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Abstract 

Background:  Crude glycerol is a main by-product from biodiesel production, and efficient utilization of crude 
glycerol will bring significant economic and environmental benefits. However, the complex compositions of crude 
glycerol may impair the cellular growth and inhibit the crude glycerol consumption. Therefore, it is necessary to find a 
simple method to treat the crude glycerol and release the inhibition on cell metabolism.

Results:  The simply purified crude glycerol by activated carbon can be used as the carbon source to produce suc-
cinate in two-stage fermentation by the engineered Escherichia coli strain, MLB (ldhA−, pflB−) expressing phospho-
enolpyruvate carboxykinase. In the flask experiments, succinate production from crude glycerol without treatment 
was less than that from pure glycerol. However, in the experiments of 1.5-L bioreactor, little succinate was produced 
in crude glycerol. The simply purified crude glycerol was used as carbon source for succinate production, and the 
glycerol consumption and succinate production were enhanced greatly. The succinate produced from the simply 
purified crude glycerol reached 566.0 mM, which was about ten times higher as that of non-purified one (50.3 mM). 
The succinate yield of the anaerobic stage achieved 0.97 mol/mol, which was 97% of the theoretical yield.

Conclusion:  The treatment of crude glycerol by activated carbon could effectively release the inhibition on the 
glycerol consumption and succinate production of the engineered E. coli strains, so that the fermentation result of the 
treated crude glycerol was similar as the pure glycerol. The results showed that the metabolically engineered E. coli 
strains have great potential to produce succinate from crude glycerol.
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Background
Biodiesel is renewable and environmental-friendly, and 
it is an ideal substitute for petroleum diesel. It was pos-
tulated that the world biodiesel market would reach 37 
billon gallons by 2016 (Anand and Saxena 2011). Crude 
glycerol is the main by-product of biodiesel, and it will 
generate about 10% (w/w) glycerol in the process of bio-
diesel production (Vivek et al. 2017). With the significant 
increase of biodiesel production, the price of crude glyc-
erol decreased dramatically. Glycerol has higher reduced 

state comparing to sugars; in addition, the amount of 
cheap crude glycerol is abundant. Therefore, a series of 
sustainable processes were developed to convert glycerol 
to higher value products. Varieties of chemicals, such as 
1,3-propanediol, citric acid, hydrogen, poly (hydroxy-
alkanoates), lipids, succinic acid, etc., can be produced 
from crude glycerol via biological conversions (Li et  al. 
2016, 2017b; Wu et al. 2014; Vivek et al. 2017; Yang et al. 
2012).

The composition of crude glycerol is significantly differ-
ent from pure glycerol, and it contains various impurities, 
such as methanol, fatty acids, fatty acid methyl esters, soap, 
etc. The refining process of crude glycerol to pure glycerol 
generally consists of three stages, including neutralization/
separation, vacuum evaporation, and deep refining (Luo 
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et al. 2016). Therefore, crude glycerol as carbon source to 
produce value-added chemicals can further reduce the 
cost. However, methanol and other compositions in crude 
glycerol may be harmful for cell growth and fermentation, 
and then, the crude glycerol are needed to be simply puri-
fied before  adding into the fermentation medium. Acti-
vated carbon adsorption is a common method for crude 
glycerol purification and easy to operate, and it is efficient 
to reduce color and adsorb small molecular compounds 
and some fatty acids (Manosak et al. 2011; Luo et al. 2016).

Succinate, a C4 dicarboxylic acid, is an intermedi-
ate of the tricarboxylic acid cycle and plays very impor-
tant roles in cell metabolism. Meanwhile, it is also one 
of the top 12 platform chemicals from biomass (Werpy 
and Petersen 2004) and widely used in the production of 
foods, agricultural, pharmaceuticals, and biodegradable 
plastics (Zeikus et al. 1999). Succinate producing micro-
organisms and fermentation strategies are developed to 
reduce or even finally replace petroleum-based succi-
nate production. Natural succinate production bacteria, 
including Anaerobiospirillum succiniciproducens (Bretz 
2015), Actinobacillus succinogenes (Carvalho et al. 2016; 
Zou et  al. 2011), and Mannheimia succiniciproducens 
(Lee et al. 2016; Ahn et al. 2017), and non-native strains, 
such as Escherichia coli (Chen et  al. 2014; Meng et  al. 
2016; Jian et  al. 2016; Li et  al. 2017b) and Corynebacte-
rium glutamicum (Okino et al. 2008; Chung et al. 2017) 
have been studied for succinate production.

Escherichia coli, a facultative organism, is able to 
grow under anaerobic condition and performs a mixed-
acid fermentation (Clark 1989). Deletion of competing 
metabolic by-product pathways and overexpression of 
enzymes related to succinate production were widely 
used to increase succinate production (Balzer et al. 2013; 
Chen et  al. 2014; Gonzalez et  al. 2008; Thakker et  al. 
2013; Jiang et al. 2014; Li et al. 2017a; Meng et al. 2016). 
Lab evolution strategies also enhanced the ability of suc-
cinate production in Escherichia coli by affecting the 
energy-conserving pathways and reducing equivalent-
conserving pathways (Zhang et al. 2009; Zhu et al. 2014). 
Since glycerol has the higher reduced state than glucose, 
it was long thought that E. coli could not utilize glyc-
erol under anaerobic conditions without external elec-
tron (Lin 1976; Booth 2005). In recent years, researchers 
were focused on the glycerol metabolism of E. coli under 
micro-aerobic or anaerobic conditions (Dharmadi et  al. 
2006; Gonzalez et  al. 2008; Mienda et  al. 2016; Li et  al. 
2016; Zhang et  al. 2010). Conversion of 1  mol glycerol 
to phosphoenolpyruvate (PEP) will generate 2  mol of 
NADH which is equal to the requirement of reducing 
equivalents for the formation of 1 mol succinate. CO2 can 
be fixed during the production of succinate from glycerol. 
To produce succinate from glycerol, different strategies of 

fermentation based on different engineered strains were 
applied, such as anaerobic (Zhang et al. 2010), micro-aer-
obic (Blankschien et al. 2010) and aerobic (Li et al. 2013) 
cultures. Sadhukhan et al. (2016) treated the crude glyc-
erol through several physical–chemical steps: acidifica-
tion, neutralization, solvent extraction, adsorption, and, 
finally, pressure filtration through a membrane. Then, the 
treated glycerol was used as carbon source to produce 
succinic acid by E. coli (ATCC 8739), but only 1.4  g/L 
succinic acid was accumulated. In our previous studies, 
two-stage fermentation strategy was applied for succinate 
production from glycerol, which contains aerobic cell 
growth stage and anaerobic conditions for succinate pro-
duction stage (Li et  al. 2016). In the growth stage, high 
cell density can be acquired and different aerobic cultiva-
tion strategies can regulate the enzymes activities which 
involve succinate production. Meanwhile, the activities of 
the aerobically induced enzymes can be maintained for 
succinate biosynthesis during the anaerobic phase (Jiang 
et  al. 2010; Wu et  al. 2007). Culture-condition regula-
tion strategies were also used in two-stage fermentation 
process, and high final titer and yield were achieved (Li 
et  al. 2017b; Zhu et  al. 2011). In this study, crude glyc-
erol, which was simply purified by activated carbon, was 
used as carbon source for succinate production by MLB/
pTrc99a-pck. This simple purification could increase the 
succinate biosynthesis from the crude glycerol signifi-
cantly, and the titer and yield of succinate were similar as 
that of using pure glycerol as carbon source.

Methods
Strains and plasmids
Double mutants E. coli strain MLB (ldhA−, pflB−) and the 
plasmid pTrc99a-pck (over-expressing pck from MG1655) 
were constructed in our previous study (Li et  al. 2016). 
The strain of MLB/pTrc99a-pck was used in this study.

Media and culture conditions
Luria–Bertani broth (LB, per liter: tryptone 10  g, yeast 
extract 5 g, and sodium chloride 10 g) was used to cul-
ture the primary inoculum of MLB/pTrc99a-pck at 
37 °C. Ampicillin was added with a final concentration of 
100 mg/L.

The salt medium (SM) was used for secondary pre-
culture after adding different kinds of glycerol as car-
bon sources and its components contained (per liter): 
Na2HPO4·12H2O 15.12  g, KH2PO4 3.0  g, NaCl 0.5  g, 
MgSO4·7H2O 0.5  g, CaCl2 0.011  g, NH4Cl 1.0  g, 1% 
(w/v) vitamin B1 0.2  mL, and trace elements solution 
0.1 mL. The trace elements solution contained (per liter): 
FeSO4·7H2O 80 g, AlCl3·6H2O 10 g, ZnSO4·7H2O 2.0 g, 
CuCl2·2H2O 1.0  g, NaMoO4·2H2O 2.0  g, MnSO4·H2O 
10 g, CoCl2 4.0 g, and H3BO4 0.5 g.
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Media of GASM, CASM, and SASM were prepared 
by supplementing SM with pure glycerol, crude glycerol 
(Qianglin Bio-energy Material Co., Ltd., Liyang, Jiangsu 
213364, China) and simply purified crude glycerol as car-
bon source, respectively. During aerobic growth stage 
in flasks, the glycerol concentration was 3  g/L in these 
media. In addition, 2 g/L sodium acetate (final concentra-
tion) was also added into GASM, CASM, and SASM as 
co-substrate of glycerol. The media for anaerobic fermen-
tation in flasks were NH4Cl-free SM supplemented with 
pure glycerol, crude glycerol, or simply purified crude 
glycerol. The concentration of glycerol and basic magne-
sium carbonate in the anaerobic fermentation media was 
15 g/L and 20 g/L, respectively.

The media of fermentation, which was carried out in 
a 1.5-L bioreactor (BIOTECH-1.5; Baoxing Co., Shang-
hai, China), were modified SM supplemented with pure 
glycerol, or crude glycerol, or simply purified crude 
glycerol (the initial concentration of glycerol reached 
50 g/L) and 10 g/L of ammonium acetate. The concen-
trations of Na2HPO4·12H2O, KH2PO4, and NH4Cl were 
changed to 3.78, 0.75, and 10  g/L, respectively (Wu 
et al. 2012). Ampicillin was also added into the media at 
the concentration of 100 mg/L.

1  mL of stock culture was transferred to 30  mL LB 
medium in a 250-mL flask to prepare the primary 
preculture. The cells were aerobically incubated at 
37  °C and 220  rpm for 8  h. In the aerobic stage car-
ried out in 500-mL flasks, 2-mL aliquots of the pri-
mary preculture were transferred to 100  mL GASM, 
CASM, or SASM, and the cells were incubated at 
37 °C and 220 rpm for 8 h. Then, 0.1 mM of IPTG was 
added to induce the overexpression of pck. After 4  h 
of induction, centrifugation was carried out at 4  °C 
and 6300×g for 5  min to harvest the cells, and then, 
the cells were resuspended in anaerobic fermentation 
medium to an OD600 of around 15. Anaerobic culture 
was performed in 50-mL anaerobic bottles contain-
ing 20  mL of the cell suspension, and the headspace 
was filled with CO2 to achieve anaerobic fermentation 
conditions. The anaerobic culture was performed at 
220 rpm and 37 °C for 72 h.

For the experiments carried out in 1.5-L bioreac-
tor, the seed culture was prepared by transferring of 
1 mL of MLB/pTrc99a-pck glycerol stock to 30 mL of 
LB medium in a 250-mL flask, which was then aero-
bically incubated at 37  °C and 220  rpm for 8  h. All 
the seed culture was inoculated into 1.5-L bioreactor 
containing 1 L of medium. The fed-batch fermenta-
tion was carried out at 37  °C. In the aerobic stage, 
the pH was controlled automatically at 7.0 by addi-
tion of 1-M H2SO4 or 2-M NaOH. At the beginning 
of aerobic stage, the aeration rate was kept at 1 L/

min and the agitation speed was 300 rpm. During the 
aerobic stage of fermentation, the dissolved oxygen 
(DO) was maintained above 10% by changing the agi-
tation speed until the agitation reached 900 rpm. 0.5-
mM IPTG was added into the medium to induce the 
overexpression of pck when the DCW reached 4–6-g 
DCW/L. The induction stage lasted for 4  h and the 
aeration rate maintained at 1.5 L/min. The anaerobic 
condition was established by stopping aeration and 
flushing the headspace for 5–8  min with CO2 from 
a gas cylinder to replace air. Then, the gas exit was 
close, and a gas bag full of CO2 was connected to the 
headspace to keep anaerobic condition and provided 
part of CO2 for succinate production. The agitation 
speed was maintained at 300  rpm at the anaerobic 
stage. At the beginning of anaerobic stage, 20  g/L of 
basic magnesium carbonate was added to provide 
part of CO2 and adjusted pH. During the anaerobic 
stage, the additional basic magnesium carbonate was 
added to maintain the pH above 6.3.

Crude glycerol simply purified by activated carbon
Activated carbon was used to adsorb the harmful com-
ponents in crude glycerol, and it was added into crude 
glycerol with the ratio of 3% (W/V). The temperature 
for activated carbon adsorption was 80 °C, and this pro-
cess of adsorption lasted for 0.5 h. Then, the mixture of 
activated carbon and crude glycerol was centrifuged at 
8000 rpm for 10 min. To reduce the viscosity of the crude 
glycerol, the supernatant was diluted by dd H2O with 
the volume ratio of 1:1, and then, the diluent was filtered 
through a 0.45-μm filter. The simply purified crude glyc-
erol was stored into the refrigerator at 4  °C for further 
experiments. In the experiments of using the untreated 
rude glycerol, the untreated rude glycerol was also 
diluted by dd H2O with the volume ratio of 1:1 before 
adding into the culture media.

Analytical methods
The biomass was determined by measuring the opti-
cal density of culture sample with appropriate dilution 
at 600 nm (OD600). Dry cell weight (DCW, g/L) was cal-
culated from optical density according to a relationship 
between OD600 and DCW. One unit of OD600 was equiv-
alent to 0.333  g DCW/L. The concentration of glycerol, 
succinate, acetate, and ethanol was determined using a 
high-pressure liquid chromatograph system with a cat-
ion-exchange column (HPX-87H; Bio-Rad, USA) as men-
tioned before (Li et al. 2016, 2017b).

To extract the free fatty acids (FFAs) from the crude 
glycerol and simply purified crude glycerol, a brief 
description of fatty acid extraction is provided below. 
Undecylenic acid was added as an internal standard in 
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Fig. 1  Pictures of crude glycerol before (a) and after (b) the treatment of activated carbon; concentration of glycerol and acetic acid in crude 
glycerol before and after treatment (c); the GC profiles of crude glycerol before and after treatment with the same dilution (d). The same volume of 
dd H2O was added into the crude glycerol before treatment, and then, the diluted crude glycerol was treated by the activated carbon
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all the samples. 500  µL of 1-g/L undecylenic acid were 
added to 1-mL samples before extraction, and 1.5 mL of 
chloroform and 1.5-mL methanol containing 15% sulfuric 
acid were added. And then, the mixtures were incubated 
at 100 °C for 4 h for derivatization. To collect the deriva-
tives, the mixtures were vortexed vigorously for 20 s and 
put it aside for 3  min and repeated the process three 
times, and then centrifuged for 5 min at 8000 rpm. The 
mixture in the tube would separate into two layers. The 
lower layer, CHCl3 layer, was recovered by pass through 
anhydrous sodium sulfate, and collect in a 13 × 100 mm 
test tube for GC analysis.

The fatty acids in the crude glycerol and simply purified 
crude glycerol were quantified and analyzed by GC/FID 
(GC2014, Shimadzu Co., Japan) with a 30  m DB-5 col-
umn (30 m × 0.25 mm × 0.25μm, Agilent Co., Palo Alto, 
CA). Nitrogen was used as the carrier gas and the flow 
rate was set at 1 mL/min. The temperature of the column 
oven was set at 150 °C for 1 min, raised to 200 °C at a rate 
of 10  °C/min, held isotherm for 1  min, and raised with 
a gradient of 20  °C/min until the temperature reached 
240  °C. This temperature was then held for 3  min. The 
injector and detector temperatures were both set at 
280 °C.

Results and discussion
Treatment of crude glycerol using activated carbon
The chemical compositions of crude glycerol were dra-
matically different depending on the origin, the type of 
catalyst used in biodiesel production, the transesterifi-
cation efficiency, other impurities in the feedstock, and 
whether the methanol and catalysts were recovered (Yang 
et al. 2012; Dobrowolski et al. 2016). Besides glycerol, the 
main ingredients of crude glycerol also include: 15–20% 
water, 5–7% salt, 0.5–2% organic compounds, and a very 
small amount of methanol and sodium hydroxide. The 
crude glycerol used in this study was the by-product of 
biodiesel and provided by Qianglin Bio-energy Mate-
rial Co. Ltd., Liyang, Jiangsu, China. In this study, the 
contents of crude glycerol and simply purified crude 
glycerol were detected by HPLC and GC. The glycerol 
content in crude glycerol was 82%, and there were very 
few organic acids (only 1.84  g/L of acetic acid), but no 
methanol and other substances were detected (date not 
shown) by HPLC. The crude glycerol was simply puri-
fied by activated carbon, and then diluted and filtered. 
After treatment by activated carbon, the appearance 

Table 1  Effect of  different sources of  glycerol on  succinate production of  the  two-stage flask culture using 
the engineered strain MLB/pTrc99a-pck 

ND Not detected

* The anaerobic stage lasted 72 h
a  Data are means ± standard deviations with three replicates

Glycerol used 
in aerobic stage

Glycerol used 
in anaerobic 
stage*

Initial cell 
concentration 
(g DCW/L)

Consumed 
glycerol 
(mmol/L)

Amount of product (mmol/L) Yield of succinate 
(mol/mol)

Succinate Acetate Ethanol

Pure Pure 5.19 158.7 ± 10.2a 147.6 ± 6.9 2.6 ± 0.3 ND 0.93 ± 0.01

Without simple 
purification

5.03 126.4 ± 8.3 115.3 ± 7.9 NDb ND 0.91 ± 0.01

With simple purifi-
cation

5.10 147.5 ± 1.5 138.4 ± 1.9 0.4 ± 0.1 ND 0.93 ± 0.01

Without simple 
purification

Without simple 
purification

4.98 106.8 ± 1.3a 99.3 ± 0.6 3.2 ± 0.4 ND 0.93 ± 0.01

With simple purifi-
cation

With simple purifi-
cation

5.07 140.7 ± 7.5 129.4 ± 4.7 2.5 ± 0.2 ND 0.92 ± 0.01
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Fig. 2  Average specific productivity of succinate in the anaerobic 
stage in flask experiments. The combination of glycerol was based 
on the two-stage strategy. (A) Aerobic stage: pure glycerol, anaerobic 
stage: pure glycerol. (B) Aerobic stage: pure glycerol, anaerobic stage: 
crude glycerol without simple purification. (C) Aerobic stage: pure 
glycerol, anaerobic stage: crude glycerol with simple purification. (D) 
Aerobic stage: crude glycerol without simple purification, anaerobic 
stage: crude glycerol without simple purification. (E) Aerobic stage: 
crude glycerol with simple purification, anaerobic stage: crude 
glycerol with simple purification
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of crude glycerol was changed from dark brown liquid 
(Fig. 1a) into colorless transparent liquid (Fig. 1b). Due to 
the dilution, the glycerol content in the stock solution of 
the simply purified one was decreased to 40.3% and the 
concentration of acetic acid was also dropped to 0.91 g/L 
(Fig.  1c), while nearly no other medium chain acids or 
alcohols were detected by GC (Fig. 1d).

Two‑stage fermentation for succinate production using 
different glycerol as carbon sources in flasks
In our previous study, the engineered E. coli strain 
MLB with the overexpression of PCK was constructed, 
and the glycerol consumption and succinate produc-
tion were enhanced significantly in the anaerobic stage 
of two-stage fermentation (Li et  al. 2016). In addi-
tion, using acetate as the co-carbon source with glyc-
erol under the aerobic condition could also increase 
the glycerol consumption and succinate production 
of MLB/pTrc99a-pck in the sequential anaerobic con-
dition (Li et  al. 2017a, b). Therefore, we assumed that 
MLB/pTrc99a-pck might utilize crude glycerol to pro-
duce succinate efficiently. In the flask experiments, the 
medium of GASM was used for cell growth at aerobic 
stage and IPTG was added to induce PCK overexpres-
sion. Then, the cells were harvested and transferred 
into the anaerobic fermentation. In the anaerobic fer-
mentation, the crude glycerol, pure glycerol, or simply 
purified crude glycerol was investigated as the carbon 
sources for succinate production. The results of anaero-
bic fermentation are shown in Table 1. Compared with 
crude glycerol, when the simply purified crude glycerol 
was used as carbon source, glycerol consumption, suc-
cinate production, and succinate specific productivity 
increased by 17%, 20%, and 18%, respectively (Table 1). 
However, compared with pure glycerol, glycerol con-
sumption and succinate titer had slightly decreased by 
about 6%, and the specific productivity and yield of suc-
cinate were basically the same (Table 1).

The effects of different glycerol used as aerobic 
carbon source were also investigated. The medium 
containing pure glycerol, crude glycerol, or simply 
purified crude glycerol was named as GASM, CASM, 
and SASM, respectively. Then, the GASM-grown, 
CASM-grown, and SASM-grown cells were harvest 
and transferred into the nitrogen-free GASM, CASM, 
and SASM, respectively. The results are also shown in 
Table 1. Compared with crude glycerol, when the sim-
ply purified crude glycerol was used as carbon source 
in the whole two-stage, the glycerol consumption, suc-
cinate titer, and specific productivity were increased by 
30%, 30%, and 28%, respectively. However, the glycerol 
consumption, succinate titer, and specific productivity 

were decreased by 10%, 10%, and 11%, compared with 
those of pure glycerol (Fig. 2).

As shown in Table  1, we found that crude glycerol 
inhibited glycerol consumption and succinate produc-
tion. The previous study has also shown that crude 
glycerol inhibits the production of succinate by E. coli 
(Sadhukhan et  al. 2016). In this study, when the simply 
purified crude glycerol was used as carbon source, the 
inhibition of glycerol consumption and succinate produc-
tion was significantly reduced compared with those using 
crude glycerol. Some unknown harmful components in 
crude glycerol might be partially adsorbed by the acti-
vated carbon. However, there might be still a few harm-
ful components left in the simply purified crude glycerol, 
which had slightly affected glycerol consumption and 
succinate production. In the previous studies, to efficient 
utilization of the crude glycerol, it must be treated with 
a series of complicated steps, such as containing acidifi-
cation, solvent extraction, activated carbon absorption, 
precipitation of the fatty acids with calcium, etc. (Mano-
sak et al. 2011; Pott et al. 2014). While we only apply one 
of the steps, activated carbon absorption can reduce the 
inhibition of crude glycerol and improve  the succinate 
production significantly.

Succinate production from different glycerol in a 1.5‑L 
bioreactor
The above experiments carried out in flasks indicated that 
using simply purified crude glycerol as carbon source had 
little negative effect on anaerobic glycerol consumption 
and succinate production. To achieve higher concentration 
of succinate, two-stage fermentation was carried out in a 
1.5-L bioreactor filled with 1 L of medium. Crude glycerol, 
simply purified crude glycerol, and pure glycerol were also 
used as carbon sources during the two-stage fermentation 
of B1, B2, and B3, respectively. About 10 g/L of acetate was 
added at the beginning of the aerobic stage as a co-carbon 
source of glycerol. A concentrated glycerol solution was 
added when the concentration of glycerol dropped below 
50  mM. The profiles of glycerol, acetate, dry cell weight, 
and succinate concentrations are shown in Fig. 3, and the 
metabolic parameters were calculated for comparison 
(Table 2). The cell density was not measured in the anaero-
bic stage due to the insoluble basic magnesium carbonate 
addition in this stage. 

When crude glycerol was directly used as carbon 
source, the overall two-stage fermentation lasted 
131 h, in which the anaerobic stage lasted 98 h. Under 
the aerobic growth stage, the untreated crude glycerol 
showed negative effect on cell growth, and the μmax 
was only 0.184/h, which were 9.3% and 12.8% lower 
than that of using the treated crude glycerol and pure 
glycerol, respectively (Table  2). During the anaerobic 
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Fig. 3  Two-stage fermentation carried out in a 1.5-L bioreactor by MLB/pTrc99a-pck using different kinds of glycerol as carbon source. a Crude 
glycerol (B-1); b simply purified crude glycerol (B-2); c pure glycerol (B-3). About 10 g/L of ammonium acetate were added at the beginning of the 
aerobic stage in these three different fermentations as the co-carbon sources with glycerol
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stage, the utilization of the untreated crude glycerol 
was inhibited dramatically and only 54.2  mM glycerol 
was consumed; the final succinate concentration was 
only 50.3  mM. The yields of succinate were 0.11  mol/
mol in the whole two-stage fermentation and 0.93 mol/
mol in the anaerobic stage (Table 2). The specific succi-
nate productivity dropped sharply during the anaerobic 
stage (data not shown). However, succinate production 
was significantly improved when the simply purified 
crude glycerol was used as carbon source. The titer of 
succinate achieved 566.0  mM, which was 11.2 times 
that produced by the cells used crude glycerol as car-
bon source. The specific succinate productivity was also 
much higher than that of using untreated crude glyc-
erol (Table  2). Compared with the pure glycerol, the 
specific succinate productivity and the specific glyc-
erol consumption rate were decreased by 27% and 34%, 
respectively. However, the final succinate concentration 
of the simply purified crude glycerol condition dropped 
slightly to 91.9% of using the pure glycerol, which indi-
cated that the residual impurities in the simply purified 
crude glycerol exhibited slight influence on succinate 
production. The yield of succinate changed little, some-
how, even a little higher than that of using the pure 
glycerol. Similar finding was also reported by Zhou 
et al. (2014), which indicated that the yield of fumaric 
acid based on glycerol consumption was improved sig-
nificantly on crude glycerol medium in comparison to 
pure glycerol. In addition, our results further indicated 

that the activated carbon absorption is a convenient 
and favourable way to reduce the inhibitory effect of 
the crude glycerol, and the engineered E. coli has good 
ability to utilize the simply purified crude glycerol for 
succinate production.

Conclusions
In this study, crude glycerol was used as carbon source 
for succinate production by engineered E. coli. How-
ever, the MLB/pTrc99a-pck can hardly use crude glyc-
erol directly in two-stage culture of 1.5-L bioreactor. The 
final concentration of succinate was only 50.3 mM. After 
simply purified of the crude glycerol by activated carbon, 
the concentration of succinate reached 566.0 mM which 
was closed to the fermentation result of pure glycerol 
(615.9 mM). Hence, treatment of crude glycerol by acti-
vated carbon could effectively release the inhibition on 
the glycerol consumption and succinate production of 
the engineered E. coli strains.
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