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Abstract

Background: Microalgae are photosynthetic microorganisms presenting a diversity of biotechnological applications.
However, microalgal cultivation systems are not energetically and economically feasible. Possible strategies that can
be applied to improve the feasibility of microalgal production include biofouling control in photobioreactors, the
use of attached growth systems and bioflocculation. These processes are ruled by surface physicochemical properties.
Accordingly, the surface physicochemical properties of Chlorella vulgaris, Pseudokirchneriella subcapitata, Synechocystis
salina and Microcystis aeruginosa were determined through contact angle and zeta potential measurements.
Additionally, mixed cultures of the selected microorganisms were performed. Sedimentation kinetics of the studied
cultures was also evaluated to understand how surface physicochemical properties influence microalgal recovery.

Results: All studied microorganisms, except S. salina, presented a hydrophilic surface. The co-culture of S. salina with the
other studied microorganisms resulted in a more hydrophobic algal suspension. Regarding zeta potential determinations,
all studied suspensions presented a negatively charged surface (approximately -40.8 + 44 mV). Sedimentation experiments
have shown that all microalgal suspensions presented low microalgal recovery efficiencies. However, a negative linear
relationship between microalgal removal percentage and free energy of hydrophobic interaction was obtained.

Conclusions: The evidence of a relationship between microalgal removal percentage and free energy of hydrophobic
interaction demonstrates the importance of surface physicochemical properties on microalgal settling. However, the low
recovery efficiencies achieved, as well as the high net zeta potential values determined, indicate that another factor to consider
in microalgal settling is the ionic strength of the culture medium, which play an important role in suspensions’ stability.
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Background

Microalgal culturing has been the focus of several research
studies worldwide, due to the wide variety of biotechno-
logical applications described for these photosynthetic
microorganisms [1,2]. When growing autotrophically,
microalgae convert CO, (from atmosphere or flue gas
emissions) into organic carbon compounds, thus reducing
the CO, accumulation in the atmosphere [3-6]. Additionally,
microalgae assimilate other compounds, such as nitrogen
and phosphorus, frequently found in wastewaters, meaning
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that these microorganisms may play an important role in
wastewater treatment processes [7-10]. Finally, microalgal
biomass has several applications [1,11-13]: (i) human food
and animal feed; (ii) production of cosmetics, drugs and
functional food; and (iii) biofuels. However, microalgal culti-
vation still presents high process costs, which are mainly
due to the low biomass productivities and the associated
harvesting costs, accounting for 20% to 30% of biomass pro-
duction costs [14]. Moreover, it requires large amounts of
water and nutrients, which is the reason to be considered a
process with high environmental impact [15].

To improve biomass productivities in microalgal photo-
bioreactors (PBRs), new strategies should be adopted to
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avoid biofouling (the attachment of cells to the walls of
PBRs). This phenomenon is responsible for lower biomass
productivities, since the amount of light (the energetic
source required for photosynthesis) that effectively pene-
trates into microalgal suspension is significantly reduced
[16-18]. On the other hand, several authors have reported
the growth of microalgae in biofilms. These immobilized
growth systems facilitate further harvesting processes
[7,16,19,20]. For both promotion and control of microalgal
attachment, knowledge about surface physicochemical
properties is essential [16,21,22]. Knowing the surface char-
acteristics may also be very helpful in metabolite extrac-
tion. For example, the use of solvents with polarities
similar to those of target metabolites may facilitate the
contact between both, increasing extraction efficiency [23].
Regarding the harvesting process, currently applied
methods include chemical coagulation/flocculation, grav-
ity sedimentation, flotation, filtration, centrifugation and
electrical-based processes [14,24,25]. Selection of an ap-
propriate harvesting method depends on the end product,
namely its value and properties [14]: it is important to
consider the acceptable level of moisture, salt concentra-
tions, cell damage and strain features, such as their density
and size. Additionally, selection of an effective harvesting
procedure must take into account that microalgal biomass
must be further processed. Therefore, these procedures
must not be toxic or contaminate microalgal biomass. It is
also desirable that the selected harvesting method allows the
recycling of the culture medium [25]. In this sense, biofloc-
culation appears as a viable alternative for the commonly
used procedures. This method consists in the addition of
other microorganisms or microbial metabolites to microal-
gal cultures, trying to stimulate microbial aggregation and
flocs formation. The use of bioflocculation as harvesting
method is more energetically efficient and reduces the im-
pact of the addition of chemical flocculants to microalgal
biomass, which tend to be an expensive and toxic alternative
[26]. The ability of microorganisms to form flocs strongly
depends on their surface physicochemical properties.
Information about the surface physicochemical properties
of microalgae and about their interaction mechanisms may
be very helpful in the development of energetically and eco-
nomically feasible biomass production systems and harvest-
ing procedures, as well as in the development of new
strategies to prevent biofouling. This study provides infor-
mation about the surface physicochemical properties of the
microalgae Chlorella vulgaris and Pseudokirchneriella sub-
capitata and the cyanobacteria Synechocystis salina and
Microcystis aeruginosa determined experimentally, accord-
ing to the method proposed by van Oss et al. [27-29]. Selec-
tion of these microorganisms was based on the following
factors [30-33]: (i) these microalgae and cyanobacteria can
be easily grown in laboratory cultures and (ii) several au-
thors have reported the use of these microorganisms in a
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wide variety of biotechnological applications, such as CO,
capture, wastewater treatment, biofuel production and syn-
thesis of bioactive compounds. Additionally, algal suspen-
sions resulting from the co-culture of different associations
between the selected microorganisms were evaluated, to
determine if these associations have influence on surface
physicochemical properties and on their ability to form ag-
gregates. Sedimentation kinetics of the studied cultures was
also determined, to assess the influence of surface physico-
chemical properties on the recovery of microalgal biomass.

Methods

Microorganisms and culture medium

The microalgae C. vulgaris CCAP 211/11B and P. subcapi-
tata CCAP 278/4 were obtained from the Culture Collec-
tion of Algae and Protozoa (UK), while the cyanobacteria
S. salina LEGE 06079 and M. aeruginosa LEGE 91344 were
obtained from the Laboratory of Ecotoxicology, Genomic
and Evolution - CIIMAR (Centre of Marine and Environ-
mental Research of the University of Porto, Portugal).
Stock solutions of these microorganisms were prepared
in OECD (Organisation for Economic Co-operation and
Development) test medium [34], with the following com-
position (per litre): 250 mg NaNOs3, 12 mg MgCl,-6H,0,
18 mg CaCl,2H,0, 15 mg MgSO,7H,0, 45 mg KH,PO,,
0.08 mg FeCl3-6H,0O, 0.1 mg Na,EDTA-2H,0, 0.185 mg
H3BO3;, 0415 mg MnCl,4H,O, 3 pg ZnCl,, 15 pg
CoCl,6H,0, 0.01 pg CuCly,2H,0, 7 pg NaMoO4-2H,O
and 50 mg NaHCOs;. The culture medium was sterilized
by autoclaving at 121°C for 15 min. The cells were incubated
in 500-mL flasks at room temperature (24.0 + 1.0°C), under
continuous fluorescent light with an irradiance of 120 pE
m~2 57" at the surface of the flasks. Agitation was obtained
by bubbling atmospheric air (filtered through 0.22-um cel-
lulose acetate membranes, Orange Scientific, Belgium) in
the bottom of the flasks.

Microalgal culturing in single and mixed cultures
Previously described stock solutions were used to prepare
microalgal suspensions for further characterization of sur-
face physicochemical properties and sedimentation kinet-
ics determination. In these experiments, single cultures, as
well as different associations between the selected micro-
organisms, were used. Batch experiments were performed
in 500-mL flasks (VWR, Carnaxide, Portugal) with a
working volume of 450 mL. Cells were cultivated for 7
days with an initial cell concentration of approximately
1.0 x 10° cells mL™" (in mixed cultures, testing all possible
associations of two microorganisms, the initial cell con-
centration was approximately 2.0x10° cells mL™).
Temperature, light and agitation conditions were the same
as for the stock solutions preparation. All the experiments
were performed in duplicates under aseptic conditions.
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Surface physicochemical properties

Zeta potential measurements

In the last day of each culture, microalgal suspensions were
harvested, washed twice and resuspended in MilliQ water
(Millipore, Billerica, MA, USA) to obtain a final concentra-
tion of about 5.0 x 10° cells mL™. Zeta potential was mea-
sured using a ZetaSizer Nano ZS (Malvern Instruments,
Worcestershire, UK). All the determinations were performed
in a clear disposable zeta cell at approximately 25°C. Mean
values of each studied suspension were obtained by at least
triplicate measurements of two independent experiments.

Surface contact angle measurements

In the last day of each culture, microalgal suspensions were
harvested, washed twice and resuspended in saline solution
(0.85% w/v NaCl) to obtain a final concentration of about
5.0 x 10° cells mL™". Algal lawns were prepared by filtering
the previously washed suspensions using 0.45-um nitrocellu-
lose membrane filters (Advantec MFS, Inc., Tokyo, Japan)
until complete clogging of the membranes. Contact angle
measurements were performed using the sessile drop
method, as described by Busscher et al. [35]. The measure-
ments were carried out at room temperature using water,
formamide and a-bromonaphthalene (Sigma-Aldrich, Sintra,
Portugal) as the reference liquids. Determination of contact
angles was performed automatically using a model OCA 15
Plus (DataPhysics, Filderstadt, Germany) video-based optical
contact angle measuring instrument, allowing image acquisi-
tion and data analysis. Contact angle measurements (at least
12 determinations for each liquid and for each algal suspen-
sion) were performed for two independent experiments.

Surface parameters and hydrophobicity determinations

After contact angle measurements, the values of surface
hydrophobicity of the studied algal suspensions were deter-
mined using the approach of van Oss [36], which allows the
assessment of the absolute degree of hydrophobicity of any
surface in comparison with their interaction with water. In
this approach, the degree of hydrophobicity of a given sur-
face (s) is expressed as the free energy of hydrophobic inter-
action between two entities of that surface when immersed
in water (w): AGLOT, in mJ m™. When AGIOT < 0, the
interaction between the two entities is stronger than the
interaction of each entity with water and the material is con-
sidered hydrophobic. Alternatively, if AGIOT > 0, the ma-

SWs

terial is hydrophilic. AGIOT can be calculated through the

SWS
surface tension components of the interacting entities, ac-

cording to Equation 1 [27-29]:

461" = 2\ )
+ 4(\/y;% + \/y;m—%y;*n‘—w;m)
(1)
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where yLW accounts for the Lifshitz-van der Waals (L)
component of the surface free energy and y* and y~ are
the electron acceptor and electron donor parameters, re-
spectively, of the Lewis acid-base component (), being
yAB =2,/yty-. LW forces, usually attractive, result from
instantaneous asymmetrical distribution of electrons in
molecules (the higher the value of LW component, the
more apolar is the surface and, therefore, the lower would
be its affinity for polar liquids) [37]. Electron donor and
acceptor parameters give information about the molecules
present in the studied surface: higher y" indicates the
presence of positively charged molecules and higher y~ in-
dicates the presence of negatively charged molecules [36].
Acid-base (AB) forces result from electron transfer inter-
actions between polar components of the involved sur-
faces. These interactions can be attractive (hydrophobic
attraction) or repulsive (hydrophilic repulsion), depending
on the free energy of hydrophobic interaction [37,38].

The surface tension components of a surface (s) were
obtained by measuring the contact angles of three pure
liquids (/), water and formamide (both polar) and
a-bromonaphthalene (apolar), followed by the simultan-
eous resolution of three equations of the form Equation 2:

(1+ cos8)yOT = 2(\/ysLWy,LW +\ vy + \/y;ﬁ> (2)

where 6 is the contact angle and y™°T = y*¥ + y*B The
surface tension of liquid components was obtained from
the literature [39]. The contact angle of the apolar liquid,
a-bromonaphthalene, was used to quantify the apolar en-
ergy component y-%, since y; and y; for this probe liquid
are equal to zero. On the other hand, contact angles mea-
sured with the other probe liquids were used to determine
the other surface parameters, ;" and y;.

Sedimentation kinetics

Microalgal recovery

In the last day of each culture, microalgal suspensions
were also used to evaluate sedimentation kinetics. 1-mL
samples were allowed to settle in polystyrene cuvettes at
room temperature. Microalgal recovery within the set-
tling period (8 h) was determined by measuring the tur-
bidity (optical density (OD)) of the samples at 750 nm
using a V-1200 spectrophotometer (VWR, Carnaxide,
Portugal), according to the method proposed by Salim
et al. [40]. Turbidity of the samples was measured at the
same height in the cuvette. Microalgal removal percent-
age or microalgal recovery was calculated according to
Equation 3 [40]:

_ OD750(t0)-OD750(2)

%R
’ OD750(20)

100 (3)
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where OD;5(to) is the turbidity of the sample determined
in the beginning of microalgal settling and OD;5((t) is the
turbidity of the sample determined at time ¢.

Modelling microalgal sedimentation

Kinetic constants associated to the recovery of microal-
gal biomass were determined by fitting the experimental
data, corresponding to the time-course evolution of
microalgal removal percentages, to the Gompertz model,
expressed by Equation 4 [41]:

y = a-exp(—exp(b—ct)) (4)

where y is the output value or microalgal removal per-
centage (%), a is the upper asymptote (%), b (b >0) sets
the displacement along the x-axis and corresponds to
the lag time observed in the beginning of settling experi-
ments (h) and ¢ (¢ >0) sets the tangent at the inflection
point and corresponds to the sedimentation rate (h™).
The kinetic parameters, a, b and ¢, were determined by
minimizing the sum of squared residuals using the
Solver supplement of Microsoft Excel 2013. The quality
of the model fit was evaluated through analysis of the
coefficient of determination (R?).

Statistical analysis

Contact angles, surface tension parameters, zeta poten-
tial values and microalgal removal percentages were ana-
lysed using paired-samples -test from the statistical
software SPSS 22.0 (SPSS Inc., Chicago, IL, USA). Statis-
tical tests were carried out at a significance level of 0.05.

Results and discussion
Surface physicochemical properties
The surface physicochemical properties determined
using the approach of van Oss et al. [27-29] for the
studied suspensions are shown in Table 1. Data is
divided into single and mixed cultures, and the results
are presented in the decreasing order of free energy of
hydrophobic interaction (from the most hydrophilic to
the most hydrophobic suspensions). Except for the
microalga C. vulgaris and for the suspensions P. subca-
pitata + M. aeruginosa and P. subcapitata + S. salina,
the contact angles measured with the polar probe
liquids (water and formamide) were in agreement with
the values of free energy of hydrophobic interaction,
AGIOT | Higher contact angles were measured for
microorganisms presenting more hydrophobic surfaces
(lower AGSTW(gT values). On the other hand, contact
angles measured with the probe liquid a-bromona-
phthalene for the different algal suspensions were not
statistically different (p > 0.05).

Looking at electron donor and acceptor parameters,
the values determined for the studied microorganisms
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ranged from 22.6+3.2 to 57.4+7.6 m] m > and from
0.0 +0.0 to 0.5 + 0.4 mJ m 2, respectively. For the studied
consortia, y; and y; values ranged from 7.6+22 to
53.0 £8.9 m) m~> and from 0.0 + 0.0 to 0.9+0.3 m) m ">,
respectively. These components were not statistically dif-
ferent from those obtained for single cultures (p =0.61
and p = 0.99, respectively). Higher values determined for
y indicate that the studied suspensions are electron do-
nors [42] and may be attributed to the presence of ex-
cessive molecules of oxygen in the surface of the
microorganisms and to the neutralization of y/ sites by
the dominant y; sites through intermolecular and intra-
molecular interactions [36]. On the other hand, y;
values close to zero are in accordance with the van Oss
et al. [27-29] model, which predicts almost the non-
existence of electron acceptor parameters [43]. Accord-
ing to Volpe and Siboni [43], the assumption of a mono-
polar surface is unrealisticc. However, the authors
concluded that the van Oss et al. [27-29] approach can
be applied when the aim is to compare the ability of dif-
ferent microorganisms to interact with other microor-
ganisms or surfaces. When the aim is to perform
molecular interpretations, these parameters (determined
through the van Oss et al. [27-29] method) should
not be used. Additionally, plotting y; as a function of
AGZMSS)T resulted in a coefficient of determination (R*) of
0.94, indicating that the van Oss et al. [27-29] approach
can be correctly applied to determine the surface physi-
cochemical properties of the selected algal suspensions.
As for the contact angle measurements with the polar
probe liquids, y; values correlated well with the free
energy of hydrophobic interaction, since lower values of

the electron donor parameter were observed for the

TOT

microorganisms presenting lower AG,,<".

Regarding the Lifshitz-van der Waals component of the
surface free energy, y-V, the values determined for the
studied species were not statistically different (p >0.05),
ranging from 35.0+ 1.5 to 359+ 0.7 mJ m > Similar re-
sults determined for this component indicate that cell wall
composition of the studied microorganisms may not have
significant differences. In the study performed by Ozkan
and Berberoglu [44], differences in the LW component
determined for green algae and diatoms were attributed to
differences in the chemical composition of their cell walls.
Several authors have reported that green algae, such as
C. vulgaris and P. subcapitata, present cellulose-based cell
walls, whereas diatoms present silica-based ones [45-48].
y:¥ values determined in this study for microalgae were
very similar to those determined by Ozkan and Berberoglu
[44] for green algae (ranging from 20.7 to 37.8 m] m™2).
Additionally, y-¥ values determined for the studied
cyanobacteria were also similar to those obtained for the
cyanobacteria Synechocystis sp. and Anabaena variabilis
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Table 1 Contact angles and surface physicochemical properties determined for each of the studied suspensions

Microalgal suspensions Contact angles (°) Surface tension parameters and free energy Zeta
of hydrophobic interaction (mJ m™) potential
Ow 0 Or vs" ye® Y Vs AGHT (mV)
Single cultures
C. vulgaris 465+28a 371£15a 610+03a 350x£15a 00+£00a 487+69a 01+01a 525+143a -354+04a
M. aeruginosa 448+55a 371+16a 364+84b 359+£07a 107+28b 574+76a 05+04a 434+155a —-400+24a
P. subcapitata 487+11a 373+22a 458+36b 358+10a 54+15b 359+17b 02+02a 138+38b -481+09b
S. salina 519+80a 373+£10a 736+11a 358+04a 00+00a 226+32b 00+00a -102+66b —43.1+24b
Mixed cultures
C. vulgaris + M. aeruginosa  419+28a 342+44a 516+36c 370+£18a 05+03a 530+89a 00+00a 406+118a —-354+10a
C vulgaris + S. salina 768+42b 353+21a 570+31c 366+£08a 00£00a 522+15a 00+£00a 40.1+25a —-451%14b
P. subcapitata+ M. geruginosa 419+28a 373+09a 355+15d 358+04a 11.7+08b 370+48b 09+03a 134+72b -427+14b
C. vulgaris + P. subcapitata 570+0.1a 396+01a 560+02c 340+£01a 00+00a 327+03b 00+00a 105+05b -427+15b
P. subcapitata + S. salina 542+19a 376+03a 507+11c 356+01a 28+05c 320+19b 01+00a 83+33b -405+05b
S. salina + M. aeruginosa 935+33c¢c 350+32a 840+13a 367+x13a 00+00a 76+22c 00+00a —-504+86c —-349+10a

Values are presented as the mean * standard deviation of two independent experiments. Different letters within the same column represent statistically different
values (p < 0.05). By, contact angle with water; 6g, contact angle with a-bromonaphthalene; 6, contact angle with formamide; y-Y, Lifshitz-van der Waals component
of the surface free energy; 28, Lewis acid-base component of the surface free energy; y;, electron donor component; y;, electron acceptor component; AG!T, free

energy of hydrophobic interaction.

(28.3 and 37.0 mJ m™>, respectively). y*V values deter-
mined for the different combinations of microalgae and
cyanobacteria ranged from 34.0 + 0.1 to 37.0+ 1.8 mJ m >,
These values were not statistically different (p = 0.24) from
those determined for each individual strain, and in
addition, no statistical differences (p > 0.05) were observed
between the different studied consortia. As previously
stated, similar results determined for this component indi-
cate that cell wall composition of the studied microorgan-
isms, even when grown in mixed cultures, may not have
significant differences.

Values of yB determined for the studied microalgae
ranged from 0.0+ 0.0 to 5.4+ 1.5 m] m >, whereas the
same value determined for the cyanobacteria ranged
from 0.0 + 0.0 to 10.7 + 2.8 mJ] m 2. The values obtained
for microalgae were similar to those obtained by Ozkan
and Berberoglu [44] for green algae (ranging from 0.0 to
5.1 mJ m ). Regarding the values obtained by the au-
thors for cyanobacteria, y2F determined in this study for
the cyanobacterium S. salina was equal to the one re-
ported for Synechocystis sp. A y*P of 54+1.5 m] m™>
determined for the cyanobacterium M. aeruginosa,
which is statistically higher than the one determined for
S. salina (p=0.01) may be related to the hydrophilic
character of this cyanobacterium (AGIOT > 0). The yAB
values determined for the microalgae and for the cyano-
bacterium M. aeruginosa are a measure of the hydro-
philic repulsion, since these microorganisms presented a
hydrophilic surface. On the other hand, y2® determined
for S. salina is a measure of hydrophobic attraction, due

sws

to the negative value of AGIQT determined for this
cyanobacterium. The magnitude of AB interactions in-
creases with increasing surface hydrophobicity (decreas-
ing y; and y;), and species having hydrophilic surface
properties experience repulsive acid-base interactions
[49]. y?B values determined for the studied consortia
were not statistically different (p = 0.64) from those deter-
mined for microorganisms grown in single cultures, ran-
ging from 0.0 £0.0 to 11.7+0.8 m] m™>. Since positive
AGIOT values were determined for all studied consortia,
except for the one composed by both cyanobacteria, yP
values are a measure of hydrophilic repulsion. In the
mixed culture of both cyanobacteria, y2 indicates the de-
gree of hydrophobic attraction.

The values determined for the free energy of hydrophobic
interaction have demonstrated that the microalgae and the
cyanobacterium M. aeruginosa presented hydrophilic sur-
faces, while the surface of S. salina was considered hydro-
phobic. According to the determined values of AG.OT,
the microorganisms can be listed by increased degree of
hydrophobicity, as follows: C. vulgaris, M. aeruginosa,
P. subcapitata, and S. salina. However, no statistical differ-
ences (p=0.60) were observed in AGIOT values deter-
mined for C. vulgaris and M. aeruginosa (52.5+14.3
and 43.4+ 155 m] m ™2, respectively). Negative values of
AGIOT determined for S. salina suggest the potential of
this microorganism to form flocs and, therefore, improve
harvesting processes and also its ability to grow as sessile
cells, which may have an application in biofilm formation
for wastewater treatment and metabolite production. In
mixed cultures, these values ranged from -50.4+ 8.6 to
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40.6 +11.8 mJ m 2 Three distinct groups can be defined
among the studied consortia: (i) the consortia composed of
C. vulgaris + M. aeruginosa and of C. vulgaris+S. salina
constitute the most hydrophilic group, with AGIOT values
of about 40 mJ m™% (i) the consortia of P. subcapitata +
M. aeruginosa, C. vulgaris + P. subcapitata and P. subcapi-
tata + S. salina constitute the group presenting a slightly
hydrophilic surface (AGSTM%T values close to 10 mJ m™2);
and (iii) the more hydrophobic group, represented
by the consortium of S. salina + M. aeruginosa (AG.OT
of =50 m] m™2). These results have shown that the
co-culture of a more hydrophobic microorganism with
another one presenting a more hydrophilic surface results
in a decrease in free energy of hydrophobic interaction
values and, hence, in an increase in the degree of hydro-
phobicity. For example, the co-culture of the hydrophobic
cyanobacterium S. salina with C. vulgaris, M aeruginosa
and P. subcapitata resulted in a reduction of AGSTM%T values
from 52.5+14.3 to 40.1+25, 434+155 to -504+8.6
and 13.8+3.8 to 8.3+3.3 m] m > respectively. The
huge decrease of AGIOT observed for the co-culture of
both cyanobacteria may be related to the high contact
angles measured with polar probe liquids (6yw and ¢ of
93.5°+3.3° and 84.0°+1.3°, respectively), which are
considered unusual [44]. The co-culture of the most
hydrophilic microorganisms (C. vulgaris + M. aerugi-
nosa) resulted in a hydrophilic surface, with AGEMQT of
40.6 +11.8 mJ m™>.

Regarding zeta potential values determined for the stud-
ied microorganisms, these values ranged from -35.4 + 04
to —48.1 £ 0.9 mV. Zeta potential measurements give infor-
mation about the charge of cell surfaces: negative or posi-
tive values of zeta potential depend on the functional
groups present on cell surfaces and also on the pH of the
culture medium [44]. Functional groups commonly found
on cell surfaces include hydroxyl (-OH), carboxyl (-COOH)
and amine (-NH,) [44,50,51]. Since these groups are ionis-
able, when cells are exposed to low pH values, functional
groups are protonated and net surface charge becomes
positive, and on the other hand, when cells are exposed to
high pH values, functional groups are deprotonated and the
resulting net surface charge is negative. At the point of zero
charge (PZC), corresponding to an intermediate pH, some
groups are protonated while others are deprotonated and
the surface charge is neutralized [52,53]. Negative values
observed for the studied microalgae and cyanobacteria were
expected, since the pH of the culture medium measured
when the samples were collected was high (9.64 + 0.65) and
PZC reported for algae was approximately pH 3 [52], indi-
cating that functional groups on the microorganisms’ sur-
face were deprotonated. Additionally, net zeta potential
values give information about suspensions’ stability. When
absolute value of zeta potential is high, repulsive forces pre-
vail over van der Waals forces, and hence, particles/cells
are stable in the dispersed form. On the other hand, for low
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net zeta potential values, van der Waals forces (usually at-
tractive) are higher than repulsive ones and the stability of
the suspension is affected, resulting in the formation of
aggregates and further settling [54,55]. Net zeta potential
values determined for the studied microalgae and cyano-
bacteria are substantial, and therefore, it is expected that
the microorganisms keep stable in suspension. These re-
sults are in accordance with the non-evidence of flocs for-
mation in the studied cultures, especially in that of
the hydrophobic cyanobacterium S. salina. Therefore, zeta
potential measurements are very important for a better
understanding of the interactions among microalgae and
cyanobacteria. Although microorganisms may present
hydrophobic surfaces, their ability to form aggregates or
to attach to surfaces may be strongly affected by the ionic
strength of the culture medium. As for single cultures,
zeta potential values determined for the studied consortia
were negative, indicating an overall surface charge nega-
tive. In fact, the pH of the culture medium in these cul-
tures was about 9.50 +0.33, which is higher than the
reported PZC for microalgae (pH 3). Therefore, functional
groups on microorganisms’ surface may be deprotonated,
conferring a negative surface charge. Zeta potential values
determined ranged from -34.9+1.0 to -45.1+1.4 mV.
These values were not statically different (p = 0.66) from
those determined for single cultures, which may be related
to similar ionic strengths of the culture medium, since
both single and mixed cultures were cultured in OECD
test medium [34] with the same composition. Addition-
ally, no statistical difference (p > 0.05) was observed in zeta
potential values for the studied microalgal associations.
Net zeta potential values determined were also high, de-
termining the stability of the suspensions and, therefore,
the non-evidence of aggregates formation. This informa-
tion may be very useful in the design of new strategies to
control biofilm formation and development and to im-
prove microalgal harvesting.

Determining the surface physicochemical properties of
different consortia has shown that the co-culture of mi-
croorganisms with different degrees of hydrophobicity or
hydrophilicity can alter the physicochemical properties of
the single-cultured microorganisms. These findings can be
very important in several applications, such as promoting
aggregates formation and, therefore, bioflocculation and
biofilm formation and, on the other hand, prevent and
control biofouling. However, it is very important to take
into account the ionic strength of the culture medium,
since this parameter influences surface charge and, hence,
the higher or lesser extent of electrostatic repulsions.

Sedimentation kinetics
Microalgal removal percentages determined for single
and mixed cultures within the 8-h settling period are
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presented in Figure 1A and B, respectively. Analysis of
these data indicates that sedimentation rates of the studied
algal suspensions are very low. After 8 h of settling, max-
imum removal percentages achieved in single and mixed
cultures were 86.6% + 6.0% and 89.6% + 2.2%, respectively.
Additionally, as it is possible to see from Figure 1A and B,
all microalgal suspensions presented a lag time, starting to
sediment after, at least, 1 h of the beginning of the experi-
ment. These results are in accordance with the zeta poten-
tial values determined for these suspensions. As it was
referred in the ‘Surface physicochemical properties’ sec-
tion, when absolute value of zeta potential is high, repul-
sive forces prevail over van der Waals forces, and hence,
particles/cells are stable in the dispersed form. Similar re-
moval percentages have been reported by Salim et al. [40]
and Manheim and Nelson [56] when harvesting microal-
gae through bioflocculation. Higher removal percentages
can be achieved using chemical coagulants/flocculants. In
the study performed by Papazi et al. [57], chemical coagu-
lants, such as aluminium and ferric sulphate, were used to
harvest the microalga Chlorella minutissima, resulting in
a removal percentage of 80% after 2 to 4 h of settling. In
the study performed by Garzon-Sanabria et al. [58], after
1 h of settling, approximately 90% of the microalga Nan-
nochloris oculata was recovered from the culture medium.
These authors used aluminium chloride as coagulant.

Relationship between surface physicochemical properties
and microalgal settling

Table 2 presents microalgal removal percentages deter-
mined after 8 h of settling and the kinetic parameters
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obtained through the model fit of the Gompertz model
to the experimental data. Looking at R*> values deter-
mined through the model fit (values close to 1) and to
the model curves superimposed to the experimental data
(in Figure 1A and B), it is possible to conclude that the
Gompertz model can be correctly applied to describe
microalgal recovery in the studied conditions. The sedi-
mentation kinetic parameters determined through this
model confirm the low settleability of the studied microal-
gal suspensions, which may be related to the high net
values determined for zeta potential. According to these
data, lag times, b, observed in the beginning of the sedi-
mentation process were high, ranging from 1.0 to 3.0 h for
single cultures and from 1.7 to 4.0 h for mixed cultures.
Additionally, low sedimentation rates, ¢, were determined
for both single and mixed cultures: 0.33 to 0.63 h™' and
0.24-to 0.94 h™', respectively. Although microalgal recovery
using these suspensions was not effective, the values deter-
mined through contact angle measurements can be corre-
lated with sedimentation results. From Tables 1 and 2, it is
possible to observe that, in general, an increase in the de-
gree of hydrophobicity (lower AGIOT values) corresponds
to an increase in microalgal removal percentages, % R, and
in sedimentation rates, c. Higher removal percentages for
the most hydrophobic surfaces were expected since, as it
was stated in the ‘Surface parameters and hydrophobicity
determinations’ section, when AG;FM(,ZT decreases, the inter-
action between the two entities is stronger than the inter-
action of each entity with water. Therefore, particles in
suspension tend to form aggregates, improving settling
rates. In fact, plotting removal percentages determined

Table 2 Sedimentation kinetics determined for each of the studied suspensions

Microalgal suspensions % R* Gompertz model parameters
a (%) b (h) c(h™ R?
Single cultures
C. vulgaris 736+52a 100.0 20 035 0.990
M. aeruginosa 66.1+48 a 100.0 2.8 033 0.965
P. subcapitata 866+60b 89.7 1.0 0.63 0.999
S. salina 850+75b 100.0 30 0.56 0.997
Mixed cultures
C. vulgaris + M. aeruginosa 586+08 ¢ 100.0 1.7 0.24 0.993
C. vulgaris + S. salina 696+13.7 a 953 27 041 0.999
P. subcapitata + M. aeruginosa 852+22b 100.0 2.1 045 0.999
C. vulgaris + P. subcapitata 896+22b 91.8 22 094 1.000
P. subcapitata +S. salina 724+87a 82.1 1.7 0.38 0.998
S. salina + M. aeruginosa 86.1+£27b 100.0 4.0 0.66 0.994

Microalgal removal percentage was determined after 8 h of settling, and recovery kinetic parameters were determined through the Gompertz model. ®Values are
presented as the mean + standard deviation of two independent experiments. Different letters within the same column represent statistically different values

(p < 0.05). % R, microalgal removal percentage determined after 8 h of settling; a, upper asymptote; b, displacement along the x-axis or lag time (b > 0); ¢, tangent
at the inflection point or sedimentation rate (c > 0); R?, coefficient of determination obtained through the model fit of Gompertz model to the experimental data.
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after 8 h of settling as a function of the free energy of
hydrophobic interaction suggests a negative relationship
between these parameters. By excluding the values corre-
sponding to the three most hydrophobic surfaces and to
the most hydrophilic one, a linear relationship between
microalgal removal percentage and free energy of hydro-
phobic interaction was obtained (R? = 0.91). These results
show the importance of studying surface physicochemical
properties to understand the flocculation process and im-
prove harvesting procedures.

Conclusions

This study presented a broad characterization of surface
physicochemical properties of microalgae and cyanobacteria,
as well as how these properties vary when these microorgan-
isms are co-cultured. Regarding the surface properties of
single cultures, S. salina presented a hydrophobic surface,
suggesting the ability of this microorganism to form aggre-
gates. However, macroscopic observations have shown no
evidence of aggregates formation, which was confirmed
through the study of sedimentation kinetics. This might be
due to the high net zeta potential values determined, which
are responsible for the stability of the suspensions in their
dispersed form. The co-culture of different microalgae and
cyanobacteria has shown that when a more hydrophobic
microorganism is co-cultured with another one presenting a
more hydrophilic surface, free energy of hydrophobic inter-
action tends to decrease, resulting in a more hydrophobic
surface. This study has also shown a negative linear correl-
ation between microalgal removal percentages and free
energy of hydrophobic interaction, reinforcing the import-
ance of surface physicochemical properties on the sedimen-
tation process. Due to the low recovery efficiencies achieved,
another factor to consider in the prevention or promotion
of cell attachment is the ionic strength of the culture medium,
since this parameter strongly influences surface charge.
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