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Abstract 

Monoamine oxidases (MAOs) use molecular dioxygen as oxidant to catalyze the oxidation of amines to imines. This 
type of enzyme can be employed for the synthesis of primary, secondary, and tertiary amines by an appropriate der-
acemization protocol. Consequently, MAOs are an attractive class of enzymes in biocatalysis. However, they also have 
limitations in enzyme-catalyzed processes due to the often-observed narrow substrate scope, low activity, or poor/
wrong stereoselectivity. Therefore, directed evolution was introduced to eliminate these obstacles, which is the sub-
ject of this review. The main focus is on recent efforts concerning the directed evolution of four MAOs: monoamine 
oxidase (MAO-N), cyclohexylamine oxidase (CHAO), D-amino acid oxidase (pkDAO), and 6-hydroxy-D-nicotine oxidase 
(6-HDNO).
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Introduction
When performing catalytic stereoselective transfor-
mations, organic chemists can choose between chiral 
chemical catalysts (Noyori 2002; Sharpless 2002; Walsh 
and Kozlowski 2009; Zhou 2011; Blaser and Schmidt 
2004; MacMillan 2008; List 2010; Allen and MacMillan 
2012; Atodiresei et al. 2015; Wang and Tan 2018; Vetica 
et  al. 2017) and enzymes (Drauz et  al. 2012; Tao et  al. 
2009; Gotor et al. 2008; Li et al. 2018b; Reetz 2016a). The 
well-documented advantages of using enzymes are their 
exquisite regioselectivity and stereoselectivity at ambient 
conditions in many chemical reactions (Drauz et al. 2012; 
Tao et  al. 2009; Gotor et  al. 2008; Li et  al. 2018b; Reetz 
2016a). Thus, the use of enzymes as catalysts in synthetic 
organic chemistry has experienced rapid growth dur-
ing the last 4 decades. However, the truly broad applica-
tion of enzymes still suffered from several long-standing 
limitations for non-natural substrates, e.g., limited sub-
strate scope, poor selectivity, insufficient stability, and 

sometimes substrate or product inhibition (Reetz 2016b; 
Ni et al. 2014; Sheldon and Pereira 2017). Nowadays, all 
of these long-standing limitations of enzymes can be gen-
erally addressed by directed evolution (Drauz et al. 2012; 
Tao et al. 2009; Gotor et  al. 2008; Li et  al. 2018b; Reetz 
2016a).

Directed evolution involves repeated cycles of gene 
mutagenesis, expression, and screening of mutant 
enzyme libraries, simulating natural evolution (Reetz 
2011; Quin and Schmidt-Dannert 2011; Brustad and 
Arnold 2011; Bommarius et al. 2011; Siloto and Weselake 
2012; Bornscheuer et al. 2012; Porter et al. 2016; Zeymer 
and Hilvert 2018; Arnold 2018; Denard et al. 2015). When 
focusing on stereo- and/or regioselectivity, screening is 
the labor-intensive step (bottleneck of directed evolu-
tion) (Acevedo-Rocha et al. 2014; Reymond 2006). As the 
first step in each cycle, gene mutagenesis is crucial for the 
success of directed evolution, and therefore, consider-
able efforts have been invested in the exploration of gene 
mutagenesis techniques. The most commonly employed 
gene mutagenesis techniques are error-prone polymerase 
chain reaction (epPCR) (Leung 1989; Cadwell and Joyce 
1994; Chen and Arnold 1993; Reetz et al. 1997), satura-
tion mutagenesis (Estell et al. 1985; Kirsch and Joly 1998; 
Vandeyar et al. 1988; Zheng et al. 2004), and DNA shuf-
fling (Stemmer 1994). The three mutagenesis techniques 
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have been widely applied in directed evolution to address 
the limitations of enzymes. However, efficient approaches 
for delivering small and “smart” libraries needed in opti-
mizing and inverting stereoselectivity of enzymes had to 
be explored. Along this line, Reetz et al. introduced Com-
binatorial Active Site Saturation Test (CAST) (Clouthier 
et al. 2006; Reetz et al. 2005, 2006a), according to which 
sites around the binding pocket are chosen for rand-
omization. When the initial CAST libraries do not har-
bor fully optimized mutants, then iterative saturation 
mutagenesis (ISM) can be applied (Reetz and Carballeira 
2007; Reetz et  al. 2006b). The combination CAST/ISM 
has proven to be an efficient strategy in directed evolu-
tion, routinely applied by numerous groups (Acevedo-
Rocha et al. 2018; Li et al. 2018a; Zhang et al. 2019a, b; 
Chen et al. 2018a, b).

Enantiomerically pure chiral amines are valuable 
synthetic intermediates for the preparation of phar-
maceuticals; approximately one-third of the chiral 
pharmaceuticals on the market contain chiral amine 
functional groups (Blacker and Headley 2010; Harvey 
2008). Traditionally, chiral amines have been obtained by 
resolution-based methods, for instance, crystallization of 
a diastereomer using a chiral acid to form a salt (Bálint 
et  al. 2001) or kinetic resolution of a racemate with an 
enzyme (Guranda et al. 2001; Lee 1999; Van Langen et al. 
2000; Skalden et  al. 2016). Unfortunately, the maximal 
theoretical yield of a given enantiomer based on these 
methods is 50%, severely limiting the efficiency of such 
a kinetic resolution-mediated process. As a result, the 
development of efficient and widely applicable biocata-
lysts for the synthesis of chiral primary, secondary, and 
tertiary amines has received significant attention (Turner 
and Truppo 2010). For example, Bäckvall et al. developed 
a lipase-catalyzed process based on dynamic kinetic reso-
lution (DKR) of primary amines, which requires a tran-
sition metal complex for the racemization step (Thalén 
et al. 2009). In 2002, Turner et al. reported a novel der-
acemization method for the preparation of optically 
active primary chiral amines, which involves the stere-
oinversion of one enantiomer to the other by repeated 
cycles of enantioselective enzymatic oxidation to the 
imine using an appropriate amine oxidase, followed by 
non-selective reduction to the racemic starting amines 
(Scheme 1) (Alexeeva et al. 2002). In the Turner‘s derace-
mization method, the key issue at the outset was to iden-
tify a highly enantioselective and active amine oxidase, 
which at that time was challenging. Turner et al. initiated 
directed evolution of MAO-N in conjunction with a col-
orimetric plate-based high-throughput screening assay 
(Alexeeva et al. 2002). After cycles of directed evolution 
based on random mutagenesis using a mutator strain, 
a “toolbox” of MAO-N variants was developed in the 

Turner group, which has been successfully applied to the 
deracemization of primary (Carr et al. 2003), secondary 
(Alexeeva et  al. 2002), and tertiary amines (Dunsmore 
et al. 2006). The process was also applied to the synthesis 
of chiral heterocyclic amines such as substituted pyrro-
lidines (Köhler et al. 2010) and tetrahydro-isoquinolines 
(Ghislieri et  al. 2013; Rowles et  al. 2012). Prompted by 
these pioneering studies, more monoamine oxidases 
were identified and subjected to directed evolution for 
chiral amine synthesis; for instance, CHAO (Leisch et al. 
2011; Li et  al. 2014a), pkDAO (Yasukawa et  al. 2014, 
2018), and 6-HDNO (Heath et al. 2014).

The present review summarizes recent efforts regard-
ing the directed evolution of monoamine oxidases for the 
synthesis of chiral amines. It is not meant to be compre-
hensive. Rather, a select number of representative stud-
ies are featured and analyzed, illustrating the viability of 
directed evolution for manipulating the catalytic proper-
ties of monoamine oxidases.

Directed evolution of monoamine oxidase from Aspergillus 
niger (MAO‑N)
The most frequently reported monoamine oxidase is 
MAO-N, which displays high activity towards aliphatic 
amines, e.g., amylamine and butylamine, low but meas-
urable activity to benzylamine and α-methylbenzylamine 
(Carr et  al. 2003). Turner et  al. chose this enzyme as a 
viable starting point for improving both the catalytic 
activity and stereoselectivity by directed evolution. At the 
time of the initial study, the X-ray data were not available; 
therefore, the method of random mutagenesis based on 
E. coli XL1-Red mutator strain was employed for gen-
erating a library of MAO-N variants. Facing the huge 
library size of variants created by this gene mutagenesis 
technique, the initial priority was the development of an 

Scheme 1  Process of the deracemization of chiral amines by 
employing recursive cycles of enantioselective oxidation using an 
amine oxidase coupled with a non-selective reducing agent
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effective high-throughput screening assay based upon 
capture of the generated hydrogen peroxide by a per-
oxidase in the presence of 3,3′-diaminobenzidine, giving 
a dark pink, insoluble product (Fig. 1) (Carr et al. 2003). 
With this plate-based colorimetric assay in hand, a subset 
of the library (about 150,000 clones) was screened, finally 
identifying an improved mutant (Asn336Ser). Relative to 
wild-type (WT) enzyme, the activity and stereoselectiv-
ity of Asn336Ser variant increased 47-fold and 5.8-fold, 
respectively. Without further mutation, the Asn336Ser 
variant was tested for a panel of amine substrates with 
broad structural features. Variant Asn336Ser showed 
significantly wider substrate profile relative to WT 
MAO-N, particularly for primary amines, but also for a 

number of secondary amines. The new variant was used 
in the deracemization of rac-1-methyltetrahydroiso-
quinoline, producing high yield and ee value. To extend 
the chemoenzymatic deracemization method to encom-
pass more types of amines, the MAO-N were then sub-
jected to several rounds of directed evolution following 
a similar procedure as described above, identifying two 
property improved variants MAO-N-D3 (Asn336Ser/
Met348Lys/Ile246Met) (Carr et  al. 2005) and MAO-
N-D5 (Asn336Ser/Met348Lys/Ile246Met/Thr384Asn/
Asp385Ser) (Dunsmore et  al. 2006). This D5 variant 
displayed good activity toward a wide range of tertiary 
amines (Fig.  2), particularly for pyrrolidine derivatives 
that are flanked by bulky aryl groups. Preparative scale 
deracemization of Rac-N-methyl-2-phenylpyrrolidine (3) 
was performed at 25 mM concentration using the D5 var-
iant as oxidant, giving (R)-3 in 75% isolated yield and 99% 
ee within 24 h (Fig. 3) (Dunsmore et al. 2006). As an illus-
tration of the potential of variant D5 in organic synthetic 
chemistry, it was also applied for the desymmetrization 
of the bicyclic pyrrolidine 11 (Fig. 4), a building block for 
the synthesis of hepatitis C virus protease inhibitor tel-
aprevir (14) (Köhler et  al. 2010). The reaction reached 
more than 98% conversion within 7 h, giving 77% isolated 
yield and 94% ee, and recrystallization of the trimer of 13 
improved the ee to at least 98% (Köhler et al. 2010).   

Although impressive advances have been achieved 
in the directed evolution of MAO-N, the present “tool-
box” of MAO-N did not accept bulky amines such as 

Fig. 1  Colorimetric plate-based screening assay for amine 
oxidase activity by capture of the hydrogen peroxide produced 
using 3,3′-diaminobenzidine with peroxidase. a Colonies with 
D-α-methylbenzylamine as screening substrate. b Identical clones 
with the L-enantiomer as substrate

Fig. 2  Structurally diverse amines were subjected to the Turner’s deracemization method using variant MAO-N-5



Page 4 of 11Duan et al. Bioresour. Bioprocess.            (2019) 6:37 

4-chlorobenzhydrylamine (15) and 1-phenyltetrahy-
droisoquinoline (16) (Fig.  5), motifs that are present 
in the commercially available drugs Levocetirizine 
(17) and Solifenacin (18) (Fig.  5), respectively (Her-
manns et  al. 2002; Nguyen et  al. 2011). To improve the 
“toolbox” of MAO-N further to catalyze these bulky 
amines, the D5 variant of MAO-N was subjected to 

further directed evolution. Based on the results of dock-
ing α-methylbenzylamine into the MAO-N D5 active 
center, it became clear that increasing the volume of 
binding pocket would allow the accommodation of the 
bulky substrates with two aryl substituents. To reach this 
goal, two residues (Ala429 and Trp430) were targeted for 
saturation mutagenesis (Ghislieri et al. 2013). By screen-
ing the two saturation mutagenesis libraries, variant 
MAO-N D10 with a new single amino acid substitution 
Trp430Gly was identified, which was active toward amine 
15 for the first time, although only to a moderate extent. 
In an attempt to improve the activity further, attention 
was then turned to the active site channel, (previous) 
mutations in this region resulting in a panel of mutants 
MAO-N D9 (A-D) (Table 1) which showed significantly 
enhanced activity to the bulky amine crispine A relative 
to MAO-N D5. A series of mutants MAO-N D11 (A-D) 
(Table  1) were created by the combination of essential 
mutations in MAO-N D9 (A-D) with MAO-N D10, and 
their activity and stereoselectivity towards amine 15 
were measured by monitoring the conversion of the cor-
responding enantiomer of 15 using HPLC, which proved 
MAO-N D11C to be the best mutant. Consistent with the 
activity tests, the computed volume of the binding pocket 
in D5, D10, and D11C clearly increase from 140 Å3 (D5) 
to 195 Å3 (D10), and further to 464 Å3 (D11C). The D11C 

Fig. 3  Deracemization of racemic N-methyl-2-phenylpyrrolidine 3 
to (R)-N-methyl-2-phenylpyrrolidine by employing a sequence of 
enantioselective oxidations using variant MAO-N-5 coupled with the 
non-selective reducing agent NH3BH3

Fig. 4  Conversion of the symmetrical bicyclic pyrrolidine 11 to an l-proline analog 13 via initial MAO-N catalyzed desymmetrization followed by 
diastereoselective addition of cyanide and subsequent hydrolysis
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variant was applied for the deracemization of rac-15 on 
a 0.5 g scale, and (R)-15 with 97% ee was obtained within 
48  h with 45% isolated yield. The compromised yield 
was shown to be due to partial hydrolysis of the unstable 
intermediate imine. A similar procedure was also applied 
for the deracemization of rac-16 on a 1 g scale, 98% ee, 
and 90% isolated yield being obtained within 24 h (Ghis-
lieri et al. 2013). 

Relevant to this work is a study of the Reetz group 
involving the simultaneous manipulation of activity 
and stereoselectivity of MAO-N by focusing simulta-
neously on residues lining the entrance tunnel and the 
binding pocket (Li et  al. 2017). In this case, 23 residues 
located in the entrance tunnel and the binding pocket of 
MAO-N were chosen and split into six groups for satu-
ration mutagenesis using NDT codon degeneracy (Phe, 
Leu, Ile, Val, Tyr, His, Asn, Asp, Cys, Arg, Ser, and Gly) 
as building blocks (Fig. 6). The corresponding saturation 
mutagenesis libraries were then screened toward three 

model amines for identifying positive hits and critical 
(“hot”) positions. Subsequently, further ISM was carried 
out based on the information obtained in the first round 
of directed evolution, leading to high active and stereose-
lective variants LG-I-D11 (W230R/W430C/C214L) and 
LG-J-B4 (W230I/T354S/W430R/M242R/Y365  V). The 
mutations induced in these variants lead to reversal of 
enantioselectivity of Turner-type deracemization in the 
synthesis of amines (S)- 1-methyl-1,2,3,4-tetrahydroiso-
quinoline (S-19), (S)-1-phenyl-1,2,3,4-tetrahydroisoqui-
noline (S-20), (S)-1-ethyl-1,2,3,4-tetrahydroisoquinoline 
(S-21), and (S)-1-isopropyl-1,2,3,4-tetrahydroisoquin-
oline (S-22) (Fig. 7). This is a significant result, because 
only the corresponding (R)-19 were previously accessi-
ble using the earlier MAO-N variants. Molecular Dock-
ing and Molecular Dynamics Simulations indicate that 
it is the increased hydrophobicity of the entrance tunnel 
acting in concert with the altered shape of the binding 
pocket that results in the altered catalytic profile.

In another significant case, directed evolution for 
simultaneously improving activity and thermostability 
of MAO-N was achieved in a Merck/Codexis collabora-
tion, which developed a chemoenzymatic method for the 
synthesis of a bicyclic[3.1.0]proline moiety “P2” (Fig.  8), 
the key structural feature in Boceprevir (Li et  al. 2012). 
Since the crystal structure of MAO-N was not avail-
able at that time, error-prone PCR and homology model-
guided mutagenesis were employed for the first round 
of directed evolution, and variant MAO-N 156 with two 
single mutations A289V and K348Q was obtained, which 
showed 2.4-fold higher activity in comparison with WT. 
Thereafter, two parallel strategies were chosen in the sec-
ond round evolution: recombination of positive mutations 
with MAO-N 156; family shuffling of MAO-N 156 with 
the homolog from A. oryzae, leading to two positive hits 
(MAO-N 274 and MAO-N 291) with respective threefold 
and sixfold improvement in activity. Two further rounds 

Table 1  MAO-N variants obtained by directed evolution and respective oxidation rate towards (S)-15 and (R)-15 

MAO-N variant Mutation (S)-15 (%) (R)-15 (%) Time (h)

MAO-N D5 I246M/N336S/M348K/T384N/D385S 0 0 48

MAO-N D9A D5+ F210M/L213C/M242V/I246T 0 0 48

MAO-N D9B D5+ F210L/L213T/M242V/I246T 0 0 48

MAO-N D9C D5+ F210L/L213T/M242Q/I246T 0 0 48

MAO-N D9D D5+ F210M/L213C/M242Q/I246T 0 0 48

MAO-N D10 D5+ W430G 75 26 48

MAO-N D11A D10+ F210M/L213C/M242V/I246T 100 12 30

MAO-N D11B D10+ F210L/L213T/M242V/I246T 100 7 4

MAO-N D11C D10+ F210L/L213T/M242Q/I246T 100 < 1 6

MAO-N D11D D10+ F210M/L213C/M242Q/I246T 100 14 35

Fig. 5  Substituted benzhydrylamines 15 and 16 as important 
structural motifs in commercial pharmaceuticals Levocetirizine 17 
and Solifenacin 18, respectively
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of directed evolution were conducted based on family 
shuffling and active site-targeted mutation. This finally 
provided the super variant MAO-N 401, which was suc-
cessfully applied for large-scale production of (1R,2S,5S)-
6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carbonitrile 
(26) with correct absolute configuration and > 99% ee 
value in a chemoenzymatic process, thereby significantly 
decreasing the cost, while improving the sustainability for 
the production of Boceprevir (Li et al. 2012).

Directed evolution of monoamine oxidase 
from Brevibacterium oxydans IH‑35A (CHAO)
The monoamine oxidase CHAO, a 50 kDa flavoprotein 
responsible for the oxidation of cyclohexylamine to 
cyclohexanone in Brevibacterium oxydans IH-35A, dis-
plays high activity towards a wide range of structurally 

Fig. 6  MAO-N residues chosen for saturation mutagenesis, marked in the homology model, which was built using the crystal structure of 
MAO-N-D3 (PDB: 2VVL). A: Active site mutation sites (yellow), selected on the basis of induced fit docking of amine 19 (green). B: Residues 
surrounding the substrate access tunnel (red) likewise chosen for mutagenesis (shown in green)
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Fig. 7  Deracemization of racemates 19, 20, 21, and 22 by employing 
a sequence of enantioselective oxidations with MAO-N mutants and 
non-selective reduction with NH3BH3

Fig. 8  The Merck/Codexis process for manufacturing a Boceprevir intermediate based on amine oxidase-catalyzed desymmetrization
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different primary amines (Leisch et al. 2011). However, 
deracemization of secondary amines via WT CHAO 
cannot be achieved due to low or no activity towards 
this kind of amines. To explore the potential of CHAO 
for the synthesis of optically pure secondary amines, 
for example 1,2,3,4-tetrahydroquinoline (THQ) deriv-
atives, directed evolution was carried out for the 
first time in Dunming Zhu’s group (Li et  al. 2014b). 
In this attempt, 11 amino acid residues (F88, T198, 
L199, M226, Q233, Y321, F351, L353, F368, P422, and 
Y459) located in the active center of CHAO were tar-
geted for saturation mutagenesis. Four single mutants 
(T198F, L199T, M226F, and Y459T), displaying more 
than 20-fold activity towards 2-methyl-THQ relative to 
WT CHAO, were identified. Subsequently, ISM were 
performed on the four positive “hot” positions (T198, 
L199, M226, and Y459) for improving the activity fur-
ther. This led to two new hits, namely T198F/L199S and 
T198F/L199S/M226F. The triple variant T198F/L199S/

M226F was successfully applied for the deracemization 
of 2-methyl-1,2,3,4-tetrahydroquinoline on a prepara-
tive scale, giving 76% isolated yield and 98% ee of the 
(R)-enantiomer (Fig. 9).

To further expand the biocatalytic repertoire of 
CHAO, Yao et  al. created a new library containing 
diverse mutants, and then assayed them towards a 
panel of 2-substituted THQs (Fig.  10). Several highly 
(S)-selective mutants with notably enhanced activity 
were identified. Significantly, variant L225A showed 
reversed selectivity (R-selectivity) in reactions of 
1,2,3,4-tetrahydro-2-methylquinoline (31), 1,2,3,4-tet-
rahydro-2-isopropylquinoline (32), 2-cyclopropyl-
1,2,3,4-tetrahydroquinoline (33), and 2-(2-Benzo[1,3]
dioxol-5-yl-ethyl)-1,2,3,4-tetrahydroquinoline (42). 
Molecular dynamic simulations were conducted based 
on the models of variant L225A harboring (R)- and (S)- 
cyclopropyl-THQ, and computational results revealed 

Fig. 9  Deracemization of 2-methyl-1,2,3,4-tetrahydroquinoline using triple variant T198F/L199S/M226F and chemical reductant

Fig. 10  2-Substituted THQs were tested as substrates in deracemization using CHAO mutants
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the mechanism of enantioselectivity reversal (Yao et al. 
2018).

Directed evolution of R‑selective monoamine oxidases
Directed evolution of MAO-N and CHAO has provided 
diversified biocatalysts for the synthesis of chiral amines. 
However, until 2014, no enantio-complementary (R)-
amine oxidases had been reported for general application. 
In this respect, Asano et  al. evolved a flavin-dependent 
porcine kidney D-amino acid oxidase (pkDAO) into an 
R-stereoselective amine oxidase (Yasukawa et  al. 2014). 
Based on the crystal structure of pkDAO, two residues 
Tyr228 and Arg283 at the active center were subjected to 
saturation mutagenesis. Screening the respective librar-
ies towards the model amine rac-α-methylbenzylamine 
identified three hits, namely R283G, R283A, and R283C. 
These were then used as templates for ISM at residue 
Tyr 228, leading to three improved mutants (Y228L/
R283G, Y228L/R283A and Y228L/R283C). Deracemiza-
tion of rac-α-methylbenzylamine on a preparative scale 
was conducted using the best variant Y228L/R283G, 
producing 99% (S)-α-methylbenzylamine with 65% iso-
lated yield. Crystal structure analysis revealed that the 
mutations introduced in the directed evolution induced 
critical changes at the active center, which in turn ren-
der the α-hydrogen atom of (R)-α-methylbenzylamine to 
point towards the N5 atom of FAD, while in the case of 
(S)-α-methylbenzylamine, the N5 atom of FAD remains 
remote, therefore, leading to high R-stereoselectivity 
(Yasukawa et  al. 2014). For further expanding the sub-
strate specificity of pkDAO towards bulky amines, such 
as amine 15, variants R283G and Y228L/R283G were 
chosen as templates for saturation mutagenesis at resi-
dues Leu51, Ile215, and Ile230, which could play a criti-
cal role in accommodating the bulky substrate (Yasukawa 
et  al. 2018). After high-throughput screening with col-
orimetric assay, four positive mutants, namely I230A/
R283G, I230C/R283G, I230F/R283G, and Y228L/I230C/
R283G, were identified. Among them, variant I230A/
R283G showed highest catalytic efficiency towards (S)-
15, and the deracemization of rac-15 using this variant 
was also achieved successfully within 1 h, producing (R)-
15 in 98% ee. As expected, the crystal structure of variant 
I230A/R283G indicated that the mutations introduced 
in the variant provided extra space to accommodate the 
4-Cl-phenyl ring of amine 15 (Yasukawa et al. 2018).

Another R-selective amine oxidase was developed 
based on 6-hydroxy-D-nicotine (6-HDNO) in Turner’s 
group. Wild-type 6-HDNO displayed relative narrow 
substrate scope, and hence, directed evolution again 
based on CASTing was performed with the aim to 
broaden its substrate spectrum (Heath et al. 2014). Two 
saturation mutagenesis libraries A (Leu373/Leu375) and 

B (Glu350/Glu352) were constructed using NNK code 
degeneracy, which were then screened with the colori-
metric solid-phase assay. Although no positive variants 
was found in library A, three positive hits, namely E350L/
E352D, E350  V/E352D, and E350L, were identified in 
library B. The E350L/E352D variant, showing signifi-
cant improvement in substrate specificity, was used for 
the deracemization of several amines. As expected, in all 
cases, the variant exhibited R-stereoselectivity, the oppo-
site enantioselectivity observed when using MAO-N 
(Heath et al. 2014).

Conclusion
Monoamine oxidases use molecular dioxygen as the stoi-
chiometric oxidant to catalyze the irreversible oxidation 
of amines to imines. This feature avoids the problem of 
controlling the reaction equilibrium position, making 
them an attractive class of enzyme for chiral amine syn-
thesis (Turner 2011). Relative to the reported methods 
for chiral amine preparation, such as classical resolution 
of the corresponding racemate (Siedlecka 2013), lipase-
catalyzed kinetic resolution (Poulhès et  al. 2011; Verho 
and Bäckvall 2015; Oláh et  al. 2016; Gustafson et  al. 
2014), and asymmetric hydrogenation of imines (Liu and 
Du 2013; Ghattas et  al. 2012; de Vries and Mršić 2011; 
Li et  al. 2016; Echeverria et  al. 2016; Lautens and Larin 
2018), monoamine oxidases, once subjected to protein 
engineering, display widespread substrate specificity in 
Turner-type deracemization for the industrial synthesis 
of enantiomerically pure primary, secondary, and tertiary 
amines as well as chiral heterocyclic amines. In this der-
acemization process, the chemical reducing agent (typi-
cally the ammonia borane complex NH3BH3) is added 
in excess amount for reducing the imine non-selectively 
back to the amine. To avoid an excess of NH3BH3, imine 
reductase as an excellent alternative of chemical reducing 
agent was successfully applied for the synthesis of chiral 
amines in a new cascade reaction based on the combina-
tion of imine reductase with amine oxidase (Gand et al. 
2014; Leipold et  al. 2013; Mangas-Sanchez et  al. 2017; 
Mitsukura et  al. 2010, 2013). These developments open 
the door for further industrial preparations of chiral 
amines by deracemization processes (Heath et al. 2016).

Although original monoamine oxidases have suffered 
traditionally from distinct limitations; for example, low 
activity, narrow substrate scope, wrong stereoselectivity, 
and insufficient thermostability, with the help of directed 
evolution as summarized here, most problems have been 
solved, thereby creating a versatile “toolbox” of mono-
amine oxidases. CAST/ISM has proven to be a particu-
larly viable mutagenesis strategy. With the advance of 
new protein engineering techniques, such as rational 
design (Choi et al. 2015; Otten et al. 2010) and machine 
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learning (Li et  al. 2019), it can be hoped that new and 
useful mutants of various monoamine oxidases will be 
generated even more rapidly and efficiently than in the 
past. In some cases, the insolubility of certain substrates 
in aqueous medium causes practical problems, which 
need to be solved in the future with the aid of bioprocess 
engineering. The pharmaceutical industry and other 
fine chemical companies will certainly profit from such 
potential advances.
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