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Abstract

Background: Bioconversion of cellulosic biomass into fuel ethanol involves several steps, among which enzymatic
breakdown of cellulose into fermentable sugars play a significant role. The key enzymes involved in cellulosic
breakdown are mainly endoglucanases and [3-glucosidases. Even though the biochemical and molecular
characterization of number of endoglucanases and -glucosidases was extensively studied, still there is a demand
for novel microbial cellulases for industrial applications. Among the group of actinomycetes, Streptomyces spp. are
well known as a cellulase producer. The advantage of using actinomycetes is being that production process could
be easily scaled-up to commercial levels. However, recent research studies have shown that the production of
cellulases from actinomycetes could also be significantly improved by employing different types of strain
improvement methods, thus achieving high yields of extracellular proteins. Besides this, highly thermostable and
broad pH range cellulases are required for bioethanol application.

Results: A lignocellulose degrading actinomycetes strain was newly isolated and identified as Streptomyces
griseoaurantiacus. Strain improvement using UV mutagenesis developed two mutants (SGuysg and SGyys) with 57.4
% and 12.8 % higher endoglucanase and B-glucosidase activities. The cellulases (endoglucanases and 3-
glucosidases) were found to be highly thermostable with no loss in enzyme activities at 80 °C for 60 min and
nearly 80 % of initial activity was retained at 90 °C. Enzyme assays in presence of additives showed that CoCl,,
CaCl,, and FeSO4 increased -glucosidase activity but showed negative effect on endoglucanase activity. However,
both the enzyme activities were significantly enhanced by addition of PEG 8000, sodium azide and MnSOj.

Conclusions: Strain improvement of S. griseoaurantiacus was performed by UV mutagenesis where two mutant
strains (SGuyso and SGyys) were developed with improved endoglucanase and (-glucosidase activities. Cellulase
production in submerged fermentation was carried out using a cheap lignocellulosic biomass residue, rice straw
as a sole source carbon. The results clearly show that the mutant strains produced high-efficient cellulases that
are stable at a broad pH range at very high temperatures. Besides, the mutants also showed high extracellular
protein secretions, which could be promising in reducing the overall cellulase production costs at large scale.
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Background

Lignocellulosic biomass is available in plenty and is an inex-
pensive renewable bioresource for bioconversion to bio-
fuels. However, this conversion is quite difficult owing to
the complexity of the plant cell wall materials that are in-
nately designed to resist microbial degradation. Among
these, celluloses are one of the major structural compo-
nents which could be converted into fuel ethanol with the
help of microbial cellulose degrading enzymes, namely cel-
lulases. This group of enzymes catalyze the hydrolysis of
cellulose and other cellooligosaccharides into fermentable
sugars. Primarily, but not limited to, the cellulase system
consists of three major enzymes, viz. exoglucanase (avice-
lase), endoglucanase (CMCase) and p-glucosidase (cello-
biase). In nature, a number of bacteria and fungi produce
cellulases to hydrolyze the insoluble polysaccharides to
soluble oligomers and subsequently to monomeric sugars
[1]. The production and application potential of diverse mi-
crobial cellulases is largely explored using a variety of
growth substrates, and voluminous research reports and re-
view articles are published in this area [2-5]. Actinomy-
cetes, especially Streptomyces spp, are known to produce
cellulose-degrading enzymes and have attracted consider-
able interest among the researchers due to their potential
applications in the recovery of fermentable sugars from
the hydrolysis mixture. Streptomyces spp. are also capable
of producing an array of different extracellular enzymes
including cellulases, xylanases, and chitinases [6]. Syner-
gistic action of these enzymes is vital for complete enzym-
atic hydrolysis of cellulose [7]. During the recent past the
intense basic and applied research studies revealed the
commercial significance and industrial applicability of
novel potential cellulases to a greater extent [8-10]. The
production economics of cellulosic ethanol from lignocel-
lulosic residues is largely dependent on the enzyme cost
especially in the bioconversion processes [11]. However,
continuous efforts towards cost reduction have been
directed for increasing the enzyme production levels,
identification of hyperactive cellulose-degrading microbial
strains, efficient ethanol fermentation techniques and en-
zyme recovery systems, etc. [12]. Besides these, use of
different mutagenic agents for microbial strain improve-
ment and fermentation processes was demonstrated [13],
where simultaneous treatments with N-methyl-N"-nitro-
N-nitrosoguanidine (NTG), ethidium bromide, and UV ei-
ther alone or in combination were employed for higher
endoglucanases [14].

The present investigation is on isolation of cellulase-
producing actinomycete strains from agricultural and
plant waste residues such as decaying woods and aged tree
trunk burrows and to screen the microbe for robust
utilization of different locally available lignocellulosic bio-
mass residues. We also report on increasing cellulase
production levels by applying traditional UV mutagenesis
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treatment and biochemical characterization of the crude
cellulase enzymes (endoglucanase and -glucosidase) from
two mutant strains.

Methods

Substrate, chemicals, and media

Rice straw was obtained from local agricultural fields and
was used as carbon substrate for cellulase production.
Sodium dodecyl sulphate-polyacrylamide gel electrophor-
esis (SDS-PAGE) molecular weight markers were pur-
chased from Bio-Rad Laboratories, Hercules, CA. Bovine
serum albumin (BSA), p-nitrophenyl-p-D-glucopyranoside
(PNPG), carboxymethyl cellulose (CMC), cellobiose, and
4-methylumbelliferyl-B-D-glucopyranoside (MUG) were
purchased from Sigma (St. Louis, MO, USA). All other re-
agents were obtained from commercial sources and were

of analytical grade.

Microbial isolation and screening

Cellulase producing microbes were isolated from diverse
environmental places such as soil and water samples,
decaying carton box scrapings, degrading wood pieces,
and salt pans near the coastal marine areas of state of
Andhra Pradesh, India. The samples (1 g each) were
crushed with mortar and pestle and were then sus-
pended in 10 ml of sterile distilled water. A 10® dilution
of the samples was made and spread plated on IGA
medium agar plates comprising 0.5 % peptone, 0.5 %
yeast extract, 0.5 % malt extract, 0.5 % glycerol, 3 % 10x
mineral salt medium, and 1.5 % agar. The composition
of mineral salt medium is given in Additional file 1:
Table S2. All plates were then incubated at 40 °C for at
least 2—3 weeks. Further, the microbes are sub-cultured
onto fresh agar plates in order to ensure the purity of
the selected colonies. All the cultures were periodically
maintained on sterile actinomycete isolation agar plates
(HiMedia Laboratories, Mumbai, India) and stored at 4 °C
for further use.

Cellulose-degrading microbes were screened using ac-
tinomycete isolation agar plates containing 0.5 % CMC
and 10 mM MUG, separately. The plates were then in-
cubated for 48 h at 40 °C. For endoglucanase produc-
tion, the plates were stained with 0.05 % congo red dye,
and for B-glucosidase production, the plates were directly
viewed under UV light. A potential cellulase-producing
microbe for the current investigation was selected based
on the maximum cellulolytic index and intensity of fluor-
escence. The cellulolytic index value of the actinomycetes
was calculated using the microbial colony size and the size
of zone of clearance.

Molecular identification
Among the potential cellulase-producing microorgan-
isms, an actinomycete strain denoted by SG14 was
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selected in the present study. The genomic DNA was
isolated using genomic DNA isolation kit (Bangalore
Genei, India). Consensus primers (forward primer: 5'C
GCGGCCTATCAGCTTGTTG 3 and reverse primer: 5
CCGTACTCCCCAGGCGGGG'3) were used for PCR
amplification of 16S rRNA. The PCR product was then
purified and subjected to DNA sequencing. The 16 STRNA
was submitted to NCBI database with GenBank ID
KR094972. The nucleotide sequence was analyzed using
Blastn, and multiple sequence analysis was performed
using clustalX software using the top 20 consensus se-
quences obtained from the NCBI databank (>98 % se-
quence identity). A phylogenetic tree was prepared using
neighbor-joining method with 1000 bootstrap replicates.
Mega 5.0 software was used for tree analysis [15].

Media optimization and growth on different
lignocellulosic residues

For cellulase production in submerged fermentation,
seed inoculum was prepared in actinomycete broth
medium (HiMedia Laboratories, Mumbai, India). Prelim-
inary cellulase productions were tested using 1 % (w/v)
CMC as carbon source in different growth media compo-
sitions viz. minimal salt media, Mandels mineral media
[16], Czapek media [17], and Vogel’s mineral media [18].
The detailed composition of growth media were given in
Additional file 1: Tables S2 to S5. Production of cellulase
was tested on different ligocellulosic biomass residues.
The carbon sources tested were rice straw (RS), wheat
bran (WB), rice husk (RH), wheat husk (WH), coco pith
(CP), saw dust (SD), Walseth cellulose (WC), cardboard
waste (CW), and newspaper waste (NW), respectively. Ex-
cept WC, other carbon sources were desized to 0.5—-1 cm
using a hammer mill machine and subjected to extensive
washing with distilled water and finally dried at 60 °C
overnight until the moisture content was <5 %, while the
WC substrate was prepared using commercial cellulose
powder (Sigma Aldrich, USA) and pre-treated with
83 % (w/v) phosphoric acid for 25 h at 40 °C. The pre-
cipitate obtained from the Buchner funnel filtration
method was then collected and washed twice with 70 %
(v/v) ethanol and neutralized to pH 7.0. Finally, the pre-
cipitate was dehydrated by acetone rinsing and dried
under vacuum. For submerged fermentation, 100 ml of
minimal media was placed in a 500-ml Erlenmeyer flask
supplemented with 1 % (w/v) rice straw. The growth
media were inoculated with 4 % spore suspension and
incubated at 40 °C at 160 rpm for 5 days. The culture
broth was filtered through Whatman filter paper (9 pm
size), and the filtrate was then centrifuged at 10,000 rpm
for 30 min. The clear supernatant was collected and
treated as the crude cellulase enzyme for biochemical
analysis.
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Determination of cellulase activities

Endoglucanase activity was assayed by incubating 0.5 ml
of crude enzyme with 0.5 ml of 2 % CMC in citrate
buffer (50 mM, pH 5.0) for 30 min at 60 °C. The redu-
cing sugars generated were determined by standard dini-
trosalicylic acid (DNSA) method [19]. B-Glucosidase
assay was carried out by mixing 0.2 ml of culture super-
natant with 0.2 ml of 0.01 M PNPG and 1.6 ml of citrate
buffer (50 mM, pH 5.0). The reaction mixture was then
incubated for 30 min at 60 °C. Reaction was stopped by
the addition of 4 ml NaOH-glycine buffer (0.2 M, pH
10.6) and measured by colorimetric method [20]. The
amount of enzyme required for liberating either 1 pg of glu-
cose or 1 pg p-nitrophenol per minute under the standard
assay conditions was considered as one unit of endogluca-
nase or p-glucosidase activity unit, respectively. All the assay
experiments were carried out in triplicates and mean values
are given.

Zymogram analysis using non-denaturing SDS-PAGE
Non-denaturing SDS-PAGE was performed for identifi-
cation of endoglucanase and [-glucosidase proteins.
Endoglucanase protein bands were detected using the
congo red dye staining method of an overlaying gel con-
taining 2 % CMC, while B-glucosidase active protein
bands were detected in the gel by incubating with
10 mM MUG for 30 min at 45 °C, and then the gel was
viewed directly under UV light. Briefly, a 10 % separating
gel was prepared, and 30 pg of crude cellulase enzyme
protein from native and UV-mutated samples was
loaded. After electrophoresis, the gel was equilibrated
with sodium citrate buffer (50 mM, pH 5.0) for 30 min
and was overlayered on a CMC-containing polyacryl-
amide gel. This cassette was then enclosed in a plastic
wrap and incubated at 60 °C for 2 h. Post incubation,
the CMC-containing gel was peeled off and was stained
with 0.2 % congo red solution for 1 h. To visualize the
zone of clearance corresponding to the endoglucanase
activity, destaining was performed with 1 M NaCl The
developed gels were visualized and digitally imaged. Pro-
tein concentration was determined using BSA as stand-
ard following the method described by Bradford [21].

Effect of UV treatment on cellulase production

Spore suspension from an overnight grown culture was
prepared by serial dilution method. A 0.5-ml culture
sample with a 10° dilution (approximately 10°~10° spores
ml™) was spread plated onto a 0.5 % CMC agar plate
under sterile conditions. Each petri plate was then exposed
to a UV tube (6 W, 240 nm) with a constant 10-cm dis-
tance for a treatment period of 15 s to 60 min. The UV-
treated petri plates were taken out at regular intervals (15,
30, and 45 ; 1,5,15,30, and 60 min) and incubated at 40 °C
for 48 h. The survivor microbial colonies after the UV
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treatment were then selected for cellulase production by a
similar zone of clearance method either using 0.05 %
congo red dye as mentioned earlier. The selected colonies
were further screened by analyzing the endoglucanase and
-glucosidase activities using rice straw as sole source of
carbon in submerged fermentation.

Determination of optimum pH, temperature, and stability
The enzyme reactions were carried out separately in buffer
solutions at varying pH (pH 2.0, pH 5.0, pH 7.0, pH 9.0,
and pH 11.0) and temperature (40 to 100 °C with 10 °C in-
crements). The endoglucanase and p-glucosidase activities
were measured using the assay methods as mentioned in
the above section. For pH stability studies, the enzyme
samples were incubated in different test buffer solutions
with varying pH (pH 2.0, pH 5.0, pH 7.0, pH 9.0, and pH
11.0) for 30 to 60 min at 60 °C, and then the residual en-
zyme activities were measured in sodium citrate buffer
(50 mM, pH 5.0). For temperature stability studies, the en-
zyme samples were incubated at different test tempera-
tures (60, 80, 90, and 100 °C) in sodium citrate buffer
(50 mM, pH 5.0) for different time periods, and residual
activities were measured.

Effect of metal ions and chemical reagents

The enzyme samples were mixed with different metal
ions, chemical reagents, and solvents, and then the effect
of these additives on the enzyme activity was analyzed.
The test compounds used were (10 mM each) MgSQOy,
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MgCl,, CoCl,, CaCl,, CuSOy4, MnSOy, FeSOy, 0.02 % so-
dium azide, 0.8 % Tween 20, and 20 % PEG 8000. Con-
trol experiments were also analyzed voiding either the
chemical agent or the enzyme to nullify the background
absorbance on the activity measurements.

Results and discussion

Microbial identification

The present investigation is on a cellulase-producing ac-
tinomycete strain, Streptomyces griseoaurantiacus, which
could tolerate high UV radiation for a maximum period of
60 min. The extracellular cellulase production and corre-
sponding enzyme activities were found to be increased
significantly after UV treatment. A total of 78 cellulase-
producing microbes (bacteria and actinomycetes) were iso-
lated from various natural habitats. Among these isolates,
an actinomycete with maximum zone of clearance ratio on
the CMC agar plate with a cellulolytic index value of
34 mm was selected (Additional file 1: Figure S1). Molecu-
lar identification and phylogenetic analysis revealed that the
microbial strain belongs to Streptomyces spp. with a close
relation to S. griseoaurantiacus NBRC 15440 (Fig. 1). Use
of purified cellulose or its products like CMC as a growth
carbon source is uneconomical for large-scale production
of cellulases. Hence, different locally available cheap ligno-
cellulosic residues were tested for microbial cellulase pro-
duction (Fig. 2). Among the test carbon substrates, rice
straw-grown culture extracts showed maximum endoglu-
canase activity (2.84 £ 0.2 U ml ™).
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Fig. 1 Identification of cellulose-degrading actinomycetes using 16S rRNA sequence Top 25 sequences homologous to microbial 16S ribosomal
partial sequence database were collected from NCBI. The phylogenetic tree was prepared using NJ method with 1000 bootstrap replicates in
MEGA 5.2 software [15]. The microbe used in the current study was designated as SG14
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Fig. 2 Production of cellulases in different cellulosic waste materials. The final concentration of the growth substrate used was 1 % (w/v)

Microbial growth on rice straw

Growth optimization studies showed that 1 % (w/v) rice
straw and 4 % (v/v) seed inoculum produced maximum
endoglucanase (Additional file 1: Figure S2). Thereafter, in-
crease in either rice straw or inoculum concentration had
no significant effect on the endoglucanase activity. Simi-
larly, maximum endoglucanase production was observed
when grown in minimal growth medium (2.7 + 0.2 U ml™"),
followed by Vogel's mineral medium (22+0.1 U ml™)
(Table 1). Jaradat et al also reported the influence of growth
conditions and medium composition on the cellulase pro-
duction from Streptomyces sps [22]. In general, the enzyme
production depends on the amount of nitrogen supplemen-
tation and its accessibility during microbial growth. Unlike
other complex growth mediums, minimal media were eco-
nomical and comparatively simple in their composition
(Additional file 1: Table S2). Since no significant difference
was observed in cellulase activities, further experiments
were performed using rice straw as the sole source of car-
bon and minimal medium for microbial growth.

UV mutagenesis and zymogam analysis

Mutational analysis was performed using traditional UV
treatment of the actinomycete for increasing cellulase pro-
duction. Based on the endoglucanase and p-glucosidase en-
zyme activities the prominent UV mutant strains were
selected for further biochemical studies. However, initial

screening of the mutants was established on the index ratio
of the zone of clearance. The zone of clearance is indicated
by the visible growth of the microbial colony to the
degraded CMC agar plate as described in the “Methods”
section. The isolated UV mutants were then tested subse-
quently in submerged fermentation for a minimum of 20
sub-culturing experiments. The variation in the production
of endoglucanase and P-glucosidase and reproducibility of
the results were evaluated. Similar results were obtained
with all the tested sub-cultured experiments, and no signifi-
cant alteration in cellulase production was observed. Max-
imum cellulase production from the mutant cells was
obtained within 94 h as compared to the longer incubation
period (120 h) with the native strain. One of the most intri-
guing features of S. gresioaurantiacus is its high resistance
to the UV radiation for a maximum treatment period of
60 min. After 48 h growth incubation, >40 % of microbial

Table 1 Cellulase production in different growth media

Growth media® Enzyme activity (U mI™")

CMCase -glucosidase
Minimal media 27+02 134+05
Mandels mineral media 1.8+04 60+08
Czapek media 19402 105+03
Vogel's mineral media 22%0.1 11.2+£06

2All media contain 1 % CMC as substrate
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cells was found to survive and form colonies after UV treat-
ment. These data clearly indicated that the mutants were
not only able to survive harsh conditions but also stable
after several generations without any back mutation. Very
few microbes in nature could survive such harsh
treatments, and to date, no reports are available on such
high-UV-tolerant actinomycetes. In most of the microbial
mutagenesis studies, UV treatment was generally followed
by a chemical treatment to avoid back mutation [14]. How-
ever, our studies showed that these mutagens were stable
without any drastic changes in the cellulase production
profiles and corresponding enzyme activities for several
subsequent generations indicating that the developed mu-
tants were highly stable.

Among the tested UV mutants, maximum endogluca-
nase and B-glucosidase activities were observed in 30-min
and 5-min treated cells (Table 2). Hereafter, the mutant
strains for endoglucanase and [-glucosidase production
are referred as SGyvsp and SGyys, respectively. The endo-
glucanase activity in native, SGuyszo, and SGuys strains
were found to be 2.84 +0.5 U ml™, 4.47 + 0.3 U ml™}, and
3.88+0.4 U ml™', respectively, whereas the B-glucosidase
activity in native, SGyvso, and SGyys strains were 15.6 +
07 Uml™’, 104404 U ml™, and 176 0.5 U ml"}, re-
spectively (Table 2). From these results, it is clearly evident
that the endoglucanase activity in SGyy3 and B-glucosidase
activity in SGyys were nearly 57.4 and 12.8 % higher com-
pared to the native strain. These results were in close agree-
ment with the recent findings from a UV-mutated
Aspergillus niger strain, where a twofold increase in endoglu-
canase activity was reported [23]. Our results suggest that
modification of S. griseoaurantiacus for cellulase produc-
tion by UV mutagenesis has a profound effect on overall
enzyme production. Similarly, there are few reports on
high UV treatment of fungi for enhancing cellulase pro-
duction. In Trichoderma viride 7ZY-1, the UV mutant

Table 2 Effect of UV treatment on cellulase activities and
protein production

UV treatment Enzyme activity (U ml™") Protein
time (min) CMCase 3-glucosidase (mg mi™)
Control 2.84 156 0.081
0.15 3.20 12.0 0.062
030 284 1.2 0.074
045 2.80 48 0.064
1.0 2.32 16.0 0.079
50 3.88 176 0.096
15.0 376 120 0.097
30.0 4.40 104 0.109
450 332 12.8 0.115
60.0 3.08 1.6 0.086
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produced 98.1 % higher FPase than the native strain [24],
while in Aspergillus nidulans, the UV mutant showed 3.96
times more endoglucanase activity than the wild type [25].

The enzyme activity results from the native and UV mu-
tants were also supported by the zymogram analysis data.
Non-denaturing SDS-PAGE analysis with equal protein
loadings of culture filtrates on a CMC gel from the UV-
treated cells showed maximum zone of clearance with the
SGuvzo strain (Fig. 3). These results further provided evi-
dence for enhanced cellulase production by UV treatment.
As shown in Fig. 2, the endoglucanase activity in the
native strain and SGuysg strain from the CMC growth
substrate was 4.3+ 0.2 U ml™, which was found to be
nearly similar (4.47+0.3 U ml™") when grown on rice
straw. For cost-effective production of enzymes at a com-
mercial scale, use of such cheap lignocellulosic residues is
preferred over synthesized carbon substrates.

Effect of pH, temperature and additives on cellulase
activity

Although ~36.6 % higher endoglucanase activity was
observed in SGyys cells, the B-glucosidase activity was
not found to be increased. This variation in activity
levels could be mostly due to the UV-dependent effect
on the cellulase-encoding genes, since endoglucanase
and P-glucosidase are two different proteins and are
expressed by separate genes. It clearly indicated that
UV mutagenesis is a random mutation process. As the
mutation occurs at the gene level and mostly involved
in thymine dimerization, the translation process of
some of the genes might have inhibited by the UV
treatment. Further detailed molecular investigation and
proteomic studies are required to understand these
expressed endoglucanase and [-glucosidase proteins.
Moreover, UV treatment showed significant effect on
overall increase in the extracellular protein production.

Fig. 3 Zymogram analyses of the culture filtrate after UV treatment.
Cells were treated with UV light for different time periods. a CMC
gel with congo red dye staining was used for endoglucanase
protein detection, and b MUG gel with UV fluorescence was used for
-glucosidase protein detection. Lane 1: O min, lane 2: 5 min, lane 3:
15 min, lane 4: 30 min, lane 5: 45 min, and lane 6: 60 min, respectively
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The protein concentration in the culture supernatant
was increased from 0.081 to 0.115 mg ml™" after UV
treatment (Table 2). Besides this, the reason for low
protein production with decreased enzyme activities at
higher UV treatment periods may be due to the longer
exposures of the microbe to harsh UV radiation which
resulted in undesirable genetic modifications inside the
cells [26].

The optimum temperature for endoglucanase and [3-
glucosidase activity was found to be 60 + 5 °C and 70 +
3 °C, respectively (Fig. 4a). These results were in close
agreement with other published literatures on actino-
mycetes. Kluepfel [27] reported that Streptomyces lividans
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grown on xylan showed an optimum endoglucanase activ-
ity at 60 °C. However, endoglucanase from Streptomyces
T3-1 had an optimum temperature of 50 °C [28], and
Streptomyces reticuli endoglucanase showed an optimum
temperature of 55 °C [29]. At 70 °C, more than 90 % of
the endoglucanase was retained, while for B-glucosidase, a
similar residual activity was observed at slightly lower
temperatures (50—60 °C). These data clearly indicated that
the enzymes work together effectively at their optimum
temperature without compromising the activities of the
enzyme complex. Cellulases from thermophilic microor-
ganisms are generally reported to be highly thermostable
in nature. Our studies also comply with this nature of
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thermostability. Above 60 °C incubation, the endogluca-
nase and p-glucosidase enzyme activities from the native
strain were found to decrease drastically. In comparison
to these, the proteins secreted from SGyyse and SGyys
were found to be highly stable and no loss in enzyme ac-
tivities was observed after incubation at 80 °C for 60 min,
whereas at 90 °C, 80 % initial activity was retained for
endoglucanase and [-glucosidase. However, at 100 °C,
50 % endoglucanase and 70 % [-glucosidase residual
activities were observed after 30 and 60 min incubation
(Fig. 5a, b). Although both the enzymes were highly
thermostable, the data indicated that [-glucosidase had
better stability than endoglucanase.

The stability of the protein in different pH buffer sys-
tems was analyzed, and it was found that >70 % endoglu-
canase and >80 % P-glucosidase residual activities were
retained after 60 min incubation period in pH 2.0 to pH
11.0 (Fig. 5¢, d), except where no significant loss of endo-
glucanase and B-glucosidase activity was observed at pH
5.0 and pH 7.0, respectively. The data indicated that these
proteins were highly stable in broad pH solutions. In con-
trary, the endoglucanase and P-glucosidase proteins from
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the native strain were not stable either above or below pH
5.0. The reason behind this drastic improvisation in pH
stability from the mutant strains is not clearly known.

In general, based on the enzyme activity at a specific pH,
the cellulase proteins are categorized into three groups,
namely acidic, basic, and neutral cellulases. However, it is
highly intriguing to ascertain that both the crude endoglu-
canase and B-glucosidase have no distinct maximum activ-
ity at a specific pH under the test conditions (Fig. 4b). The
enzyme activities were found to be nearly similar in all test
buffers with varying pH. The data is strongly evident from
the production of multiple endoglucanase and [3-glucosidase
enzymes in the crude culture filtrate (Fig. 3a). Although
there were multiple B-glucosidase proteins present in the
culture filtrate, only a single prominent [-glucosidase
protein with maximum enzyme activity was clearly visible,
while other proteins were not digitally captured due to
their low activity (Fig. 3b). However, multiple low molecu-
lar weight proteins with B-glucosidase activity were ob-
served with the naked eye. In nature, microorganisms
capable of degrading lignocellulosic materials contain
multiple cellulase-producing genes in the genome and
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secrete the proteins into the extracellular environment for
efficient synergistic bioconversion of complex lignocellu-
losic materials into simple substrates for their metabolic
growth [30]. Further, the effect of different divalent metals
and ionic agents on cellulase activity was also examined.
The endoglucanase and B-glucosidase activities were sig-
nificantly enhanced in the presence of PEG 8000, sodium
azide, and MnSQO,. However, CoCl,, CaCl,, and FeSO, de-
creased endoglucanase and increased B-glucosidase activ-
ities (Fig. 6), while CuSO, alone decreased the enzyme
activities. Tween 80 had a marginal effect on the cellulase
activities. A strong inhibitory effect was observed for both
the enzymes when incubated with MgSO, and MgCl,, in-
dicating that Mg* ions may bind to the critical amino
acids near the active site region and inhibit the enzyme
catalysis.

Since the cellulases are stable in a broad pH range, this
enzyme cocktail could be used in diverse industrial ap-
plications where a specific acidic, basic, or neutral cellu-
lase protein is needed to be supplemented during an
individual process step. Moreover, single cellulase en-
zyme cocktail is preferred over separate cellulase protein
with a specific pH condition, thus reducing the overall
cost of the protein. In addition, the crude cellulase pro-
tein cocktail also showed broad pH stability with high
potential in cellulosic ethanol production.

Conclusions
S. griseoaurantiacus was mutated by UV treatment, and
two mutant strains (SGyyso and SGyys) were developed

with improved endoglucanase and -glucosidase produc-
tion and activity. Rice straw was used as a cheap ligno-
cellulosic residue for microbial growth for cellulase
production in submerged fermentation. Both the native
and mutant strains were able to utilize rice straw very ef-
ficiently. The UV mutants showed 57.4 % and 12.8 %
higher endoglucanase and B-glucosidase activities com-
pared to the wild-type enzymes. There was no loss in
endoglucanase and B-glucosidase activities at 80 °C were
found to be highly thermostable with no loss in enzyme
activities at 80 °C for 60 min and nearly 80 % of initial
activity was retained at 90 °C. Studies on purification of
the endoglucanases and fB-glucosidases from these mu-
tant strains and their synergistic action on enzymatic
saccharification will provide the industrial applicability
in cellulosic ethanol production.

Additional file

Additional file 1: Supporting information. A file showing two
supplementary figures and five supplementary tables.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
AKK designed and performed the research experiments. AKK wrote the
paper and approved the final manuscript for publication.


http://www.bioresourcesbioprocessing.com/content/supplementary/s40643-015-0052-x-s1.pdf

Kumar Bioresources and Bioprocessing (2015) 2:22

Author’s information

AKK is a senior scientist at the Bioconversion Technology Division, Sardar
Patel Renewable Energy Research Institute, near BVM Engineering College,
Vallabh Vidyanagar, Gujarat, India.

Acknowledgements

The author is thankful to the Director, SPRERI for providing the necessary
facilities to carry out this research work. The financial support from the
start-up research fund (SPRERI/AKK/RP-2) of SPRERI, Gujarat is
highly acknowledged.

Received: 21 February 2015 Accepted: 30 April 2015
Published online: 19 May 2015

References

1. Rathan RK, Ambili M (2011) Cellulase enzyme production by Streptomyces sp
using fruit waste as substrate. Aust J Basic Appl Sci 5:1114-1118

2. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for
the degradation of cellulose. Biotechnol Biofuel 5:45

3. Miettinen-Oinonen A, Londesborough J, Joutsjoki V, Lantto R, Vehmaanpera
J(2004) Three cellulases from Melanocarpus albomyces for textile treatment
at neutral pH. Enzym Microbial Technol 34:332-341

4. Sukumaran RK, Singhania RR, Pandey AK (2005) Microbial cellulases -
production, application and challenges. J Sci Indus Res 64:832-844

5. Bhat MK (2000) Cellulases and related enzymes in biotechnology.
Biotechnol Adv 18:355-383

6. Manivasagan P, Gnanan S, Sivakumar K, Thangaradjou T, Vijaylaxmi S,
Balasubramanian T (2010) Isolation, identification and characterization of
multiple enzyme producing actinobacteria from sediment samples of
Kodiyakarai coast, the Bay of Bengal. Afr J Microbiol Res 4:1550-1559

7. Berg B, Laskowski R (2006) Litter decomposition: a guide to carbon and
nutrient turnover, vol 38, CA, Adv. Ecol. Res. Elsevier Academic Press, San Diego

8. Bajpai P (1999) Applications of enzymes in the pulp and paper industry.
Biotechnol Prog 15:147-157

9. Harman GE, Kubicek CP (1998) Trichoderma and Gliocladium: enzymes,
biological control and commercial applications, vol 2. Taylor and Francis
Ltd, London, pp 393

10. Uhlig H (1998) Industrial enzymes and their applications. In: John Wiley &
Sons, Inc, New York, pp 435

11, Reith JH, den Uil H, van Veen H, de Laat WTAM, Niessen JJ, de Jong E,
Elbersen HW, Weusthuis R, van Dijken JP, Raamsdonk L (2002) Co-
production of bio-ethanol, electricity and heat from biomass residues. In:
Proceedings of the 12th European conference on biomass for energy, in-
dustry and climate protection. 17-21 June 2002, Amsterdam, The
Netherlands, 1118-1123.

12, Xu ZH, Bail YL, Xu X, Shi JS, Tao WI (2005) Production of alkali-tolerant
cellulase-free xylanase by Pseudomonas sp. UN024 with wheat bran as the
main substrate. World J Microbiol Biotechnol 21:575-581

13. Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and
fermentation processes. Appl Microbiol Biotechnol 54:287-301

14.  Chand P, Aruna A, Magsood AM, Rao LV (2005) Novel mutation method for
increased cellulase production. J Appl Microbiol 98:318-323

15. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGAS:
molecular evolutionary genetics analysis using maximum likelihood,
evolutionary distance, and maximum parsimony methods. Mol Biol Evol
28:2731-2739

16.  Mandels M, Hontz |, Nystrom J (1974) Enzymatic hydrolysis of waste
cellulose. Biotechnol Bioeng 16:1471-1493

17. Czapek F (1902) Beitr Chem Physiol Pathol 1:540

18. Vogel HJ (1956) A convenient growth medium for Neurospora (medium N).
Microbial Genetics Bulletin 13:42-43

19.  Dashtban M, Maki M, Leung KT, Mao C, Qin W (2010) Cellulase activities in
biomass conversion: measurement methods and comparison. Crit Rev
Biotechnol 30:302-309

20. Kubicek CP (1982) Beta-glucosidase excretion by Trichoderma pseudokoningii:
correlation with cell wall bound beta-1,3-glucanase activities. Arch Microbiol
132:349-354

21, Bradford MM (1976) A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye
binding. Anal Biochem 72:248-254

22.

23.

24,

25.

26.

27.

28.

29.

30.

Page 10 of 10

Jaradat Z, Dawagreh A, Ababneh Q, Saadoun I (2008) Influence of culture
conditions on cellulase production by Streptomyces sp. strain J2. Jordan J
Biol Sci 1:141-146

Ifan M, Javed J, Syed Q (2011) UV mutagenesis of Aspergillus niger for
enzyme production in submerged fermentation. Pak J Biochem Mol Biol
44:137-140

Yao R, Li M, Deng S, Hu H, Wang H, Li F (2012) Mutagenesis of Trichoderma
viride by ultraviolet and plasma. Plasma Sci Tech 14:353-356

Lui j, Feng Y, Yu Y, Zhou X, He W (2011) Selection of fungus with high
ability of cellulase activity production using UV mutagenesis. International
Conference on Consumer Electronics, Communications and Networks
(CECNet), 1643-1645

lkehata H, Ono T (2011) The mechanisms of UV mutagenesis. J Radiat Res
52:115-125

Kluepfel D, Shareck F, Mondou F, Morosoli R (1986) Characterization of
cellulase and xylanase activities of Streptomyces lividans. Appl Microbiol
Biotechnol 24:230-234

Jang HD, Chen KS (2003) Production and characterization of thermostable
cellulases from Streptomyces transformant T3-1. World J Microbiol Biotechnol
19:263-268

Schrempf H, Walter S (1995) The cellulolytic system of Streptomyces reticuli.
Int J Macromolecules 15:353-355

Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria
for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500-516

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Substrate, chemicals, and media
	Microbial isolation and screening
	Molecular identification
	Media optimization and growth on different lignocellulosic residues
	Determination of cellulase activities
	Zymogram analysis using non-denaturing SDS-PAGE
	Effect of UV treatment on cellulase production
	Determination of optimum pH, temperature, and stability
	Effect of metal ions and chemical reagents

	Results and discussion
	Microbial identification
	Microbial growth on rice straw
	UV mutagenesis and zymogam analysis
	Effect of pH, temperature and additives on cellulase activity

	Conclusions
	Additional file
	Competing interests
	Author’s contributions
	Author’s information
	Acknowledgements
	References

