delignification percentages is not less than
13 days and can be up to 40 or 50 days [4,8] However,
this period will depend on the strain used. The effective-
ness of microbial delignification has been improved by
adding an alkali treatment previous the fungal pretreat-
ment. The alkali pretreatment benefits were the reduc-
tion of the process duration and the increment in the
glucose and ethanol yield [61,62].

Enzymatic delignification is the application of enzymatic
extracts and purified or semi-purified ligninolytic enzymes
to realize the lignin degradation. Enzymatic delignification
employs commercial or native ligninolytic enzymes [63].
Laccase is the most utilized enzyme followed by MnP and
LiP; nevertheless, mixtures of two or three ligninolytic en-
zymes have been used for some delignification pretreat-
ments. In those cases, the synergetic relationship between



Table 1 Delignification methods using ligninolytic fungi and ligninolytic enzymes

Feedstock Fungal strain Type of process Mediator Delignification %  Glucose yield Ethanol yield Process duration  Ref.
Wood pulp Trametes villosa Enzymatic HBT 50% - - 15 h [81]
Laccase HPA 39%
Wood pulp Aspergillus fumigatus Enzymatic HBT 14% - - 2h [59]
Laccase
Hardwood chips Trametes versicolor Enzymat/c VA 54.2%, - - 2h [82]
accase
Fungal
Sugarcane bagasse Ceriporiopsis subvermispora ,C/I\E P. - 20% - - 30d [64]
Laccase
Eucalyptus globulus Myceliophthora thermophila EQ?C/Z;ZUC MS >25% - - 12 h [19]
AC 21%
. . Enzymatic SA 25%
Paper pulp Pycnoporus cinnabarinus Laccase A —9% - - 4-24 h [69]
HBT 40%
Corn stover o . Fungal >25% 56%
Switchgrass Ceriporiopsis subvermispora Laccase - S9508 37% - 18d [4]
Ricinus communis - Enzymatic - 85.69% 28883 mg/g - 4h [83]
Laccase
Eucalyptus globulus Pycnoporus cinnabarinus 'EQ?C/Z;ZNC HBT 27% - - 2-4h [84]
Isolate Euc, Fungal B 35% 70% ) ~
Wheat straw Irpex lacteus Laccase 35% 70% 1546 d 2
Fungal
Ceriporiopsis subvermispora MnP, B 34% 69% o
Wheat straw Ipex lacteus LiP, 39% 6% 0% 21d ()
Laccase
Fungal
Corn stover Ceriporiopsis subvermisporal MnP - 39.2% 66.9% - 42d [7]
Laccase
B 27% (cs)
Corn stover (cs) . Fungal B 25% (ws) . )
Wheat straw (ws) Pycnoporus sanguineus H275 Laccase 71% (cs) 21d [8]
VA
72% (ws)
Elephant grass (eg) . 36% (eq) 70.7% (eqg) 16.2% (eq)
Eucalypt wood (ew) Trametes villosa LMS HBT 58% (ew) 57.8 (ew) 12.3% (ew) 24h [72]
Corn stover Trametes versicolor LMS HBT - 31.7% - 48 h [70]
Wheat straw Sclerotium sp. LMS ABTS - 82.29% - 48 h [71]
Cotton gin trash Trametes versicolor LMS PrimaGreen®  15% 23% 31.6% 96 h [27]
Cotton gin trash Trametes versicolor LMS PrimaGreen®  27% 41% 64% 96 h [28]
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Table 1 Delignification methods using ligninolytic fungi and ligninolytic enzymes (Continued)

Sugarcane bagasse

Wheat straw

Sugarcane bagasse
Sugarcane bagasse

Oil palm empty fruit
bunches

Corn stover

Wheat straw

Corn stover

Bamboo culms

Poplar wood

Sugarcane bagasse

Corn stover
Sugarcane
Bagasse

Hardwood kraft pulp,
Waste newspaper

Sugarcane bagasse
Oak wood

Pleurotus ostreatus IBL-02

T. versicolor
I. lacteus

Phlebia sp MG-60

Phanerochaete chrysosporium
Lentinula edode
Pleurotus ostreatus

Pleurotus floridanus

Coprinus comatus

Irpex lacteus

Phanerochete chrysosporium
Coridus versicolor

Punctularia sp.

Trametes velutina

Pleurotus florida

Irpex lacteu

Phlebia sp. MG-60

Phlebia sp. MG-60

Phlebia sp. MG-60
Phlebia sp. MG-60

Enzymatic
MnP,

LiP,
Laccase

Fungal
MnP
LiP
Laccase
IFF

Fungal
MnP

Fungal

IFF

Fungal
MnP
Laccase

Enzymatic
MnP
Laccase

Fungal
Fungal

Fungal
MnP
Laccase

Fungal
MnP

33.6% 72.9%

) 68.33%
56.26%

30% -

64% -

5% 154%

66.5% 82%

- 84%

- 323 mg/g

- 10%
43.6%

791% 303.33 mg/g

25.48% 30898 mg/g

163 g/L 48 h
- 21d
45% 4 weeks
- 12 weeks
27.9% 4 weeks
5-7d
74% 14-21d
- 24 h
- 12 weeks
22.2% 8 weeks
- 25d
144.03 mg/g 28d
44% 4 weeks
fxts s h
65.7% 20d
43.9% 56d

LMS: Laccase-Mediator System, IFF: Integrated fungal fermentation, HBT: 1-Hydroxybenzotriazole, HPA: N-Hydroxyphthalimide, MS

coumaric acid.

: Methyl syringate, VA: Violuric acid, AC: Acetosyringone, SA: Syringaldehyde, CA: p-
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the ligninolytic enzymes improved biomass delignification
[64,65]. In wheat straw, ligninolytic enzymes generated a
reduction in the cellulose conversion during the sacchari-
fication process. To avoid cellulases’ inhibition, ligninolytic
enzymes were deactivated before the saccharification
process [66]. Similar to fungal delignification, alkali pre-
treatments have been used in enzymatic delignification as
an initial pretreatment to facilitate the delignification
process [66]. Enzymatic processes achieved similar deligni-
fication percentages than microbial pretreatment. How-
ever, enzymatic processes employ less amount of time
(between 24 and 96 h) to produce the same delignification
achieved by fungal pretreatment [67]. Although this meth-
odology reduces the delignification process duration, the
current development of enzymatic delignification cannot
compete with the conventional pretreatment technologies
in terms of timespan and costs [5].

LMS utilize fungal laccases and redox mediators to
achieve the delignification process. Redox mediators are
chemical compounds, which act as electron carriers be-
tween the enzyme and the final substrate (Figure 2) [19].
Mediators’ redox potential increases when the enzyme ox-
idizes them; after that, oxidized mediators react with the
final substrate to recuperate the lost electrons. The incre-
ment in the redox potential allows the degradation of
recalcitrant compounds such as lignin and different kinds
of aromatic compounds that the enzyme by itself cannot
break [19,68]. The mediator compounds most used are 1-
hydroxybenzotriazole (HBT), 2,2"-azino-bis(3-ethylbenzo-
thiazoline-6-sulphonic acid) (ABTS), and some natural
mediators as syringaldehyde or vanillin [69]. The principal
applications of laccase-mediator system are bleaching and
delignification in the paper industry. However, this system
has been used for delignification of some biofuel feed-
stocks. In cotton gin trash, the delignification was per-
formed by a commercial LMS from Genencor (Rochester,
NY, USA). In that case, LMS was used after an ultrasoni-
cation and hot water pretreatments [27]. LMS was im-
proved by the addition of alkali-ultrasonication process
before the hot water and LMS pretreatment. Alkali-
ultrasonication duplicated the ethanol and cellulose yield
compared with the previous method [28].

LMS pretreatment was utilized over corn stover by
using HBT as mediator [70]. In there, a correlation
between laccase loading and enzymatic digestibility was
found. Additionally, they found the importance of corn

H,0 Laccase (Cu®") MH Se
0, Laccase (Cu®) Me SH
Figure 2 [ accase-mediator system’s cycle.
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stover previous silage to increase LMS effectiveness [70].
In wheat straw, LMS pretreatment was used after the
steam explosion pretreatment and was performed before
and simultaneously with the enzymatic saccharification.
The results in both processes were similar. Thus, LMS can
participate in a semi-consolidate process for delignifica-
tion and saccharification [71]. The application of LMS in
elephant grass and eucalypt wood is the first report of
LMS achieving significant delignification without a previ-
ous pretreatment. This improvement was achieved by
using four steps of LMS pretreatment and NaOH washing
[72]. LMS is less used in biofuels than the paper industry.
This lack of applications is related with the small develop-
ment of specific mediators for feedstock delignification.

Integrated fungal fermentation (IFF) is a consolidated
process where a fungus or a group of fungi transform bio-
mass into ethanol without the participation of other treat-
ments or microorganisms [73]. Phlebia sp. MG-60 is a
white rot fungus with the ability of selectively transform-
ing lignin under solid state fermentation and produce
ethanol from delignified biomasses under semi-aerobic
submerged fermentation [74]. Phlebia sp. MG-60 was
selected from a group of other 12 fungi. From this group,
Phlebia sp. MG-60 was the only one to exhibit the un-
common characteristic of degrade lignin and produce
ethanol from cellulose [73]. This fungal strain has been
evaluated in the production of ethanol from different feed-
stocks such as hardwood kraft pulp, waste newspaper, sug-
arcane bagasse, and hard wood [73-75]. The addition of
basal media, organic compounds, and minerals to the cul-
ture media increased the ethanol yield and the delignifica-
tion percentage [75]. Phlebia sp. MG-60 produced an
ethanol yield between 30% and 70% depending of the type
of biomass utilized [61]. The process duration is between
6 and 29 days and is associated with the type of biomass
and the presence of pretreatment. The addition of alkali
pretreatment generated a reduction in the process time-
span from 21 days to 240 h [61]. On the other hand,
fungi co-culture is an alternative to generated and inte-
grated process for ethanol production. In this case,
ethanol is produced by mixing two types of fungi to de-
velop delignification, saccharification, and fermentation.
Coprinus comatus and Trametes reesei were cultivated
to produce ethanol from corn stover. In this case, co-
culture achieved greater delignification and cellulose
conversion than monoculture [76].

Delignification using ligninolytic enzymes can be
upgraded by improving the enzymatic catalysis using
protein engineering. This area utilizes three types of
approaches to modify ligninolytic enzymes: rational ap-
proaches, semi-rational approaches, and directed evolution
[77]. Rational approaches are the molecular modification
(site direct mutation) of the ligninolytic enzyme sequence
using prior structural information as foundation for the
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specific sequence modification. Rational approaches have
been used to improve the laccase ability to degrade non-
phenolic substrates and to enhance the capacity to oxidize
bulky phenolic molecules [78,79]. Semi-rational approaches
employ saturation mutagenesis to modify hotspot residues
in the enzymes. Saturation mutagenesis replaces the se-
lected amino acids by all the codons that can generate the
additional 19 amino acids [77]. This approach exhibited
the production of enzymes with three- to eightfold higher
catalytic efficiencies [80]. Directed molecular evolution
is an approach that utilizes random mutation, gene
recombination, and selection as fundaments. This mo-
lecular approach allows realizing the enzymatic design
in absence of structural information. Direct molecular
evolution has been used to improve catalytic activity
and solvent tolerance [77].

The four delignification processes are compared in
Table 2. In enzymatic and microbial process, the pros ob-
served are: positive environmental impact, high delignifica-
tion and detoxification, low sugar losses, and the possibility
of develop a consolidate process. On the other hand, micro-
bial and enzymatic have different cons. The enzymatic pro-
cesses cons are: high costs, low commercial availability, and
mediator necessity. Meanwhile, in microbial processes, the
principal limitation is the process duration. Besides the lim-
itations and assets, ligninolytic fungi and their enzymes rep-
resent an interesting option to the conventional chemical
and physical processes used in biofuel production.

Detoxification

Some of the conventional biomass pretreatment technolo-
gies produce toxic compounds after treat biomass. These
toxic compounds are classified in four groups: 1) furan
derivatives, 2) pentose and hexose degradation, 3) weak
acids, and 4) phenolic compounds from lignin [81]. These
compounds affect the fermentative microorganisms and
the cellulolytic enzymes, which generate an overall ethanol
yield reduction [26].

The detoxification process employs chemical, physical,
and biological strategies. Chemical and physical tech-
niques utilize technologies such as filtration, anion ex-
change chromatography, and NaOH precipitation; these
techniques are expensive, produce sugar losses, and do
not remove all the inhibitors in the hydrolysates [12]. The
biological detoxification (Table 3) process employs ligni-
nolytic fungi or their enzymes to reduce the concentration

Table 2 Delignification technique comparison
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of toxic compounds in feedstock hydrolysates [14]. The
detoxification process is performed after or before the
saccharification process and has a duration between 1
to 12 h [11,13,14,93]. Detoxification after or before sac-
charification is a controversial point. Jurado et al. [93]
recommended enzymatic detoxification after cellulose
hydrolysis because enzymatic detoxification leads to a
reduction in the saccharification process [93]. In con-
trast, Moreno et al. [26] suggested enzymatic detoxifica-
tion before saccharification, because it enhances ethanol
yield, reduces microbes lag phase, and generates an in-
crement in substrate loading. The authors considered
these positive factors more important than the reduc-
tion in glucose recovery [26].

From the four types of toxic compounds produced in
biomass hydrolysates, phenolic compounds are the most
degraded type by ligninolytic enzymes [14,93]. Phenolic
compounds inhibited fermentation at concentration of
1 ppm [98]. On the other hand, the other types of toxic
compounds exhibit a variable behavior. These compound
detoxification is affected by feedstock nature, enzyme
characteristics, and pretreatment harshness [26]. Enzym-
atic detoxification has been applied in the reduction of
toxicity after different pretreatments such as steam explo-
sion, strong acids, organosolv, and hot liquid water. In
addition, ligninolytic enzyme detoxification increase fer-
mentation rates and ethanol yield [26]. As an example, in
sugarcane bagasse, enzymatic detoxification generated an
ethanol yield five times greater than ion exchange detoxifi-
cation [14]. Lee et al. [96] improved the detoxification of
rice straw hydrolysates by optimizing the temperature,
enzyme concentration, and mediator compounds. The
optimization increased the detoxification of phenolic com-
pounds up to 92% by using HBT as mediator [96]. Lignino-
lytic enzyme detoxification is a future option for biofuel
industries. However, this enzymatic option needs to im-
prove their ability to degrade other types of toxic com-
pounds from hydrolysates.

In recent years, enzymatic detoxification of furan deriva-
tives has been evaluated. This type of detoxification is
performed by aryl-alcohol oxidase (AAO) which is a less
investigated group of ligninolytic enzymes. AAO have been
assessed in the degradation of 5-hydroxymethylfurfural
(HMF) and polyunsaturated alcohols [99—-101]. Carro et al.
[101] evaluated the transformation of HMF into 2,5-
furandicarboxylic acid (FDCA) by AAO catalysis. AAO

Delignification process Delignification Sugar losses Process duration Economic Environmental impact
Enzymatic High Low 2to48h High costs Positive

Fungal High Low 6 to 45 days Low costs Positive

LMS High Low 2to48h High costs Depends of the mediator
IFF Medium Some 1 to 12 weeks Low costs Positive
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Table 3 Feedstock hydrolysates detoxification
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Feedstock Microorganism Enzyme Pretreatment Detoxification Ethanol yield Ref.
Laccase 71% 0.55
Wood Trametes versicolor LiP Steam explosion, 205°C for 6 min. 53% 0.40 9]
Laccase+LiP 66% 047 (ol
Spruce chips Trametes reesei Laccase H,S0, (0.5%) Steam explosion, 222°C, 23 bar 7 min. 5% 047
80% 043
Wheat straw Trametes versicolor Laccase Hot liquid water at 180°C, 15psi, 30 min. 65% - [11]
Sugarcane bagasse Trametes versicolor Laccase Steam explosion, 215°C during 10 min. 80% 043 [13]
Sugarcane bagasse Cyathus stercoreus Laccase HCl (0.5-3.5% v/v),140°C for 30 min. 77.5% 0.374 [14]
Wheat straw Coriolopsis rigida Laccase H,S0, (1% w/w), 190°C, 12 bars, 10 min. 75% - [93]
Wheat straw Trametes villosa Laccase Steam explosion, 220°C, 2.5 min. 88-92% - [26]
Rice straw Coltricia perennis Laccase H,S0, (0.5% w/w), 121°C, 15 min 37-76% - [94]
Wheat straw Trametes versicolor Laccase Ethanol organosolv process, 220°C 120 min 20-90% 0.3749/9 [95]
Laccase H,S0, (0.5%, w/w) 5 h, steam explosion 121°C 30 min  52%
Rice straw Yarrowia lipolytica [96]
LMS 92%
Wheat straw Pycnoporus cinnabarinus  Laccase Steam explosion 200°C, 10 min - - [97]

(Pleurotus eryngii) transformed efficiently HMF into
2,5-formylfurancarboxylic acid (FFCA); however, it was
not capable of transforming directly from HMF into
FDCA. To complete the catalysis of HMF, a fungal
heme peroxygenase (Agrocybe aegerita) was added to
the reaction. This enzyme transforms FFCA into FDCA
using the H,O, previously generated by AAO [101].
Ferreira et al. [100] determined the ability of AAO to
reduce polyunsaturated alcohols. They evaluated 12 differ-
ent compounds; the best degradations were observed in
benzyl alcohol, m-fluorobenzyl alcohol, and p-fluorobenzyl
alcohol. The enzyme has the ability to catalyze ‘non-
activated’ alcohols which is an important factor for
future detoxification procedures [100]. Other enzymatic
process to transform furfurals have been studied; however,
these processes utilize non-ligninolytic enzymes from dif-
ferent types of bacteria. In the future, furfural detoxification
using ligninolytic enzymes need to be tested in biomass
hydrolysates to have a more accurate vision of their real
efficiency and applicability.

Conclusions

Ligninolytic fungi and their enzymes exhibited several
biophysics and biochemical characteristics that have
been applied in the delignification and detoxification of
biofuel feedstocks. Ligninolytic processes (enzymatic
and fungal) produce ethanol yield, glucose conversion,
and delignification and detoxification percentages simi-
lar or superior than conventional detoxification and
delignification methodologies. Nevertheless, ligninolytic
processes have low cellulose modification, the presence
of mediators, and long duration process (fungal processes).

The transformation of ligninolytic enzymes as viable option
for biofuel industry requires the improvements in the
process duration, cost reduction, and more specialized
mediators.
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