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Abstract 

Background:  Saccharopolyspora erythraea (S. erythraea) is a Gram-positive erythromycin–producing filamentous 
bacterium. The lack of comprehensive S. erythraea genome-scale metabolic models (GEMs) hinders the efficiency of 
metabolic engineering as well as fermentation process optimization.

Results:  In this study, the GEMs model of S. erythraea iZZ1342 was reconstructed according to the latest genome 
annotations, omics databases, and literatures. Compared with the previous S. erythraea model—GSMR, the new 
model iZZ1342 presented great improvements both on scope and coverage in the number of reactions, metabo-
lites, and annotated genes. In detail, the number of unique reactions in iZZ1342 was increased from 1482 to 1684, 
the number of metabolites was increased from 1546 to 1614, and the number of unique genes was increased from 
1272 to 1342. We also added 1441 gene-protein-reaction associations in iZZ1342 which lacks in the previous model 
to overcome the limitation in the application of strain designing. Compared with the transcriptomics data obtained 
from the published literature, 86.3% ORFs and 92.9% reactions in iZZ1342 can be verified. The results of the sensitiv-
ity analysis showed the similar trend in the E. coli GEMs. The prediction of growth on available 27 kinds of carbon 
sources and 33 kinds of nitrogen sources showed the accuracy rate was 77.8 and 87.9%, respectively. Compared with 
the physiological data obtained from chemostat cultivation, the simulation results showed good consistency. The 
correlation coefficient between the 13C-labeled experiment data and the flux simulation result was 0.97. All the above 
results showed that the iZZ1342 model has good performance. Furthermore, four genes are in the range of successful 
knockout by comparing these targets with the results which have been earlier published.

Conclusion:  The new model iZZ1342 improved significantly in model size and prediction performance, which will 
lay a good foundation to study the systematic metabolic engineering of S. erythraea system in vivo.
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Background
Saccharopolyspora erythraea, formerly called Streptomy-
ces erythraeus (Weber et al. 1985), is a kind of Gram-posi-
tive filamentous bacterium which produces the medically 
useful antibiotic erythromycin A (Oliynyk et  al. 2007). 

Erythromycin is an important broad-spectrum 14-mem-
bered macrolide antibiotic which has been widely used 
in the treatment of many diseases caused by pathogenic 
Gram-positive bacteria (Mironov et al. 2004). Nowadays, 
industrial production of erythromycin is mainly through 
submerged culture system. Similar to the production of 
antibiotics through secondary metabolism of other actin-
omyces (Bibb 2005; Medema et  al. 2010; Wentzel et  al. 
2012), the synthesis process of erythromycin is also com-
plex and is largely influenced by the composition of the 
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media and culture condition (Martin and Bushell 1996; 
Mcdermott et al. 1993; Rostamza et al. 2008).

Systems biology is a kind of discipline which combines 
experimental and computational methods (Feist and Al 
2009). This method is useful to make a comprehensive 
analysis and prediction of complex intracellular biologi-
cal systems. Using different omics techniques has made 
it possible to analyze the abundant data intracellularly, 
which includes the correlation between the various com-
ponents within the cell. The significance of genomics is 
self-evident in today’s most widely used omics analysis 
(Ellis and Goodacre 2012). The development of math-
ematical models improves the ability to analyze and 
integrate these omics data (Gehlenborg et al. 2010; Holly-
wood et al. 2006; Stefanovic et al. 2017). Abstract genome 
data and intracellular metabolic pathways are trans-
formed into mathematical models, which make systems 
biology developed tremendously (Ellis and Goodacre 
2012). Most importantly, the Genome-Scale Metabolic 
Models (GEMs) are becoming one of the most significant 
tools for analyzing different metabolites and metabolic 
pathways in metabolic engineering (Kim et  al. 2012). 
With the development of modern genome sequencing, 
it is possible to integrate the reconstruction of metabolic 
pathways into GEMs.

The genome-scale metabolic reconstructions (GSMRs) 
of S. erythraea were built in 2012 (Licona-Cassani et al. 
2012). In this model, the metabolic reactions of S. eryth-
raea in intracellular were sorted out by the author and 
the medium suitable for erythromycin growth was opti-
mized by using this model. In order to promote the qual-
ity of the GEMs of S. erythraea, there are at least four 
aspects that need to be improved according to GEMs of 
other model strains (O’Brien et  al. 2013; Tomàs-Gam-
isans et al. 2016). Firstly, the balance of mass and electri-
cal charge should be checked; secondly, the ineffective 
reactions should be deleted and the lacking metabolic 
pathways need to be filled; thirdly, the gene-protein-
reactions (GPRs) relationship should be constructed so 
that we can use our model to design strain by gene target 
prediction. Finally, the accuracy and predictive power of 
the model should be validated by comparing the biomass 
growth parameters, metabolic fluxes, and other physi-
ological parameters with the simulation results.

In this study, a GEM model based on constraints of flux 
balance analysis (FBA) was reconstructed and in silico 
analysis was conducted to compare the physiological data 
and metabolic states of S. erythraea among different cul-
tivation environments. We integrated the latest omics 
information into our GEM model (Oliynyk et  al. 2007; 
Peano et  al. 2012), then predicted the essential genes, 
the secretion of product, and the growth condition in 
different media with our model accurately. Overall, the 

reconstructed model could better describe the metabolic 
characteristics, and for this reason, we create a better 
platform to study the systems metabolic engineering of S. 
erythraea in vivo.

Methods
Microorganism
The S. erythraea strains NRRL23338 and E3 were used in 
this study.

Media and culture conditions
The composition of the chemically defined medium used 
for the pre-batch culture of the microorganism contains 
(per liter of deionized water): 30 g glucose, 7 g K2HPO4, 
3  g KH2PO4, 5.5  g (NH4)2SO4, 0.25  g MgSO4·7H2O, 
25  mg FeSO4·7H2O, 0.53  mg CuCl2, 0.55  mg CoCl2, 
13.8  mg CaCl2·7H2O, 10.4  mg ZnCl2, 6.2  mg MnCl2, 
0.3 mg Na2MoO4 (Bushell et al. 1997). The medium com-
position for the carbon limitation chemostat culture was 
the same as for the pre-batch cultivation except the glu-
cose concentration was changed to 15  g/L (Ghojavand 
et al. 2011; Mcdermott et al. 1993).

The culture conditions for seed culture, pre-batch cul-
ture, and chemostat culture were determined by McDer-
mott et  al. (1993). Pre-batch culture and chemostat 
culture were carried out in a 5-L bioreactor (National 
Engineering Research Center for Biotechnology, Shang-
hai, China) with a working volume of 3 L. The dissolved 
oxygen (DO) was maintained above 40% by adjust-
ing the aeration and the agitation to ensure fully aero-
bic conditions. The OUR, CER, and RQ were measured 
online using a process mass spectrometer (MAX300-LG, 
Extrel, America). Temperature, pH, and pressure were 
set as 34 °C, 7.0 (with adding 1 M NaOH), and 0.05 MPa, 
respectively. The specific growth rate (μ) of chemostat 
culture was controlled using the dilution ratio (D).

Analyses
The cell concentration was monitored by measuring 
the OD600. The dry cell weight (DCW) was measured 
as described by Carreras et al. (2002). The fermentation 
broth supernatant was used for measuring the concen-
tration of residual glucose and organic acids. Residual 
glucose concentration was analyzed using a glucose kit 
(Sinopharm Chemical Reagent Co., Ltd, China) as per 
manufacturer’s protocol. Organic acids concentration 
was analyzed by high-performance liquid chromatogra-
phy (HPLC) as described by Albert and Martens (1997).

Procedures for model reconstruction
The GEMs of S. erythraea was built on the basis of the 
whole genome annotation of S. erythraea and other 
information from the databases (KEGG, UniProtKB, 



Page 3 of 14Zhuang et al. Bioresour. Bioprocess.  (2018) 5:26 

BioCyc, Enzyme) and literatures (Caspi et  al. 2012; 
Licona-Cassani et  al. 2012; Oliynyk et  al. 2007), which 
was followed by the standard three step process (Thiele 
and Palsson 2010). Firstly, considering the lack of metab-
olites list and GPR relationship of the model created in 
2012, this research reassembled all metabolic reactions 
and metabolites referring to annotated genes from KEGG 
and PubChem (Kanehisa et  al. 2006; Kim et  al. 2016). 
The reactions in this paper were all manually refined and 
checked to ensure that the structure of each metabolite 
is consistent, the charge and mass in every reaction is 
balanced.

Subsequently, in order to expand the S. erythraea 
GEMs, we found the latest gene annotation information 
from three major databases (KEGG, UniProtKB, IMG) 
to add the number of effective reactions and metabolites 
(Markowitz et  al. 2012). At the same time, we used the 
GapFind algorithm to check the connectivity of all the 
pathway in this model and if there are identified missing 
links somewhere (Kumar et  al. 2007), then we will use 
two steps to fill these gaps: first, by referring to the litera-
ture add new reactions from other organisms’ metabolic 
pathway; second, if the synthetic pathway of this metabo-
lite cannot be found, then introduce transport reactions 
to allow for metabolite exchange. The format of each new 
reaction was referred to the standard protocol to ensure 
the quality of the final model to achieve the standardiza-
tion requirements (Caspi et al. 2012).

Lastly, because there is lack of the gene-protein-reac-
tions (GPRs) relationships in the model created in 2012, 
we established the GPRs in our model GEM-iZZ1342. 
We found out all the genes in the NCBI database, and 
then correlated the genes with enzymes and reactions 
according to the function of this gene in the KEGG data-
base. According to the GPRs, the number of ineffec-
tive reactions was greatly reduced, and the relationship 
between the reactions and genes was confirmed clearly. 
Finally, we re-added the non-gene-associated reactions 
to the model, including metabolites transport reactions, 
exchange reactions, and other reactions which are lack 
of gene annotations. The detailed information about the 
databases used in this study can be found in Additional 
file 1.

Sensitivity analysis
In order to investigate the sensitivity of iZZ1342, the qs 
and the qO2 were set to 0–1.5 mmol glucose/gDCW h and 
0–1.0  mmol O2/gDCW  h, respectively. In all of the six 
elements (protein composition, RNA composition, DNA 
composition, cofactor composition, GAM, NGAM), we 
changed only one element each time. The range of vari-
ations for each simulation is the protein (22.8–68.4%), 
the RNA (4.9–14.7%), the DNA (2.2–6.6%), the cofactor 

(1.5–4.5%), the GAM (16–48 mmol ATP/gDCW h), and 
the NGAM (1.25–3.75 mmol ATP/gDCW h). Finally, we 
calculated the specific growth rate (μ) and specific oxy-
gen uptake rate (qO2) to reflect the result on changing 
every element of our model. All simulations were per-
formed using the available software Matlab (Mathworks, 
Inc).

Biomass composition
An equation describing the conversion of every cellular 
component into biomass can be derived from previous 
published literature publication on Streptomyces coeli-
color (Borodina et al. 2005). The biomass is composed of 
the following macromolecules: protein, DNA, RNA, lipid, 
carbohydrates, and cofactors. The detailed biomass com-
ponents (Additional file 2) of S. erythraea were referred 
from Donachie and Begg 1970 and Borodina et al. 2005.

In silico computation using flux balance analysis
Metabolic fluxes of the S. erythraea were defined by 
using flux balance analysis (FBA), constrains of which 
are imposed by the stoichiometry matrix in the meta-
bolic network (Bordbar et al. 2014; Orth et al. 2010). The 
matrix of stoichiometry imposes flux balance constraints 
on the system, ensuring that the total amount of metab-
olites produced must be equal to the total amount of 
consumed at the steady state; this is the so-called pseudo-
steady state. The net sum of all fluxes which contains pro-
duction and consumption for each internal metabolite is 
set to zero. In FBA, a special objective function, written 
as a linear combination of fluxes, can be used to calculate 
the optimal solution. And we all know that according to 
the linear optimization theory, the optimal solution is at 
a corner in the feasible flux space. Using the matrix rep-
resentation, this problem can be stated as follows:

where S is the stoichiometric matrix indicating the stoi-
chiometric coefficient of metabolic reactions in the net-
work and v is the vector of all metabolic fluxes. vmin and 
vmax represent the minimum and maximum constraints 
on the fluxes, and which are also used to define the con-
straints for maximal enzymatic rate and irreversibility 
of reaction. cT is a vector representing the linear combi-
nation of metabolic fluxes. In our research, the biomass 
production rate is used as the objective function which 
is targeted to be maximized. We adopted this method to 
estimate the metabolic fluxes under the assumption that 
our strain is under exponential phase at which cells grow 

maximize: cT · v

subject to: S · v = 0

vmin ≤ v ≤ vmax,
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at the maximum speed. In all of the simulations, glucose 
was chosen as the sole carbon source and other external 
metabolites in the transport reactions are set to freely 
transport through the cell membrane: H2O, CO2, NH4

+, 
PO4, and SO4. All calculations were performed using the 
available software Matlab (Mathworks, Inc).

Model prediction of the cell growth on different carbon 
and nitrogen sources
To comprehensively evaluate the prediction ability of 
iZZ1342, physiological data were obtained from two 
parts: previous publications and experiments through 
cultivating S. erythraea on different carbon and nitrogen 
sources performed in our laboratory. When predicted the 
utilization of carbon source, NH4

+ was set as the only 
nitrogen source, in the same time sulfate and phosphate 
were maintained as the only phosphorus source and sul-
fur source, respectively. Then we set the flux of other 
exchange reactions referring to carbon source to zero 
except the aimed carbon source. To predict the utiliza-
tion of nitrogen, similarly, we set the glucose as the only 
carbon source. In the simulation, the target substrate was 
viewed as growth supporting if the predicted growth rate 
was obviously above zero.

Model prediction of essential genes
To predict the essential genes, non-essential genes, and 
partially essential genes, Single-Gene Deletion function 
based on the Cobra Toolbox v2.0 was carried out (Schel-
lenberger et  al. 2011). Based on the size of the specific 
growth rate calculated when a certain gene is knocked 
out, the genes were divided into three groups: the essen-
tial genes (the predicted specific growth rate is equal to 
0 or infinitely approaches to 0), non-essential genes (the 
predicted specific growth rate is equal to the maximum 
value), and partially essential genes (the predicted spe-
cific growth rate was between 0 and the maximum value). 
Both minimal and optimized chemically defined medium 
were used to predict essential genes, non-essential genes, 
and partially essential genes. The minimal chemically 
defined medium was made up of glucose, oxygen, ammo-
nia, sulfur, and phosphorus, while the optimized syn-
thetic medium formula was optimized by Licona-Cassani 
et al. (2012).

Results and discussion
Reconstruction of the S. erythraea GEMs iZZ1342
The genome-scale metabolic model (GEMs) of S. eryth-
raea was reconstructed on a three step procedure (see 
“Methods”). During the reconstruction, the specific pro-
cess which contains all the materials and the procedures 
was required to be manually curated in the model as 
shown in Fig. 1.

Compared with the updated GSMR of S. erythraea 
published in 2012, the reconstructed GEMs iZZ1342 
have shown obvious improvements. First, the ORFs 
(open reading frames) are increased from 1272 to 1342, 
the total number of reactions is decreased from 3985 to 
1684 after removing the ineffective reactions and add-
ing the GPRs associations. Furthermore, we also sorted 
out the metabolites list which contains the information 
of all the metabolites in the reaction. We also manually 
checked and balanced the mass and electrical charge 
of the elements and reactions according to the process 
in “Methods.” Finally, we conducted the gap find analy-
sis procedure and found all the orphan reactions. Then 
solved these gaps by adding the connecting reactions. 
The detailed information of iZZ1342 can be found in 
Additional files 3 and 4.

We compared the GEMs parameters in all aspects of 
S. erythraea and other actinomyces (Alam et  al. 2010, 
2011; Kjeldsen and Nielsen 2009). The comparison result 
is provided in Table 1. As shown in Table 1, the number 
of total reactions and metabolites (Additional file  5) in 
iZZ1342 are larger than that in S. erythraea NRRL23338-
GSMR, which indicates our model was improved on 
the scale. The improvements are also reflected on the 
assigned genes, the coverage of the annotated genes as 
well as the number of the reactions assigned by the genes. 
We also compared our GEM with other actinomyces, and 
the results show that our GEM has a larger scale under 
the conditions of almost the same genome size.

Model verification by transcriptomic analyses
We verified the new ORFs in the updated GEMs of S. 
erythraea with the latest transcriptomic analysis data 
(Carata et  al. 2009; Li et  al. 2013; Peano et  al. 2012). 
The reason for this is that we can identify genes with 
low-expression as many as possible compared with the 
microarray data (Wang et  al. 2009). By extracting the 
information of RNA sequencing, the information of gene 
sequence and enzymes of different pathways among sam-
pling period can be gained. Then, we can get the infor-
mation of genes and reactions by analyzing the gene 
sequence and enzymes. Due to the fact that we created 
the GPRs associations in this study, we could distinguish 
the single-gene-associated reactions and multi-gene-
associated reactions. The transcriptomic analysis data 
result showed that about 7186 genes could be determined 
during the cultivation condition (Additional file  6). The 
iZZ1342 contains 1342 genes and the expression of most 
genes (86.3%) could be found according to the results 
of transcriptomic analysis data during the sampling 
condition (Fig.  2a). Among all the reactions (except the 
exchange reactions), the expression of genes which can-
not be measured was at 4.6% (71 reactions) of these 
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Fig. 1  The reconstruction process of the genome-scale metabolic model of S. erythraea iZZ1342
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reactions (Fig.  2b). When removing the exchange reac-
tions and other reactions which are without any anno-
tated genes, 702 and 739 reactions are annotated with 
single and multiple genes, respectively. Furthermore, the 
transcriptome analysis result shows that about 85.4% of 

the single-gene-associated reactions and 89.2% of the 
multi-gene-associated reactions were verified (Fig. 2c, d), 
indicating that the most reactions in the model iZZ1342 
were reasonable and reliable, which shows the rationality 
of our model to a great extent.

Table 1  Comparison of the main characteristics of S. erythraea and other actinomyces

Characteristics iZZ1342  
this study

S. erythraea NRRL23338- 
GSMR (Licona-Cassani 2012)

S. coelicolor A3(2)  
(Borodina et al. 2005)

Corynebacterium glutamicum 
(Kjeldsen and Nielsen 2009)

Genome size (Mb) 8.2 8.2 8.7 3.3

Total genes 7233 7233 7910 3002

Genes assigned 1342 1272 711 448

Annotation coverage (%) 18.6 17.5 13 14.9

Total reactions 1684 3985 971 446

Unique reactions 1684 1482 700 446

Metabolic reactions 1551 3872 819 376

Transport and exchange 
reactions

133 113 152 70

Metabolites 1614 1646 500 411

GPRs associations 1441 – 764 227

Reactions with genes 
assigned

1441 1223 764 227

Reactions without genes 
assigned

243 2762 207 219

Fig. 2  Verification of the GEM of iZZ1342 by transcriptomics data. a Pie chart of the expressed and unexpressed genes involved in iZZ1342. b Pie 
chart of the verified reactions and other reactions in total 1441 reactions (except the exchange and transport reactions). c Pie chart of the verified 
single-gene reactions and other reactions in total single-gene reactions. d Pie chart of the verified multi-gene reactions and other reactions in total 
multi-gene reactions



Page 7 of 14Zhuang et al. Bioresour. Bioprocess.  (2018) 5:26 

Sensitivity analysis of iZZ1342
To check the sensitivity of the simulation results gener-
ated from FBA with iZZ1342, we varied the content of 
all the four largest macromolecules in the cell (protein, 
RNA, DNA, and cofactor) and the two energy parame-
ters (GAM, NGAM), respectively (Feist et al. 2007). The 
specific growth rate (μ) and the specific oxygen uptake 
rate (qO2) were investigated under aerobic and glucose-
limited conditions, shown in Fig. 3. When composition of 
the protein, RNA, DNA, and cofactor was changed, the 
specific oxygen uptake rate can hardly be affected by the 
change. However, the specific growth rate was slightly 
decreased when the composition of protein and RNA was 
changed. On the contrary, when the energy parameter 
was changed, μ and qO2 were affected seriously and easily. 
As GAM and NGAM increased, μ was greatly decreased. 
In the meantime, qO2 was tremendously increased as 
shown in Fig.  3e, f. The results of the sensitivity analy-
sis indicate that the model iZZ1342 is very sensitive to 
the energy parameters rather than the cell composition 

parameters, which is correspondingly consistent with the 
results gained from E. coli GEMs (Feist et al. 2007).

Model prediction by measuring availability of different 
carbon and nitrogen sources
To predict the physiological state of S. erythraea grow-
ing under different conditions, we collected the reported 
phenotype experimental data (El-Enshasy et  al. 2008; 
Zou et al. 2009). For other carbon sources and nitrogen 
sources which are quite crucial but could not find the 
reference, we complemented experiments to verify the 
validity. Collectively, 27 kinds of carbon sources and 33 
kinds of nitrogen sources were validated. FBA was used 
to analyze the growth situation on every carbon or nitro-
gen source. According to the physiological data from the 
publications and our laboratory, S. erythraea could grow 
on 23 carbon sources and 27 nitrogen sources. The in 
silico growth capabilities of S. erythraea on 17 carbon 
sources and 25 nitrogen sources could be predicted using 
iZZ1342 and the accuracy rates were 77.8 and 87.9%, 

Fig. 3  Sensitivity analysis of different model parameters by the model iZZ1342. The effects of each parameter when changing the specific growth 
rate (A1–F1) and the specific oxygen uptake rate (A2–F2) with iZZ1342. The simulations were performed in the glucose-limited condition by varying 
the protein content (22.8–68.4%). a The RNA content (4.9–14.7%), b the DNA content (2.2–6.6%), c the cofactor content (1.5–4.5%), d the GAM 
content (16–48 mmol ATP/gDCW h), e the NGAM content (1.25–3.75 mmol ATP/gDCW h), f red represents the simulated results of the high value of 
the input parameter and black represents the lower value
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respectively. Although the accuracy is already high, the 
remaining discrepancy will limit its impact on the partial 
metabolic function of the network, and we believe this 
will provide new improvement space for a next round of 
upgrading. The growth-relating results can be found in 
Tables 2 and 3.

Model validation using physiological growth parameters
To validate the GEMs iZZ1342, we compared the phe-
notype predictions with the experimental data obtained 
from the chemostat cultures with minimal chemically 
defined medium (Mcdermott et  al. 1993). Firstly, the 
S. erythraea NRRL23338 was grown in carbon-limited 
medium at five dilution rates (0.01, 0.02, 0.03, 0.04, and 
0.05/h), then measured the uptake and secretion rates of 
glucose, O2, CO2, and dry cell weight (DCW). Finally, we 
calculated the specific growth rate (μ), qO2, qCO2, and qs. 
In all cultures, we ensured that the recovery is over 91% 

of the substrate carbon in biomass, CO2, and organic 
acids.

To simulate the cellular growth in carbon-limited 
medium, we set the cell growth to the maximal while 
constraining the glucose uptake rate based on the 
hypothesis that cells tend to maximal growth during 
exponential phase (Mishra et  al. 2016). Moreover, the 
exchange fluxes of NH4

+, phosphate, sulfite, H2O, and 

Table 2  Prediction of  growth capability of  iZZ1342 
on  different carbon sources (+ represents growth and  − 
represents non-growth)

Carbon source Observed 
in experiment

Predicted 
in model

References

alpha-d-Glucose + + El-Enshasy et al. (2008)

Sucrose + + El-Enshasy et al. (2008)

d-Xylose + − El-Enshasy et al. (2008)

Mannose + + This study

Mannitol + + This study

l-Rhamnose + + This study

l-Arabinose + + El-Enshasy et al. (2008)

d-Mannose + + This study

d-Fructose + + El-Enshasy et al. (2008)

Raffinose + + This study

d-Galactose + + El-Enshasy et al. (2008)

Inost + + This study

Melibiose + + This study

d-Ribose + + El-Enshasy et al. (2008)

alpha, alpha-
Trehalose

+ + El-Enshasy et al. (2008)

Maltose + + El-Enshasy et al. (2008)

β-Lactose + + El-Enshasy et al. (2008)

α-Lactose + − El-Enshasy et al. (2008)

Pyruvate + − This study

2-Oxoglutarate − − This study

Succinate − − This study

Fumarate − − This study

Acetate + − This study

Propanoate + − This study

Citrate + + This study

(S)-Malate + − This study

(S)-Lactate − − This study

Table 3  Prediction of  growth capability of  iZZ1342 
on different nitrogen sources (+ represents growth and − 
represents non-growth)

Nitrogen source Observed 
in experiment

Predicted 
in model

References

l-Valine + + This study

l-Threonine + + This study

l-Isoleucine + − This study

l-Leucine + − This study

l-Methionine + + This study

L-Aspartate + + This study

l-Glutamine + + This study

l-Phenylalanine + + This study

l-Glutamate + + This study

l-Serine + + This study

l-Proline + + This study

Glycine + + This study

l-Lysine − − This study

l-Histidine + + This study

l-Cysteine + + This study

l-Asparagine + + This study

l-Alanine + + This study

l-Arginine + + This study

l-Tyrosine − − This study

l-Tryptophan + + This study

Urea + + This study

4-Aminobu-
tanoate

+ + This study

Xanthine − − This study

Hypoxanthine − − This study

Ammonium 
chloride

+ + Zou et al. (2009)

Ammonium 
nitrate

+ + El-Enshasy et al. (2008)

Ammonium 
acetate

+ + El-Enshasy et al. (2008)

Ammonium 
oxalate

+ + El-Enshasy et al. (2008)

Ammonium 
carbonate

+ + El-Enshasy et al. (2008)

Ammonium 
sulfate

+ + Zou et al. (2009)

Ammonium 
dihydrogen 
phosphate

+ + El-Enshasy et al. (2008)
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H+ were unconstrained to provide basic nutrients for 
cell growth. The non-growth-associated maintenance 
(NGAM) was set to 3 mmol/gDCW/h as observed for S. 
coelicolor (Borodina et al. 2005). As shown in Fig. 4, the 
prediction data from iZZ1342 matched reasonably with 
the data from the chemostat cultures. When the qs was 
changed from 0.5 to 1.5  mmol/gDCW/h, the predic-
tion results of μ, qO2, and qCO2 between the in silico and 
in  vivo were quite similar, indicating that the excellent 
performance of our new model across multiple environ-
mental conditions to a large extent.

Model validation by in vivo 13C fluxes
Cellular metabolic flux is a significant and direct indica-
tor of the physiological state (Nielsen 2003). Nowadays, 

GEM models could be used to predict the cellular reac-
tion fluxes due to the fact that GEM model contains 
the total reactions that can be carried out in the strain. 
Furthermore, it can avoid any biases caused by lump-
ing reactions or omitting pathways that cannot be pre-
judged (Saratram and Maranas 2015). However, there is 
still a possibility to exit obvious discrepancies between 
the in vivo calculated flux and the simulated flux in sil-
ico (Damiani et  al. 2015). Therefore, we compared the 
in  vivo calculated flux acquired from the 13C Metabolic 
Flux Analysis (13C MFA) technology and the simulated 
flux acquired from FBA to further evaluate the prediction 
accuracy of our model iZZ1342.

In order to evaluate the prediction accuracy of the 
model, first we used the 13C-labeled technique to get the 

Fig. 4  The result of the predicted and measured μ, qO2, and qCO2 for chemostat cultivation of S. erythraea NRRL23338. The NGAM used in simulation 
was 3 mmol ATP/gDCW h. Black represents simulated results of the GEMs iZZ1342, and red 13 represents the experimental data from our lab
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flux distribution of analyzed specific metabolic pathways 
(Hong et al. 2016), and then compared with the flux dis-
tribution simulated from our model in silico (Additional 

file 7). The main aim of this work is to predict how well 
fluxes gained from analysis of our constraint-based GEM 
model reflect the real flux distribution.

When analyzing the cellular 13C metabolic flux, we 
combined the corrected mass isotopomer distributions, 
the extracellular fluxes as well as the metabolic network. 
At the same time, a software which is used to calculate 
the central carbon metabolic flux called INCA was used 
to iteratively calculate the absolute flux solution that 
described the data exactly (Young 2014). The central 
carbon metabolic fluxes identified by INCA and simula-
tion are shown in Fig. 5. As shown in Fig. 5a, the meta-
bolic profiles in the FBA simulations agreed well with the 
observed experimentally. In Fig. 5b, the correlation coef-
ficient between the simulated fluxes and the calculated 
13C fluxes is shown to be 0.97, indicating the good perfor-
mance of iZZ1342.

Essential genes target prediction in silico for strain design
The molecular mechanisms in traditional mutation and 
screening approach for improving the production of 
erythromycin are still poorly understood. However, this 
information is quite significant for designing the rational 
strategies for high-yield strain (Peano et al. 2012). In this 
study, we used iZZ1342 to find the essential gene targets 
and give reliable information for making strain design.

During the reconstruction of our GEM model, we 
established the relationship of genes, proteins, and reac-
tions (GPRs), so that we can use the GPRs to predict the 
genotype efficiently. In this process, we used the Single-
Gene Deletion function of the Cobra Toolbox v2.0 to 
predict the essential genes, the partially essential genes 
and the non-essential genes (Additional file 8). When the 
minimal chemically defined medium was used to culti-
vate strains, the result of the simulation shows that 318 
genes are essential genes (Fig. 6). These genes are mainly 
distributed in the TCA cycle, amino acids biosynthesis 
and metabolism, energy metabolism, and so on. How-
ever, when the optimized chemically defined medium 
was adopted, the number of essential genes has declined 
markedly, from 318 to 186 (Fig. 6). That is because abun-
dant nitrogen sources were added into the new optimized 
medium and that resulted in replacing the synthesis 
pathways of some amino acids. Furthermore, 89 genes 
were identified as partially essential genes (Additional 
file  9), and the important characteristics of these genes 
is that knockout of these genes has a subtle impact on 
cell growth. However, these genes may play a crucial 
role in the synthesis of products. They are important 
targets for subsequent strain design because the yield 
of product synthase may increase with a slowdown of 
cell growth (Pan and Qiang 2012). In order to verify the 
effect of the target gene, some targets which are included 

Fig. 5  The distribution of the central metabolism flux in the cellular. 
a Metabolic flux profiles of the central metabolism of S. erythraea. The 
upper number represents the flux acquired from the 13C MFA and the 
lower number represents the flux simulated from our model iZZ1342. 
b Consistent changes in fluxes can be found both in the calculated 
13C fluxes as well as FBA calculation using iZZ1342
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in the 89 partially essential genes have been validated by 
knockout experiments in our lab and on the other pub-
lished papers, including SACE_5639 (Chen et  al. 2016; 
Weber et  al. 2012), SACE_0728 (Mironov et  al. 2004), 
SACE_0731 (Minas et  al. 1998), and SACE_6669 (Hong 

et al. 2017). The knockout results can be found in Table 4. 
To evaluate the other gene targets, further knockout 
experiments are needed to validate the prediction results 
of iZZ1342.

Fig. 6  Results of single-gene deletion research with iZZ1342. a The gene expression data and the categories of the expressed gene in KEGG with 
iZZ1342 (red is the necessary gene, blue is the semi-essential gene, and yellow is the non-essential gene). b The relative growth rate changes of S. 
erythraea between minimal chemically defined medium and optimized chemically defined medium
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Conclusion
We have currently reconstructed and evaluated the 
genome-scale metabolic model (GEMs) of S. erythraea, 
called iZZ1342, which contains the latest gene annota-
tion information, physiological parameters, and detailed 
GPRs relationships. Furthermore, we have also checked 
the mass and charge balance of all the reactions and 
metabolites. For those metabolic pathways that lack cer-
tain key reactions, we integrated the pathways by fill-
ing the gaps. The new model iZZ1342 contains 1614 
metabolites and 1684 reactions, in which 1441 reactions 
are annotated with genes. Comparing with the previ-
ous model, the new model has a lot of improvements, 
mainly including the following aspects: firstly, the bal-
ance of mass and electrical charge have been checked; 
secondly, the ineffective reactions have been deleted and 
the lacking metabolic pathways have been filled; thirdly, 
the gene-protein-reactions (GPRs) relationship has been 
constructed so that we can use our model to design strain 
by gene target prediction. Finally, we have validated the 
accuracy and predictive power of the model by compar-
ing the biomass growth parameters, metabolic fluxes, 
and other physiological parameters with the simulation 
results.

We validated the new model in several aspects. Firstly, 
we tested the sensitivity, also called robustness of the 
model. The result shows good consistency with the 
simulated result that used E. coli GSMM for simula-
tion when changing the content of every component in 
our model. Secondly, we tested the model by measuring 
availability of different carbon and nitrogen sources. The 
result shows an excellent predictive power of our model: 
the accuracy of prediction when using different carbon 
sources is 77.8 and 87.9% when using different nitrogen 
sources. Thirdly, we tested the model using physiological 
growth parameters. When we use the glucose as the only 
carbon sources, the simulation results show a positive 

correlation with the experimental data. Finally, we vali-
dated the model by in vivo 13C fluxes. The result of com-
parison shows that in the main metabolic pathway, they 
have a quite good identity and the R2 of fluxes between 
MFA and GEM model is 0.9638. However, in the other 
few pathways, the results highlight that further attention 
should be paid to promote our model.

We employed our model to find all the partially essen-
tial genes, and these genes are important targets for sub-
sequent strain designing. According to the published 
studies, four genes are in the range of successful knock-
out. However, the other gene targets emphasize that fur-
ther knockout experiments are needed to validate the 
prediction results of iZZ1342.

Additional files

Additional file 1. Information of databases used in this study.

Additional file 2. Biomass composition of S. erythraea NRRL23338.

Additional file 3. iZZ1342 reactions associated with gene annotations. 
Excel file with the list of S. erythraea iZZ1342 model reactions and other 
information about the reactions.

Additional file 4. iZZ1342 in SBML format.

Additional file 5. Metabolites in iZZ1342. Excel file with the total list 
of metabolites in iZZ1342 and other detailed information about the 
metabolites.

Additional file 6. The expressed genes from transcriptomics analysis 
result of S. erythraea NRRL23338.

Additional file 7. The central carbon metabolic fluxes simulated with 
iZZ1342 and from 13C labeled experiments. Flux values (in mmol/gDCW/h) 
for reactions that produce in S. erythraea NRRL23338 metabolism which 
are simulated by GEM iZZ1342 and from experiments. Reactions names 
can be traced in reaction list in Additional file 3.

Additional file 8. Essential genes and partially essential genes predicted 
by iZZ1342. Excel file with the list of Essential genes and partially essential 
genes predicted by iZZ1342.

Additional file 9. The detailed information of the 89 partially essential 
genes (except for the four targets which are list in the text).

Table 4  The knockout targets which have been validated in our lab and on other published papers

Gene ORF Reaction Gene function Genetic engineered in related 
references

mutB SACE_5639 Succinyl-CoA[c] <=> (R) methylmalonyl-
CoA[c]

Methylmalonyl-CoA mutase (MCM) Chen et al. (2016); Weber et al. (2012)

eryG SACE_0728 ErythD[c] + amet[c] => erythb[c] + ahcys[c]
ErythC[c] + amet[c] => erythromycin[c] + a

hcys[c]

Erythromycin C methyltransferase Mironov et al. (2004)

eryK SACE_0731 6(S)-Methylmalonyl-CoA[c] + pro-
panoyl-CoA[c] + 6NADPH[c] + 6 
H[c] <=> 7CoA[c] + 6-deoxyerythronolide-
B[c] + 6CO2[c] + 6NADP[c] + H2O[c]

eryBIII NDP-4-keto-2,6-dideoxyhexose 
3-C-methyltransferase

Minas et al. (1998)

sucC SACE_6669 ADP[c] + orthophosphate[c] + succinyl-
CoA[c] <=> ATP[c] + succinate[c] + CoA[c]

Succinyl-CoA synthetase subunit β Hong et al. (2017)
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