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A detailed overview of xylanases: 
an emerging biomolecule for current and future 
prospective
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Abstract 

Xylan is the second most abundant naturally occurring renewable polysaccharide available on earth. It is a complex 
heteropolysaccharide consisting of different monosaccharides such as l-arabinose, d-galactose, d-mannoses and 
organic acids such as acetic acid, ferulic acid, glucuronic acid interwoven together with help of glycosidic and ester 
bonds. The breakdown of xylan is restricted due to its heterogeneous nature and it can be overcome by xylanases 
which are capable of cleaving the heterogeneous β-1,4-glycoside linkage. Xylanases are abundantly present in nature 
(e.g., molluscs, insects and microorganisms) and several microorganisms such as bacteria, fungi, yeast, and algae are 
used extensively for its production. Microbial xylanases show varying substrate specificities and biochemical proper-
ties which makes it suitable for various applications in industrial and biotechnological sectors. The suitability of xyla-
nases for its application in food and feed, paper and pulp, textile, pharmaceuticals, and lignocellulosic biorefinery has 
led to an increase in demand of xylanases globally. The present review gives an insight of using microbial xylanases as 
an “Emerging Green Tool” along with its current status and future prospective.
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Introduction
The major constituent of the plant cell wall is “lignocellu-
loses”, as the name suggests it consists of lignin (15–20%), 
hemicellulose (25–30%) and cellulose (40–50%) (Gray 
et al. 2006; Singla et al. 2012). These components together 
form a three-dimensional complex network with the 
help of covalent and non-covalent interactions (Sánchez 
2009). Hemicelluloses consist of xylan, a heteropolysac-
charide substituted with monosaccharides such as l-ara-
binose, d-galactose, d-mannoses and organic acids such 
as acetic acid, ferulic acid, glucuronic acid interwoven 
together with help of glycosidic and ester bonds (Collins 
et al. 2005; Ahmed et al. 2007; Motta et al. 2013; Sharma 
2017). Xylan is readily available in nature, followed by cel-
lulose the second most abundant polysaccharide which 

covers 33% of total lignocellulosic biomass found on the 
globe (Collins et al. 2005; Polizeli et al. 2005; Chávez et al. 
2006; Walia et al. 2017). It accounts for 15–30% in hard-
woods and 7–10% in softwood (Walia et al. 2017). There 
is a need for depolymerization of this complex polymer 
for its efficient utilization in different industrial applica-
tion. Xylanase is a group of enzymes consisting of endo-
1,4-β-d-xylanases (EC 3.2.1.8), β-d-xylosidases (E.C. 
3.2.1.37), α-glucuronidase (EC 3.2.1.139) acetylxylan 
esterase (EC 3.1.1.72), α-l-arabinofuranosidases (E.C. 
3.2.1.55), p-coumaric esterase (3.1.1.B10) and ferulic acid 
esterase (EC 3.1.1.73) involved in the depolymerization 
of xylan into simple monosaccharide and xylooligosac-
charides (Gomez et al. 2008; Juturu and Wu 2014; Walia 
et al. 2017; Romero-Fernández et al. 2018).

Xylanases are produced by different living organisms 
such as microorganisms, protozoans, and molluscs, and 
also  found in the rumen of higher animals (Beg et  al. 
2001). The xylanases are mainly produced by micro-
organisms, e.g., bacteria, fungi, and actinomycetes at 
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industrial scale (Motta et al. 2013). The utilization of lig-
nocellulosic biomass (LCB) for production of different 
biochemicals such as bioethanol, enzymes, and value-
added compounds has tremendously improved in recent 
years. It results in providing opportunities for scientists 
to explore the hydrolytic potential of xylanase for effi-
cient saccharification of LCB for ethanol and xylooligo-
saccharides generation. Xylanase also finds application 
in several industries like pulp and paper bleaching, food, 
feed, and pharmaceuticals.

Xylanase is required in huge amount for industrial 
level application with characteristic properties to survive 
the harsh industrial level processing’s (Qiu et  al. 2010). 
Therefore, there is a need to select potent microorgan-
isms for xylanase production, followed by optimization of 
media components for enhanced production. The under-
standing of the genetic constituents of the microbe will 
help in deducing the mode of action of the enzyme. This 
will help in regulating the enzyme action for employment 
in desired industrial application. The microorganisms 
also produce other protein and metabolites with desired 
xylanase enzyme. Therefore, purification of the crude 
enzyme is a prerequisite to obtain purified enzymes. The 
characterization of purified xylanase will help in elucidat-
ing its stability and specificity toward different substrates. 
This will help in selecting the suitable industrial process 
in which it can be utilized. With the advent of advanced 
biotechnological techniques such as recombinant DNA 
technology, several attempts have been made to iden-
tify, isolate and clone the gene encoding for xylanase in 
a suitable system. This approach helps in the engineer-
ing of efficient microorganisms for enhanced xylanase 
production with desired properties. This review gives 
a comprehensive insight into xylanase classification, its 
mode of action, different xylanase sources with available 
production methods and its optimization strategies for 
enhanced production. The review also gives a brief idea 
about different strategies employed for xylanase purifi-
cation and characterization, biotechnological approach 
for enhanced xylanase production with desired prop-
erties which are further used for different industrial 
applications.

Structure of xylan and role of xylanolytic enzymes 
in its breakdown
Xylan consists of d-xylose backbone linked with β-1,4-
glycosidic bonds and l-arabinose traces forming into 
a complex heteropolymeric structure. Xylan is present 
in various biomasses that have several forms such as 
in hardwoods as O-acetyl-4-O-methylglucuronoxy-
lan, in softwoods as arabino-4-O-methylglucuronox-
ylan and in grasses and annual plants as arabinoxylans. 
These residues can be substituted with acetyl, feruloyl, 

glucopyranosyl, 4-O-methyl-d-glucuronopyranosyl, 
p-coumaroyl or α-l-arabinofuranosyl side-chain groups 
with varying degrees. Xylanolytic enzymes play a key 
role in the breakdown of the complex structure of xylan. 
Hence, for complete and efficient hydrolysis of xylan 
into its constituent sugars requires synergistic action of 
various enzymes with specifically targeting appropriate 
bonds of xylan.

The multifunction xylanolytic system exists in bacte-
ria (Zhang et  al. 2016a, 2016b), fungi (Driss et  al. 2011; 
Bhardwaj et  al. 2018) and actinomycetes (Hunt et  al. 
2016) where xylan backbone is randomly cleaved by 
the action of endo-1,4-β-d-xylanases; xylose polymer is 
broken down to its monomeric form by action of β-d-
xylosidases. Acetyl and phenolic side branches were 
removed by the action of α-glucuronidase and acetylxy-
lan esterase. α-l-Arabinofuranosidases catalyze the 
removal of the side groups. The ester bonds present on 
the xylan are cleaved by the action of p-coumaric ester-
ase and ferulic acid esterase (Beg et  al. 2001; Collins 
et  al. 2005; Chakdar et  al. 2016; Walia et  al. 2017). The 
schematic structure of xylan showing bonds which are 
attacked by a specific xylanolytic enzyme for complete 
hydrolysis of xylan to its constituent monomeric units is 
represented in Fig. 1.

Classification of xylanase
Xylanase can be broadly classified into three types on 
the basis of (a) molecular mass and isoelectric point, 
(b) crystal structure and (c) catalytic/kinetic property 
(Wong et al. 1988; Jeffries 1996; Biely et al. 1997; Liu and 
Kokare 2017). On basis of molecular mass and isoelectric 
point, the xylanase was classified into two groups, i.e., (a) 
high-molecular weight with low isoelectric (acidic) point 
(HMWLI) and (b) low-molecular weight with high iso-
electric (basic) point (LMWHI). However, several excep-
tions to this classification have been observed where 
not all xylanases fall in the category of HMWLI (above 
30 kDa) or LMWHI (below 30 kDa) (Collins et al. 2002, 
2005). Therefore, a more appropriate system includ-
ing primary structure (crystal), comparison of catalytic 
domain with mechanistic features such as kinetic, cata-
lytic property, substrate specificity, and product descrip-
tion was introduced (Henrissat and Coutinho 2001; 
Collins et  al. 2005). The genomic, structural (3D crystal 
structure) and functional information of xylanase is avail-
able under glycoside hydrolase (GH) families available on 
carbohydrate-active enzyme (CAZy) database.

The CAZy is knowledge-based, highly curated database 
on enzymes that play a key role in breakdown, modifica-
tion, and assembly of glycosidic bonds in carbohydrates 
and glycoconjugates. It consists of genomic, sequence 
annotation, family classifications, structural (3D crystal) 
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and functional (biochemical) information on carbohy-
drate-active enzyme from publicly available resources 
such as National Center for Biotechnology Information, 
NCBI (Lombard et al. 2014).

The major GH families associated with xylanase are 
5, 7, 8, 9, 10, 11, 12, 16, 26, 30, 43, 44, 51, and 62. The 
GH families 5, 7, 8, 10, 11, and 43 have a single distinct 
catalytic domain, whereas enzymes grouped under GH 
families 16, 51, and 62 have two catalytic domains with 
bi-functional property (Collins et al. 2005). The enzyme 
grouped under GH families 9, 12, 26, 30, and 44 has 
secondary xylanase activity. Based on the hydrophobic 
cluster analysis of the catalytic domains along with simi-
larities studies of amino acid sequences, xylanases have 
been primarily classified as GH 10 and GH 11 (Verma 
and Satyanarayana 2012a). The catalytic properties of 
GH 10 and GH 11 have been studied extensively, whereas 
the information on GH families 5, 7, 8 and 43 is very 
limited (Taibi et al. 2012). Different structural and func-
tional properties of different GH families are tabulated in 
Table 1.

Mode of action of xylanases grouped under various GH 
families
There is the difference in structure, physicochemical 
properties, substrate specificities and mode of action 
of members of GH families 5, 7, 8, 10, 11 and 43 (Col-
lins et al. 2005). The hydrolysis of xylan by xylanase may 
occur by two different mechanisms, i.e., retention or 

inversion (Subramaniyan and Prema 2002; Lombard et al. 
2014).

Retention
This process is represented by double displacement 
mechanism with α-glycosyl and oxo-carbonium inter-
mediate formation followed by its subsequent hydrolysis. 
Glutamate residues play a vital role in the catalytic mech-
anism. First, two carboxylic acid residues present in the 
active site result in α-glycosyl enzyme intermediate for-
mation. The intermediate formation occurs via protona-
tion of the substrate by a carboxylic acid residue acting 
as an acid catalyst and departure of the leaving group due 
to nucleophilic attack caused by another carboxylic acid. 
This collectively results in β to α inversion due to the 
α-glycosyl enzyme intermediate formation. Second, the 
first carboxylate group abstracts a proton from a nucleo-
philic water molecule and attacks the anomeric carbon 
resulting in second substitution, where the anomeric 
carbon gives rise to product with the β configuration (α 
to β inversion) via a transition state of oxo-carbonium 
ions (Fig.  2) (Collins et  al. 2005; Lombard et  al. 2014). 
Enzymes of families 5, 7, 10, and 11 mostly work on the 
principle of retention.

Inversion
The enzymes of families 8 and 43 act via inversion of 
the anomeric center with glutamate and aspartate as 
the major catalytic residue. This is a single displacement 
mechanism, in which only one carboxylate ion offers 

Fig. 1  Structure of xylan showing bonds which are attacked by specific xylanolytic enzyme for complete hydrolysis of xylan to its constituents 
(Adapted from Beg et al. 2001, Lange 2017)



Page 4 of 36Bhardwaj et al. Bioresour. Bioprocess.            (2019) 6:40 

Ta
bl

e 
1 

Cl
as

si
fic

at
io

n 
of

 g
ly

co
si

de
 h

yd
ro

la
se

s 
(G

H
) f

am
ily

 c
on

si
st

in
g 

of
 x

yl
an

as
e

X2
, x

yl
ob

io
se

; X
3,

 x
yl

ot
rio

se
; X

4,
 x

yl
ot

et
ra

os
e;

 X
O

S,
 x

yl
oo

lig
os

ac
ch

ar
id

es
; C

N
B,

 c
at

al
yt

ic
 n

uc
le

op
hi

le
/b

as
e;

 C
PD

, c
at

al
yt

ic
 p

ro
to

n 
do

no
r; 

A
sp

, a
sp

ar
tic

 a
ci

d;
 G

lu
, g

lu
ta

m
ic

 a
ci

d

G
H

 fa
m

ily
Cl

an
A

ct
iv

iti
es

 in
 fa

m
ily

Pr
op

er
tie

s
M

od
e 

of
 a

ct
io

n
Re

fe
re

nc
es

St
ru

ct
ur

e
Fu

nc
tio

na
l

G
H

 5
G

H
-A

en
do

-β
-1

,4
-X

yl
an

as
e;

 
β-

gl
uc

os
id

as
e 

ce
llu

la
se

Co
ns

is
t o

f s
ev

en
 a

m
in

o 
ac

id
(β

/α
) 8 b

ar
re

l f
ol

d
H

ig
hl

y 
co

ns
er

ve
d

La
rg

es
t G

H
 fa

m
ily

Su
bs

tit
ut

e 
on

 m
ai

n 
xy

la
n 

ch
ai

n
C

N
B-

G
lu

C
PD

-G
lu

Re
ta

in
in

g

Co
lli

ns
 e

t a
l. 

(2
00

5)
, L

om
ba

rd
 e

t a
l. 

(2
01

4)

G
H

 7
G

H
-B

en
do

-β
-1

,4
-G

lu
ca

na
se

H
ig

h-
m

ol
ec

ul
ar

 w
ei

gh
t a

nd
 lo

w
 p

I
β-

Je
lly

 ro
ll

sm
al

l s
ub

st
ra

te
-b

in
di

ng
 s

ite
 (4

 
su

bs
ite

 a
nd

 1
 c

at
al

yt
ic

 s
ite

)

Co
m

m
on

 c
ha

ra
ct

er
is

tic
s 

w
ith

 fa
m

-
ily

 1
0 

an
d 

11
C

N
B-

G
lu

C
PD

-G
lu

Re
ta

in
in

g

Co
lli

ns
 e

t a
l. 

(2
00

5)
, L

om
ba

rd
 e

t a
l. 

(2
01

4)

G
H

 8
G

H
-M

Ce
llu

la
se

s; 
ch

ito
sa

na
se

s; 
lic

he
na

se
s; 

en
do

-1
,4

-β
-x

yl
an

as
es

(α
/α

) 6 f
ol

d
La

rg
e 

su
bs

tr
at

e-
bi

nd
in

g 
cl

ef
t

Co
ld

-a
da

pt
ed

Br
ea

k 
xy

la
n 

in
to

 X
3 

an
d 

X4
H

ig
hl

y 
ac

tiv
e 

on
 lo

ng
-c

ha
in

 X
O

S

C
N

B-
A

sp
C

PD
-G

lu
In

ve
rs

io
n 

of
 th

e 
an

om
er

ic

Co
lli

ns
 e

t a
l. 

(2
00

2,
 2

00
5)

, L
om

ba
rd

 
et

 a
l. 

(2
01

4)

G
H

 1
0 

Fa
m

ily
 G

G
H

-A
en

do
-1

,4
-β

-X
yl

an
as

es
; e

nd
o-

1,
3-

β-
xy

la
na

se
s

Lo
w

-m
ol

ec
ul

ar
 m

as
s 

hi
gh

 p
I 

(8
–9

.5
)

(α
/β

) 8 b
ar

re
l f

ol
d

Sm
al

l y
et

 n
um

er
ou

s 
(4

–5
) 

su
bs

tr
at

e-
bi

nd
in

g 
si

te
s

A
tt

ac
k 

on
 a

ry
l β

-g
ly

co
si

de
s 

an
d 

ag
ly

co
ni

c 
bo

nd
 o

f X
2 

an
d 

X3
, 

re
sp

ec
tiv

el
y

H
ig

hl
y 

ac
tiv

e 
on

 s
ho

rt
 X

O
S

C
N

B-
G

lu
C

PD
-G

lu
Re

ta
in

in
g

A
hm

ed
 e

t a
l. 

(2
00

9)
, C

ol
lin

s 
et

 a
l. 

(2
00

5)
, L

om
ba

rd
 e

t a
l. 

(2
01

4)
, 

M
ot

ta
 e

t a
l. 

(2
01

3)

G
H

11
G

H
-C

xy
la

na
se

s “
tr

ue
 x

yl
an

as
es

” (
ac

tiv
e 

on
 x

yl
os

e 
su

bs
tr

at
e)

H
ig

h 
M

W
 a

nd
 lo

w
er

 p
I v

al
ue

s
β-

Je
lly

 ro
ll

Sm
al

l s
iz

e
La

rg
e 

su
bs

tr
at

e-
bi

nd
in

g 
cl

ef
ts

 (7
 

su
bs

ite
s)

A
tt

ac
k 

on
 a

ry
l β

-g
ly

co
si

de
s 

an
d 

ag
ly

co
ni

c 
bo

nd
 o

f X
2 

an
d 

X3
, 

re
sp

ec
tiv

el
y

In
ac

tiv
e 

on
 a

ry
l c

el
lo

bi
os

id
es

H
ig

h 
su

bs
tr

at
e 

se
le

ct
iv

ity
 a

nd
 

ca
ta

ly
tic

 e
ffi

ci
en

cy
W

id
e 

pH
 a

nd
 te

m
pe

ra
tu

re
 s

ta
bi

lit
y

Co
ld

-a
da

pt
ed

H
ig

hl
y 

ac
tiv

e 
on

 lo
ng

-c
ha

in
 X

O
S

C
N

B-
G

lu
C

PD
-G

lu
Re

ta
in

in
g

A
hm

ed
 e

t a
l. 

(2
00

9)
, C

ol
lin

s 
et

 a
l. 

(2
00

5)
, L

om
ba

rd
 e

t a
l. 

(2
01

4)
, 

M
ot

ta
 e

t a
l. 

(2
01

3)

G
H

 4
3

G
H

-F
β-

Xy
lo

si
da

se
α-

l-
A

ra
bi

no
fu

ra
no

si
da

se
; x

yl
an

as
e

β-
Pr

op
el

le
r (

5 
bl

ad
e)

 fo
ld

Ca
ta

ly
tic

 re
si

du
e 

gl
ut

am
at

e 
an

d 
as

pa
rt

at
e 

in
 th

e 
ce

nt
er

D
eb

ra
nc

hi
ng

 a
nd

 d
eg

ra
da

tio
n 

of
 

he
m

ic
el

lu
lo

se
 p

ol
ym

er
C

N
B-

A
sp

C
PD

-G
lu

In
ve

rt
in

g 
si

ng
le

 d
is

pl
ac

e-
m

en
t m

ec
ha

ni
sm

Co
lli

ns
 e

t a
l. 

(2
00

5)
, L

om
ba

rd
 e

t a
l. 

(2
01

4)
, M

ew
is

 e
t a

l. 
(2

01
6)



Page 5 of 36Bhardwaj et al. Bioresour. Bioprocess.            (2019) 6:40 

for overall acid catalyzed group departure (Fig.  3). This 
enzyme also acts as the base for activating a nucleophilic 
water molecule to attack the anomeric carbon (depend-
ing on the distance between two molecules) for breaking 
the glycosidic bonds and causing inversion of anomeric 
carbon configuration (Collins et  al. 2005; Motta et  al. 
2013; Lombard et al. 2014).

Several attempts have been made to understand the 
mode of action of xylanase obtained for different organ-
isms. An unusual mode of action of GH8 xylanase 
(β-xylosidase, an α-arabinofuranosidase, and an acety-
lesterase activity) was observed in Pseudoalteromonas 
atlantica, which showed the presence of a long tail of 
unsubstituted xylose residue on the reducing end of oli-
gosaccharides produced (Ray et  al. 2019). Thermophilic 
xylanase obtained from Bacillus licheniformis DMS has 
novel hydrolysis properties similar to GH30. It breaks 
the linear β-(1-4) linkage of beech wood and birchwood 
xylan along with glucuronoxylan and arabinoxylan. B. 

licheniformis DMS xylanase had both the properties of 
endoxylanase and appendage dependent xylanase activ-
ity. It showed equal production of both xylobiose and 
xylotriose by hydrolysis of the commercial substrate and 
agro-waste such as corn cob (Ghosh et al. 2019).

Thermothelomyces thermophila (TtXyn30A) that 
hydrolyzes xylan into xylose and two acidic xylooligosac-
charides, namely xylotriose (MeGlcA2Xyl3) and xylobi-
ose, i.e., MeGlcA2Xyl2, was studied. TtXyn30A catalyzed 
the release of the disaccharide xylobiose from the non-
reducing end of xylooligosaccharides, thus exhibiting an 
exo-acting catalytic behavior. TtXyn30A also showed the 
capability to cleave linear parts of xylan and uronic xylo-
oligosaccharides as well as resulting in the formation of 
aldotriuronic and aldotetrauronic acid (Katsimpouras 
et al. 2019). Puchart et al. (2018) have reported the mode 
of action of hydrolysis of eucalyptus plant using endoxy-
lanase belonging to GH10, GH11, and GH30 family. All 
the endoxylanse resulted in the formation of acetylated 
XOS. The GH10 endoxylanase results in short xylo-
oligosaccharides, whereas GH30 endoxylanase results in 
longer xylooligosaccharides. An acetyl esterase (AcXEs) 
played a key role in understanding the plant decay or 
depolymerization mechanism and also showed efficiency 
in plant biomass bioconversion (Rytioja et al. 2014).

A novel modular endoxylanase with transglycosyla-
tion activity was reported from Cellulosimicrobium sp. 
HY-13 belonging to GH6 family (Ham et  al. 2012). A 
GH30 family xylanase XynA was reported from Erwinia 
chrysanthemi belonging to subfamily 8 with the special 
property of hydrolyzing 4-O-methyl-glucuronoxylan 
(Urbániková et  al. 2011). Xyn11B from thermophilic 
fungus Humicola insolens Y1 encoding multi-cellular 
xylanase belonged to GH11 reported by Shi et al. (2015). 
Bacteroides intestinalis DSM17393, a xylan degrading 
human gut bacterium, reported the presence of two puta-
tive GH8 xylanases which hydrolyze both xylopentose 
and xylohexose (Hong et  al. 2014). Endoxylanase XynB 
from marine bacterium Glaciecola mesophila KMM241 
with xylan binding ability and GH8 catalytic domain was 
reported by Guo et al. (2013).

Mechanism for glycosidic hydrolase family 10 
(GH10)
Among all the above-mentioned GH families, GH 10 
consists of endoxylanase, e.g., endo-1,4-β-xylanases, 
endo-1,3-β-xylanases and cellobiohydrolases (Collins 
et  al. 2005). Endo-1,4-β-xylanases or xylanase mainly 
comes under this GH10 family. It usually consists of 
high-molecular weight xylanase with low isoelectric 
points and displays an (α/β)8-barrel fold. This structure 
mimics the shape of a ‘Salad Bowl’, because of an enlarged 
loop architecture, one face of the molecule is having 

Fig. 2  Mode of action of xylanase: retention

Fig. 3  Mode of action of xylanase: inversion
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~ 45 Å large radius and the other face is having ~ 30 Å 
radius because of simple (α/β) turns (Zhang et al. 2016a, 
2016b). However, these two categories are relatively the 
same because along with sharing similar fold also shares 
some common residues and has similar catalytic mecha-
nisms. The xylanase belonging to GH 10 family has low 
substrate specificity and, however, exhibits high catalytic 
versatility than that of GH 11 family. Xylanase belonging 
to GH10 family exhibits greater catalytic versatility and 
lower substrate specificity as compared to those belong-
ing to GH11 (Biely et al. 1997; Faulds et al. 2006; Motta 
et  al. 2013). GH10 xylanase attacks the xylose linkages 
which are closer to the side-chain residues (Dodd and 
Cann 2009). This could be explained by fact that the 
xylose residues bind at subsites (Fig. 4) on xylanase that 
causes cleavage of the bond between the monomeric 
residues at the non-reducing (− 1) and the reducing end 
(+ 1) of the polysaccharide substrate (Davies et al. 1997).

Maslen et al. (2007) demonstrated that when arabinox-
ylan was hydrolyzed by GH10 and GH11 xylanase, the 
products generated have arabinose residues substituted 
on xylose at the + 1 subsite and + 2 subsites, respectively. 
Therefore, xylanases from family 11 and 10 preferentially 
cleave the unsubstituted regions of the arabinoxylan 
backbone and the unhampered substituted regions along 
the xylan backbone (Biely et al. 1997; Motta et al. 2013). 
The degree of side-chain decorations of xylan influences 
the specificity of the enzyme toward substrates and, thus, 
has an important implication on the hydrolytic prod-
uct formation by xylan deconstruction (Dodd and Cann 
2009). Yang and Han (2018) demonstrated the positional 
binding and substrate interaction of GH10 xylanase of 
Thermotoga maritime using molecular docking approach.

Researchers have reported in their previous studies 
that GH10 endoxylanase had better performance than 
GH11 in synergy with cellulase enzyme for pretreated lig-
nocellulosic biomass hydrolysis. The reason behind this 
may be because GH11 endoxylanase has the lower acces-
sibility toward acetylated xylan backbone (Faulds et  al. 

2006). Hu et  al. (2011) proposed a model holocellulosic 
substrate, i.e., mixture of pure cellulose and 10% pre-
deacetylated commercial birchwood xylan to understand 
the synergism between two family xylanase and cellulase 
(during the xylan extraction process). This study showed 
that substrate deacetylation has increased the hydrolytic 
performance of GH11 as the acetyl group restricted the 
accessibility of xylan more for GH11 than GH10. Ther-
mostability is the second factor for better performance of 
GH10 endoxylanase over GH11 because lignocellulosic 
biomass hydrolysis occurs better at high temperature 
(50 °C) and 2–3 days long-time duration.

Source for xylanase production
The xylanase is ubiquitous in nature and its presence is 
observed diversely in a wide range of living organisms, 
such as marine, terrestrial and rumen bacteria (Chakdar 
et al. 2016), thermophilic and mesophilic fungi (Chadha 
et  al. 2019; Singh et  al. 2019), protozoa (Devillard et  al. 
1999; Béra-Maillet et al. 2005), crustaceans (Izumi et al. 
1997), snails (Suzuki et al. 1991), insects (Brennan et al. 
2004), algae (Jensen et al. 2018), plants and seeds (imma-
ture cucumber seeds and germinating barley) (Bae et al. 
2008; Sizova et al. 2011). Bacteria and fungus are widely 
used for industrial production of xylanase. Several micro-
bial sources of xylanase are classified in Table 2.

Bacterial sources of xylanase
Among bacteria, Bacillus species have been reported 
widely as the most potent xylanolytic enzyme producers 
such as Bacillus sp., B. halodurans (Gupta et  al. 2015), 
B. pumilus (Thomas et al. 2014), B. subtilis (Banka et al. 
2014), B. amyloliquefaciens, B. circulans, and B. stearo-
thermophilus (Chakdar et  al. 2016). Xylanase with high 
temperature stability, acid/alkali stability, and cold adapt-
ability have been isolated and purified from a wide range 
of bacteria found in extreme environment. Thermo-
tolerant xylanase active at a very high temperature of 
60–70 °C has been reported from Bacillus spp. (Thomas 

Fig. 4  Schematic representation of site for attack of GH10 xylanase on xylan
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et  al. 2014), Bacillus Halodurans TSEV1 (Kumar and 
Satyanarayana 2014), Clostridium thermocellum (Fer-
nandes et  al. 2015), Rhodothermus marinus (Karlsson 
et  al. 2004), Streptomyces sp. (Sukhumsirichart et  al. 
2014), Stenotrophomonas maltophila (Raj et  al. 2013), 
Thermotoga thermarum (Shi et  al. 2013). Psychrophilic 
xylanases are not very common but found to be isolated 
from several bacteria such as Clostridium sp. PXLY1 
(Akila and Chandra 2003), Flavobacterium sp. MSY-2 
and Flavobacterium frigidarium (Humphry et  al. 2001; 
Dornez et  al. 2011) Pseudoalteromonas haloplanktis 
TAH3A (Van Petegem et al. 2002).

Several alkali stable xylanases have been isolated from 
firmicutes such as B. pumilus (Thomas et  al. 2014), B. 
halodurans TSEV1 (Kumar and Satyanarayana 2014) and 
Geobacillus thermoleovorans (Verma and Satyanarayana 
2012b) and actinomycetes such as Actinomadura sp. 
Cpt20 (Taibi et  al. 2012) and Streptomyces althioticus 
LMZM (Luo et al. 2016).

Fungal sources of xylanases
The mesophilic fungi of genera Aspergillus and Tricho-
derma are well known to be potent xylanase producer 
and most widely used for commercial production. Thiela-
via terrestris, (Garcia-Huante et  al. 2017), Talaromyces 
thermophilus (Maalej et  al. 2009), Paecilomyces thermo-
phile (Fan et  al. 2012), Achaetomium sp. X2-8 (Chadha 
et  al. 2019), Rhizomucor pusillus (Hüttner et  al. 2018), 
Rasamsonia emersonii, (Martínez et al. 2016) T. Leycetta-
nus (Wang et al. 2017), Melanocarpus albomyces (Gupta 
et  al. 2013) and Aspergillus oryzae LC1 (Bhardwaj et  al. 
2019) were found to be producer of hyper-thermophilic 
active xylanase. Several alkali stable xylanases were 
obtained from different fungal strains such as Paeniba-
cillus barcinonensis (Valenzuela et  al. 2010), Aspergillus 
fumigatus MA28 (Bajaj and Abbass 2011), Cladosporium 
oxysporum (Guan et al. 2016) and Aspergillus oryzae LC1 
(Bhardwaj et al. 2019).

Strategies employed for xylanase production 
from different microbial sources
The production of xylanase from microorganisms is 
affected by the fermentation process employed, choice of 
substrate and different media components. These com-
ponents are often regulated by different process opti-
mization for enhanced production of the enzyme for its 
application at large scale.

Different fermentation process employed for xylanase 
production: submerged and solid‑state fermentation
Xylanases are produced by a different fermentation 
process using various microorganisms. The better 

understanding of the physiology and different metabolic 
processes of the microbial system has led to an improve-
ment in the fermentation process. However, there is still 
an opportunity to improve the yield of enzymes. The 
optimization of the xylanase production will be discussed 
in a later section.

The xylanase production has been carried out under 
submerged fermentation (SmF) and solid-state fer-
mentation (SSF) (Motta et  al. 2013). The choice of the 
fermentation process usually depends on the type of 
microorganisms used (Table  3). Bacteria require a high 
amount of water during growth; therefore, SmF is pre-
ferred whereas fungi due to its mycelia nature require 
less moisture and can be grown under SSF (Walia et al. 
2017). Several reports suggest that submerged fermen-
tation using bacteria and fungi is the most preferred 
method for xylanase production. Statistically speaking 
approximately 90% of total xylanase is produced globally 
through SmF. During SmF, the synergistic effect of differ-
ent xylan degrading enzymes can be observed and even 
result in better biomass utilization for enhanced xyla-
nase production (Polizeli et al. 2005; Bajpai 2014). Xyla-
nase production utilizes soybean residues and rice straw 
as a substrate under SmF by Aspergillus oryzae LC1 and 
Aspergillus foetidus (Bhardwaj et  al. 2017; De Queiroz 
Brito Cunha et al. 2018a, b). Similarly, Irfan et al. (2016) 
suggested the production of xylanase under SmF by B. 
subtilis BS04 and B. megaterium BM07. Different advan-
tages of the SmF are homogenous condition throughout 
medium; method is well characterized and can be easily 
scaled up (Guleria et al. 2013). There are some disadvan-
tages to SmF as well which limit its industrial application, 
i.e., high maintenance cost, energy intensive and complex 
downstream (Virupakshi et al. 2005; Walia et al. 2017).

Recent trends suggest that xylanase production by SSF 
is also gaining popularity (Walia et  al. 2014). Bacillus 
sp. was used for the production of thermo-alkalophillic 
extracellular xylanase under SSF using wheat bran as 
substrate (Kamble and Jadhav  2012). Similarly, SSF of 
Trichoderma koeningi using corn cob supplemented with 
pineapple peel powder showed enhanced production 
of xylanase (Bandikari et al. 2014).  It has several advan-
tages such as low cultivation, operation and capital cost, 
a lower rate of contamination, easy enzyme recovery, and 
high productivity per reactor volume. The disadvantages 
associated with SSF are not suitable for all microorgan-
isms (preferred for the fungal system) and require proper 
aeration and humidity control and up-scaling is a tedious 
process (Mienda et al. 2011).

Selection of suitable substrate for xylanase production
Quantity and quality of the fermentation product vary 
with different substrates. There are various commercially 
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available substrates, i.e., xylan, carboxymethyl cellulose 
(CMC), pectin, and starch for, i.e., xylanase, cellulase, 
pectinase, and amylase, respectively (Barman et al. 2015; 
Bhardwaj et al. 2017; Kumar et al. 2018a). Due to the high 
cost of commercial substrates and considering the eco-
nomic feasibility of the process, scientists are working 
from past several years to find alternative substrates for 
the production of these enzymes.

Agrowastes and other organic wastes (domestic and 
industrial) are used as a carbon source for the production 
of xylanase with the focus on sustainability and best uti-
lization of these wastes (Table 3). Some of the most com-
monly used agro-residues for xylanase production are 
wheat bran, wheat husk (Kumar et al. 2018a, b, c, d), rice 
straw (Bhardwaj et al. 2017), rice husk, sugarcane bagasse 
(Suleman and Aujla 2016), coconut coir, coconut oil cake 
(Rosmine et  al. 2019), groundnut shell (Namasivayam 
et  al. 2015), wood pulp (Kalpana and Rajeswari 2015), 
sawdust, chilli post-harvest (Sindhu et  al. 2017), corn-
cobs, molasses, sugar beet pulp fruit, and vegetable waste 
(Bandikari et  al. 2014). Recent studies also showed that 
wastewater from pulp industry was reused as media for 
xylanase production (de Queiroz-Fernandes et al. 2017).

Role of important media components used for xylanase 
production
Naturally, xylanolytic enzymes are induced by the differ-
ent intermediate products generated by their own action. 
Xylan is found to be best xylanase inducer (Taibi et  al. 
2012; Guleria et al. 2013; Walia et al. 2013, 2014). How-
ever, xylan being a high-molecular weight polymer can-
not stimulate xylanase as it cannot enter the microbial 
cells. Therefore, a small amount of constitutive enzyme 
produced in the media results in the generation of low-
molecular weight fragments, i.e., xylobiose, xylotriose, 
xylotetraose, xylose from the breakdown of xylan and 
further induces the xylanolytic enzymes for enhanced 
enzyme production (Walia et  al. 2017). Cellulose, syn-
thetic alkyl, aryl β-d xylosides, and methyl β-d-xyloside 
also act as an inducer for xylanolytic enzyme production 
(Thomas et  al. 2013). Busk and Lange (2013) observed 
that poor quality paper can efficiently induce the xyla-
nase production in Thermoascus aurantiacus even in the 
absence of xylan and xylooligosaccharides.

Nitrogen is an important structural element required 
for the metabolic processes in the microbial system. 
Therefore, the choice of nitrogen source is important for 
the growth of microorganisms that subsequently affect 
the overall enzyme yield. Peptone, tryptone, soymeal, 
yeast extract, etc. have found to be suitable nitrogen 
source. The requirement of these nitrogen sources var-
ies for different microorganisms; therefore, optimizing 

the type and level of nitrogen source in the media is an 
important parameter (Seyis and Aksoz 2005; Naveen 
et  al. 2014; Irfan et  al. 2016). Trace elements, amino 
acids, and vitamins are also important parameters for the 
growth of different microorganisms (Simair et  al. 2010; 
Bibra et al. 2018). Therefore, regulating their levels in the 
media is important for regulating the production of xyla-
nase. Also, the addition of biosurfactant such as Tween 
80 affected the level of xylanase production (Liu et  al. 
2006; Kumar et al. 2013).

Strategies employed for the selection 
of the method of xylanase production and its 
optimization
Intially a  common minimal media providing essential 
nutrients to the growth of microorganisms are used. 
This  will allow to  check the strains are capable of pro-
ducing required enzymes/metabolite of desired interest. 
Then, the process is further optimized for higher produc-
tion of enzymes from the strain (Walia et  al. 2017). For 
the production of desired product, different strategies are 
used for improving yield such as optimization of media 
components, regulating physical growth parameters, and 
improving the strain by use of the different biotechno-
logical tool (Sharma 2017). The schematic representation 
of the methodology adapted for production, purification 
and characterization of xylanase are shown in Fig.  5.  In 
this section, the focus will be on the optimization of 
media and growth parameters and biotechnological 
tool approach will be discussed in a later section. Dur-
ing SmF for enzyme production, different components 
which need to be optimized are selection of substrate and 
microorganisms, regulation of nutrients concentration 
in media, i.e., carbon, nitrogen, trace elements, vitamins 
and amino acids, and physical parameters, i.e., tempera-
ture, pH, agitation, aeration, inoculum sizes, and incuba-
tion period (Motta et al. 2013; Walia et al. 2015a, 2017).

During optimization of the SSF, there is requirement 
of regulating particle size, pretreatment, humidity, water 
content and water activity (aw) of substrate, type and size 
of the inoculums, removal of extra heat generated during 
microbial metabolism and most importantly maintaining 
the uniform environment (temperature) and evolution of 
CO2 and consumption of O2, i.e., gaseous system (Muru-
gan et al. 2011; Behera and Ray 2016; Behnam et al. 2016; 
Leite et al. 2016; Walia et al. 2017).

Approach for enhanced xylanase production: one factor 
at a time (OFAT)
To proceed for the optimization of the xylanase produc-
tion, one factor at a time (OFAT) approach is used for 
the selection of important factors affecting the xylanase 
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yield. In the OFAT approach, one factor is kept variable 
keeping other factors at constant (Bhardwaj et al. 2018). 
The factor may be important physical or nutritional 
parameters regulating the growth of microorganisms 
and its enzyme yield. Ramanjaneyulu et  al. (2017) have 
evaluated several operating parameters for nutritional 
(different substrates and their concentrations, additional 
carbon and nitrogen sources) and physical factors (incu-
bation temperature, pH, agitation) along with inoculum 
size of Fusarium  sp. BVKT R2 in a shake flask culture 
(SmF) by OFAT approach. The high xylanase yield of 
4200 U/mL was obtained with birch wood xylan in min-
eral salt medium with 1.5% sorbitol (additional carbon 
source), 1.5% yeast extract (nitrogen source) at tempera-
ture of 30 °C, pH of 5.0, agitation of 200 rpm and inocu-
lum of agar plugs (6) for only 5  days incubation. Under 
unoptimized condition, xylanase yield was only 1290 U/
mL after 7 days of incubation, thus improving by 3.2-fold. 
Bhardwaj et  al. (2018) also optimized xylanase produc-
tion using Aspergillus oryzae LC1 using OFAT approach. 
The physical parameters (liquid to solid ratio, pH, inocu-
lums size, incubation time and temperature) and nutrient 

parameters (substrate concentration) were optimized 
using OFAT approach for enhanced production of xyla-
nase by T. viride-IR05 under SSF (Irfan et al. 2014).

Statistical approach for enhanced xylanase production
The OFAT approach is tedious and requires a large set of 
experiments for optimization. The recent trend suggested 
the application of the statistical approach to design 
experiments considering different factors as variable 
and performing the interaction studies among several 
physical and nutritional parameters. The statistical-based 
approach has shown satisfactory results for optimization 
of xylanase production using fungal and bacterial strains 
with the minimum number of experimental sets (Gule-
ria et al. 2015, 2016a; Walia et al. 2015b; Bhardwaj et al. 
2017).

Response surface methodology (RSM) was employed 
to optimize the fermentation medium constituents and 
the physical factors affecting xylanase production using 
Bacillus tequilensis strain ARMATI under SmF (Khusro 
et  al. 2016). The experimental design consists of cen-
tral composite design (CCD) with four (4) independent 

Fig. 5  Schematic representation of the methodology for production, purification and characterization of xylanase
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variable (carbon and nitrogen source, temperature and 
time) resulting in 30 experimental runs. The central com-
posite design gave an optimum parameter for studied 
variable (1.5% w/v birchwood xylan, 1% w/v yeast extract, 
temperature 40 °C, time 24 h) showing 3.7-fold enhanced 
xylanase production as compared to OFAT. High coef-
ficient of determination (R2) of 0.9978 with p < 0.05 as 
obtained by analysis of variance (ANOVA) analysis sug-
gested the accuracy of the overall process at a significant 
level. The R2 value of 0.9978 represents that sample varia-
tion of 99.78% and only 0.21% of the total variation in the 
response cannot be explained by the model. The xylanase 
obtained has shown high thermal (60  °C) and alkali sta-
bility (pH 9). Bhardwaj et al. (2017) optimized nutritional 
components (rice straw, MgSO4, and CaCl2 concentra-
tion) and physical parameters (temperature and pH) for 
enhanced xylanase production with an Aspergillus oryzae 
LC1 under submerged fermentation using CCD-RSM. 
The statistical design suggested optimum condition of 
1% rice straw (w/v), 1.0  g/L CaCl2, and 0.3  g/L MgSO4, 
with pH 5 and 25  °C. It resulted in maximum xylanase 
activity of 935 ± 2.3 IU/mL which is 3.8-fold higher than 
the un-optimized Mendel’s Stenberg Basal Salt medium 
(245 ± 1.9  IU/mL). The enzyme showed thermal (25–
60 °C) and pH (3–10) stability. The xylanase also showed 
potential for efficient enzymatic hydrolysis of different 
lignocellulosic agro-residues.

Similarly, Tai et  al. (2019) reported the optimization 
of five physical and two nutritional parameters using the 
RSM approach for enhanced xylanase production. Indig-
enous fungus Aspergillus niger DWA8 was grown under 
SSF on an oil palm frond. One physical (moisture content 
75%) and one nutritional parameters (substrate concen-
tration 2.5 g) have significant effect on xylanase produc-
tion. Under optimum condition, an increase in xylanase 
yield by  78.5% was observed as compared to an  un-
optimized condition. The xylanase was efficiently used 
for saccharification of biomass. The statistical optimiza-
tion method for enhanced xylanase production has been 
applied and widely accepted for SSF and SmF that helped 
in overcoming several limitations of classical empirical 
(OFAT) methods.

Biotechnological approach for enhanced xylanase 
production
There is a need of high yield of the enzyme with spe-
cific properties such as high stability over a wide range 
of temperature and pH, high substrate specificity and 
strong resistance to metal cations and chemicals for the 
industrial application (Garg et al. 2010; Qiu et al. 2010). 
The native enzyme is usually produced in low quantity 
and also lacks all the characteristics to meet the indus-
trial needs (Ahmed et  al. 2009). Therefore, different 

biotechnological approaches are used for improving 
the yield and imparting characteristic properties to 
the desired enzyme. These approaches involve genetic 
manipulation involving mutation and recombinant DNA 
technology.

Mutagenesis of microorganisms for enhanced xylanase 
production
Several researchers suggested that the application of 
physical mutagens such as UV radiation (Rahim et  al. 
2009; Abdel-Aziz et  al. 2011) and chemical mutagens 
such as N-methyl N-nitro N-nitroso guanidine (MNNG) 
(Haq et  al. 2004, 2008) resulted in enhanced xylanase 
production. Burlacu et  al. (2017) demonstrated the 
improvement of xylanase production in fungal strains, 
i.e., Aspergillus brasiliensis and Penicillium digitatum by 
physical mutagenesis (5–50  min, exposure to UV light) 
and chemical mutagenesis (150  µg/mL of N-methyl-N′-
nitro-N-nitrosoguanidine or ethyl methane sulfonate). 
The exposure to physical and chemical mutagens has 
resulted in significant changes in the mutant strain as 
compared to the wild type. Han et  al. (2017) demon-
strated the site-directed mutagenesis of XynCDBFV 
gene of ruminal fungus  Neocallimastix patriciarum for 
improving the thermostability of XynCDBFV, a glyco-
side hydrolase (GH) family 11 xylanase. Similar work 
has also been carried out in different bacterial strains, a 
rifampin-resistant mutant of Cellulomonas biazotea, des-
ignated 7Rf, resulting in elevated levels of xylanases pro-
duction as compared to the parental strain. After 
mutation, maximum xylanase and β-xylosidase pro-
duction of 493  IU/L/h and 30.7  IU/L/h of β-xylosidase 
were obtained  respectively. This increase in xylanase 
and  β-xylosidase yield  were 1.21- and 2.29-fold higher 
respectively  as compared to the parental strain (Rajoka 
et  al. 1997). Bacillus mojavensis PTCC 1723 when sub-
jected to UV light exposure (280 nm, 30 s) resulted in the 
xylanase yield 330.6  IU/mL which is 3.45 times higher 
as compared to 95.7  IU/mL for wild strain (Ghazi et  al. 
2014). Lu et al. (2016) demonstrated mutation of XynHB, 
alkaline stable xylanase from  Bacillus pumilus  HBP8 at 
N188A. The mutant XynHBN188A is expressed in E. coli 
and Pichia pastoris with improved xylanase yield by 1.5- 
and 7.5-fold, respectively. The codon-based optimization 
and high-density fermentation using Pichia pastoris sys-
tem were utilized for improving the xylanase yield.

Gene cloning and expression of xylanase genes using 
recombinant DNA
The recombinant xylanases are designed to have equiv-
alent or better properties than the wild-type enzymes 
with high yield in the expression system which can 
be employed in the fermentation industry. The highly 
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thermo-alkalophilic xylanase producing strains can be 
directly employed during simultaneous saccharification 
and fermentation for ethanol generation using lignocel-
lulosic biomass. The inherited stability will enable the 
xylanase to work efficiently even at high temperature and 
varying pH range of the fermentation system.

Several reports suggests that desired xylanase gene was 
cloned into the suitable vector followed by its expression 
in the suitable microbial systems such as bacteria, yeasts, 
and fungus (Belancic et  al. 1995; Goswami et  al. 2014; 
Jhamb and Sahoo 2012; Juturu and Wu 2012; Motta et al. 
2013; Nevalainen and Peterson 2014; Verma et al. 2013).

Expression in bacteria
Goswami et al. (2014) demonstrated the expression of a 
xylanase gene from Bacillus brevis in E. coli BL21. The 
recombinant strain predominantly secreted xylanase in 
the culture medium with 30 IU/mL xylanase activity. The 
culture filtrate is free from cellulase activity and found 
to be active in a wide range of pH and temperature. A 
thermo-alkali stable xylanase encoding gene (Mxyl) was 
retrieved from compost-soil metagenome library con-
struct and cloned into pET28a vector expressed in E. coli 
BL21(DE3). The recombinant xylanase has shown half-
life of 2 h and 15 min at 80 °C and 90 °C, respectively. The 
recombinant xylanase has pH and temperature optima of 
9.0 and 90 °C, respectively (Verma et al. 2013).

Escherichia coli is preferred and most widely used 
expression host due to its inexpensive growth conditions, 
easy manipulation, simple transformation techniques 
requirement, high level of product accumulation in the 
cell cytoplasm (Jhamb and Sahoo 2012). However, effi-
cient and functional expression of many xylanase genes 
is not possible with E. coli which may be due to repetitive 
appearance of rare codons and the requirement for spe-
cific translational modifications (disulfide-bond forma-
tion and glycosylation) (Belancic et  al. 1995; Jhamb and 
Sahoo 2012; Juturu and Wu 2012; Motta et al. 2013). One 
of the other important concerns associated with E. coli is 
the presence of endotoxins (lipopolysaccharide) which 
makes the protein purification process very tedious. 
Lactobacillus and Bacillus species are used for heterolo-
gous expression of xylanase than in E. coli. It is capable 
of performing N-glycosylation, generally regarded as 
safe (GRAS) due to the absence of endotoxins and their 
secretory production is beneficial in industries (Bron 
et al. 1998; Subramaniyan and Prema 2002; Upreti et al. 
2003; Juturu and Wu 2012). Zhang et al. (2010a, b) dem-
onstrated the expression and characterization of the 
xylanase gene (xynB) from Dictyoglomus thermophilum 
Rt46B.1 in Bacillus subtilis system. The pH and tempera-
ture optima for the purified recombinant enzyme were 

6.5 and 85  °C, respectively. The xylanase was stable up 
to 95  °C and retained its activity in surfactants such as 
EDTA, DTT, Tween-20 and Triton X-100.

Expression in yeast
The heterologous protein expression in yeast system is 
highly attractive due to its ability to perform eukaryotic 
post-translational modifications and can grow to very 
higher cell densities with the ability to secrete enzyme 
into the fermentation system. Most of the yeasts are con-
sidered as GRAS organisms and do not produce toxins 
(Juturu and Wu 2012). Saccharomyces cerevisiae already 
established as an industrial microorganism, thus, can be 
conveniently used for xylanase production (Ahmed et al. 
2009).

The application of Pichia pastoris as expression sys-
tem has gained impetuous because it can promote the 
expression of the protein on their own using alcohol 
oxidase as promoter using methanol utilization pathway 
(Ahmed et  al. 2009; Juturu and Wu 2012; Motta et  al. 
2013). Pichia pastoris as expression system is preferred as 
it can grow to very high cell densities, inherit strong and 
tightly regulated promoters, and produce high titer of 
recombinant protein (g/L) both intracellularly and in the 
secretory manner (Ahmad et al. 2014). Basit et al. (2018) 
demonstrated the cloning of two GH11 xylanase genes, 
MYCTH_56237  and MYCTH_49824, from thermophilic 
fungus  Myceliophthora thermophila  and its expres-
sion in Pichia pastoris. The specific activities of purified 
recombinant xylanase were observed at 1533.7 U/mg and 
1412.5 U/mg for MYCTH_56237  and  MYCTH_49824, 
respectively.  The recombinant xylanase showed stability 
under harsh condition (high pH and temperature) and 
high efficiency for biomass saccharification. However, 
the application of Pichia pastoris at large scale is limited 
due to health and fire hazards of methanol (Ahmed et al. 
2009). In the case of P. pastoris as expression system, 
lower protein yield was obtained while expressing mem-
brane-attached protein or proteolytic degradation prone 
protein and complex protein such as hetero-oligomers 
(Ahmad et al. 2014).

Expression in filamentous fungi
Filamentous fungi can be efficiently used for heterolo-
gous and homologous gene expression resulting in high 
yield of recombinant gene products (Su et al. 2012; Motta 
et  al. 2013; Nevalainen and Peterson 2014; Nevalainen 
et  al. 2018). Similar to yeast, it can regulate expression 
yields with their own promoters and can provide eukary-
otic style post-translational modification of proteins such 
as N-glycosylation, proteolytic processing, or formation 
of multiple disulfide bonds (Ahmed et al. 2009; Fleissner 
and Dersch 2010; Landowski et al. 2015).
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The application of fungi as an expression system also 
has advantages associated with cost-effectiveness of the 
overall process due to low-cost substrate and down-
stream processing. Further, fungi have already been 
subjected to many strain improvement procedures for 
enhanced production of xylanase. Therefore, the native 
xylanase expressing machinery can be efficiently used 
for functional expression of a foreign xylanase gene 
from other sources. Xyn2 xylanase gene was expressed 
in T. reesei by homologous expression resulting in the 
1.61 g/L of xylanase 2 on glucose-containing medium (Li 
et  al. 2012). Godlewski et  al. (2009) demonstrated xyla-
nase B(XynB) gene expression in T. reesei. Similarly, the 
expression of xylanase 2 (XYN2) and xylanase gene from 
the thermophilic fungus Humicola grisea var. thermoidea 
and P. griseofulvum was expressed in Trichoderma reesei 
and Aspergillus oryzae, respectively (De Faria et al. 2002; 
Motta et al. 2013). Nevalainen and Peterson (2014) pre-
sented a comprehensive review on application of fila-
mentous fungus as expression system and suggested that 
research is now focused on understanding the cellular 
mechanisms for better internal protein quality control 
and secretion stress. The better utilization of “omics” 
tools can help in improving the regulation of xylanase 
production using filamentous fungus as an expression 
system.

Strategies for enhanced purification 
and characterization of xylanase for industrial 
application
The microbial system produces a wide range of biochem-
ical’s during different growth and development of the 
microorganisms. These biochemical’s are enzymes, sec-
ondary metabolites, etc. which are of great importance 
to human applications. Similarly, enzymes are produced 
by microorganisms along with other enzymes or metabo-
lites. Therefore, purification is prerequisites for obtain-
ing pure enzyme with minimum or no impurities (Zhang 
et al. 2012). The characterization of the purified enzyme 
such as evaluation of  temperature and pH optimum, 
thermal and acid/alkali stability, role of  metal ions and 
inhibitors in regulation of enzyme activity, and substrates 
specificity was performed  for selecting the suitable 
industrial process (Bhardwaj et al. 2019). There are differ-
ent enzyme purification strategies for the xylanase such 
as ammonium sulfate precipitation (salting in) followed 
by dialysis (salting out), gel permeation chromatography, 
ion exchange chromatography, recently developed tech-
niques aqueous phase chromatography and ultrafiltration 
(Walia et  al. 2014; Guleria et  al. 2016b; Bhardwaj et  al. 
2019).

Ammonium sulfate precipitation followed by dialysis
The crude xylanase preparation is subjected to different 
ranges of ammonium sulfate concentration (30–90%) for 
selection of suitable salt concentration for precipitation 
of the enzyme. The precipitated enzyme is then subjected 
to dialysis for removal of the salt. The crude xylanase 
obtained from Streptomyces P12-137 was subjected to 
ammonium sulfate precipitation (40–90%) followed by 
dialysis. The purification fold of 4.18 was observed with 
two different endoxylanase observed as F5 (65%) and F6 
(80%) with the specific activity of 45.4 U/mg and 36.5 U/
mg, respectively. This was also confirmed by HPLC anal-
ysis. The purified enzyme was further characterized by 
incubating at different temperature and pH followed by 
analyzing the enzyme for xylanase activity. The optimum 
pH and temperature of pH 7.0, 60 °C and 6.5, 60 °C, for 
F5 and F6 xylanase, respectively, were obtained (Coman 
et al. 2013).

Bhardwaj et  al. (2017) performed partial purification 
of the crude xylanase obtained from Aspergillus oryzae 
LC1 using ammonium sulfate (60%) precipitation fol-
lowed by dialysis against 50 mM acetate buffer (pH 5.0). 
The partially purified enzyme was further characterized 
which showed stability over a wide pH range of 3 to 10 
and thermal stability over the temperature range of 25 
to 60  °C. Similarly, Kumar et  al. (2018d) have demon-
strated the purification and characterization of xylanase 
obtained from sea sediment bacteria using a combina-
tion of ammonium sulfate precipitation and dialysis. The 
improvement in specific activity and characteristic prop-
erties of xylanase was observed. The major limitations of 
the precipitation are needed to remove salt from protein 
sample so further processing in the form of dialysis or 
chromatography is required. Further, for dialysis, there 
is a need to have a better understanding of the protein 
solubility. It is also stated that ammonium precipitation 
concentrates the protein rather than purifying it. Thus, 
contaminant present in the crude sample may also be 
present along with the protein sample even after pre-
cipitation and dialysis (Biosciences 2019). The xylanase 
is also concentrated or precipitated using trichloroacetic 
acid (TCA) and acetone. However, the TCA may dena-
ture the protein; therefore, it is not advisable to use TCA 
when the protein is required in the folded state (for activ-
ity assay) and the toxicity of TCA also limits its applica-
tions (Koontz 2014).

Chromatography techniques for enhanced xylanase yield 
employed for purification
Usually, it has been observed that xylanase purifica-
tion was performed by the multi-step process where 



Page 17 of 36Bhardwaj et al. Bioresour. Bioprocess.            (2019) 6:40 

the concentration of protein using ammonium acetate/
TCA/acetone precipitation or ultracentrifugation was 
followed by a single step or series of chromatography 
techniques. Yadav et  al. (2018) demonstrated the puri-
fication and characterization of extracellular xylanase 
obtained from  A. kamchatkensis  NASTPD13 cultures. 
The crude xylanase was subjected to ammonium sulfate 
(80%) precipitation followed by dialysis. The dialyzed 
sample was further subjected to Sephadex G100 column 
chromatography. The fractions collected showing maxi-
mum xylanase activity were concentrated and analyzed 
by SDS-PAGE (MW obtained was 37  kDa). The two-
step purification has led to increased xylanase activity by 
11-fold with a 33 U/mg specific activity. The characteri-
zation of purified protein showed pH and temperature 
optimum of 9.0 and 65 °C, respectively, and also retained 
more than 50% of its activity over a wide range of 6–9 
pH and 30–65  °C temperature. An insight into several 
purification strategies employed for xylanase from differ-
ent microorganisms along with the process efficiency in 
terms of recovery potential and kinetics property is tabu-
lated in Table 4.

Purification of endoxylanase obtained from Bacillus 
pumilus B20 was performed in three steps (Geetha and 
Gunasekaran 2017). The first step was ammonium sulfate 
precipitation (60–80%) followed by FPLC using DEAE 
Sepharose column as the second step and further sub-
jecting the eluted sample onto a Sephacryl S-200 column 
as the third purification step. At each step, the specific 
activity was improved as compared to the crude enzyme 
by 5 to 14.8-fold with maximum 755.8 U/mg specific 
activity at the end of all the three purification steps. After 
the purification, the fractions showing maximum xyla-
nase activity were subjected to xylanase assay and other 
characterization studies such as SDS-PAGE, zymography, 
temperature and pH stability. The SDS-PAGE and zymog-
raphy analysis showed the purified enzyme of ~ 85  kDa, 
i.e., endoxylanase (XylB). The purified enzyme was stable 
in a pH range of pH 6.5 to 7.5 and the temperature range 
of 20 to 50 °C. The purified enzyme was highly specific to 
different commercial and natural xylan substrate and has 
the potential to generate xylooligosaccharides.

Aqueous two‑phase system employed for purification 
of xylanase
The conventional multistep purification techniques are 
time consuming, which increases the cost of the overall 
process and also results in loss of protein at each step 
(Iqbal et al. 2016; Ramakrishnan et al. 2016). The 60–70% 
of total processing cost in enzyme downstream process 
comes from the purification step (Loureiro et  al. 2017; 
Bhardwaj et  al. 2019). Therefore, several scientists sug-
gested a single step liquid–liquid fractionation technique, 

i.e., aqueous two-phase system (Naganagouda and Muli-
mani 2008; Yasinok et al. 2010; Glyk et al. 2015).

Garai and Kumar (2013) purified alkaline xylanase from 
Aspergillus candidus using aqueous two-phase system 
(ATPS) composed of PEG 4000/NaH2PO4 system. The 
critical factors of ATPS such as PEG molecular weight, 
PEG and phosphate salt concentration using Box–
Behnken design approach were used for the optimization 
of enhanced xylanase purification. The optimum condi-
tion was PEG 4000 at 8.66% w/w with a high salt con-
centration of 22.4 w/w that resulted in 8.41% purification 
fold. The enzyme was stable at alkaline pH and activity is 
enhanced with Mn2+ ions. Ng et al. (2018) demonstrated 
the recovery of xylanase from Bacillus subtilis fermenta-
tion broth with an alcohol/salt ATPS. The ATPS system 
consists of 26% (w/w) 1-propanol and 18% (w/w) ammo-
nium sulfate resulting in 5.74 ± 0.33 purification fold and 
yield of 71.88% ± 0.15.

Gómez-garcía et  al. (2018) demonstrated purifica-
tion of xylanase by Trichoderma harzianum using ATPS 
with PEG/salt system. The PEG molecular weight, PEG, 
phosphate salt concentration, and salt conditions were 
optimized. The best   enzyme recovery and  purifica-
tion fold  of 62.5% and 10% respectively  was obtained 
using 20.2% PEG 8000, 14.8% K2HPO4, and tie to a length 
of 45% w/w. Bhardwaj et al. (2019) subjected crude xyla-
nase from Aspergillus oryzae LC1 to four different single-
step purification by ammonium sulfate precipitation, ion 
exchange, gel filtration chromatography and ATPS PEG/
Salt system. The xylanase purification using single-step 
ATPS system resulted in highest purification yield (PY) of 
86.8% and 13-fold purification fold (PF) which was much 
higher than other purification strategy, i.e., ammonium 
precipitation (PY-21%, PF-4.1), anion exchange (PY-
31.9%, PF-3) and gel filtration (PY-78.7%, PF-6.6).

Therefore, ATPS exhibits several advantages over tra-
ditional purification techniques, i.e., it requires low-cost 
materials, low  energy consumption with high yield and 
better resolution (Naganagouda and Mulimani 2008; 
Yasinok et al. 2010; Glyk et al. 2015). The ATPS method is 
independent of protein concentration and does not affect 
the native property of protein (Iqbal et  al. 2016; Ram-
akrishnan et al. 2016).

Structural properties of xylanase responsible 
for thermal and pH stability required for industrial 
application
The high stability of xylanase was due to the presence 
of intrinsic structural properties. The presence of extra 
disulfide  and salt bridges, hydrophobic side chains, 
and  N-terminal proline residues helps in  reduction 
of conformational freedom of the protein structure. Thus, 
it help in providing more stability to protein at the higher 
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temperature (Turunen et al. 2001; Chen et al. 2015). Dif-
ferent structural modifications such as high Thr/Ser ratio 
and high charged residues, i.e., Arg, cause enhanced 
polar interaction and improved stabilization of the alpha-
helix region and secondary structures (Hakulinen et  al. 
2003). The xylanase protein has a large number of ion 
pairs/aromatic residues on the surface of protein result-
ing in enhanced interactions (Polizeli et  al. 2005; Chen 
et  al. 2015). The low average protein rigidity i.e. low B 
factor, low flexibility results in  high rigidity at extreme 
physical conditions (Xie et  al. 2014). The presence of 
divalent metal ions and removal of N or C terminal dis-
ordered residues protect xylanase from heat and protease 
inactivation (Andrews et al. 2004; Chen et al. 2015). The 
presence of carbohydrate-binding modules (CBM22 and 
CBM9) at N or C terminal often imparts heat stabil-
ity to xylanase. The pH stability of the xylanases is often 
affected by the presence of several amino acids near the 
catalytic residues (Singh et al. 2019).

Cost estimation of the xylanase production
Polizeli et al. (2005) suggested that 20% of the total global 
enzyme production is from biomass hydrolysis enzymes, 
i.e., xylanase, cellulase and pectinases. An extensive 
study on cost involved in each step of xylanase produc-
tion at industrial scale is unavailable on public domain. 
Klein-Marcuschamer et al. (2012) performed a study on 
the cost analysis of application of enzymes during the lig-
nocellulosic biomass based biofuel production and sug-
gested breakdown of the operating cost (annual) in their 
enzyme production facility. They suggested percentage 
of cost involved for each component, i.e., raw materials 
(28%), labor (7%), transportation (1%), consumables (4%), 
utilities (10%), facility dependent (48%), and waste treat-
ment (2%). This clearly shows that maximum contribu-
tion of 48% comes from the capital investment followed 
by cost of substrate (28%). Klein-Marcuschamer et  al. 
(2012) also suggested the baseline production cost of 
hydrolysis enzyme as $10.14/kg.

Da Gama Ferreira et al. (2018) performed techno-eco-
nomic analysis of the β-glucosidase enzyme production 
from E. coli on industrial scale. They showed major cost 
during industrial production are facility dependent (45%) 
followed by raw materials (25%) and consumables (23%), 
that  are similar to observations made by  Klein-Marcus-
chamer et al. (2012). Capital investment/facility-depend-
ent cost is required for development of infrastructure 
(i.e., equipments), insurance, maintenance and depre-
ciation. This upstream and downstream process during 
enzyme production involves the cost on part of capital 
investment along with the cost of consumables and utili-
ties. da Gama Ferreira et  al. (2018) performed sensitiv-
ity analyses of process scale, inoculation volume with 

respect to volumetric productivity, which suggested that 
remarkable reduction in cost of enzyme production may 
be observed under optimized conditions. Thus, based on 
the above studies, we can suggest that xylanase produc-
tion can be based on the cost of substrate and consuma-
ble, along with the cost of each step involved in upstream 
and downstream processing. Therefore, utilizing cheap 
raw materials, less number of steps during upstream 
and downstream process (such as single step purifica-
tion instead of multistep process) can help in keeping the 
enzyme production cost as low as possible.

Xylanase employed as a greener tool in different 
industries
Xylanase with such unique characteristics of thermo-
alkali tolerant nature has a diverse range of application 
in different industries such as paper and pulp, deinking, 
biomass utilization and food feed industries (Fig. 6).

Xylanase employed in the food and feed industry
Bakery
The xylanase finds application in food industries such 
as bakery. The bread is made up of wheat consisting 
of hemicelluloses such as arabinoxylan. The xylanase 
can solubilize the water unextractable arabinoxylan 
into water-extractable arabinoxylan (Courtin and Del-
cour 2002). This help in uniform water distribution and 
improvement in gluten network formation throughout 
the dough. The addition of xylanase improves the rheo-
logical properties of dough such as softness, extensibil-
ity, and elasticity along with bread-specific volume and 
crumb firmness (Harbak and Thygesen 2002; Camacho 
and Aguilar 2003; Butt et al. 2008). The breakdown prod-
ucts of arabinoxylan, i.e., arabino-xylooligosaccharides in 
bread have its health benefits (Polizeli et al. 2005; Bajpai 
2014).

Butt et  al. (2008) demonstrated the role of GH11 
endoxylanases from B. subtilis in solubilizing the ara-
binoxylan. This increases the viscosity and volume of 
dough and decreases gluten agglomeration and dough 
firmness resulting in the development of uniform and 
fine crumbs. GH11 xylanase (0.12 U/g flour) from Peni-
cillium occitanis Pol6 resulted in improvement of bread-
making process such as the decrease in water absorption 
(8%) and an increase in dough rising (36.8%), volume 
(17.8%), specific volume (34.9%) and cohesiveness. The 
bread has improved rheological and sensory properties 
(texture, taste, flavor, softness, and overall acceptability). 
Low springiness and gumminess were observed in the 
bread prepared using xylanase (Driss et al. 2013). Partially 
purified microbial xylanase was used by Ghoshal et  al. 
(2013) to produce whole‐wheat bread with better sen-
sory properties (brighter color). The addition of xylanase 
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also resulted in increased specific volume, and shelf life, 
with lower firmness and reduced staling during storage. 
Panzea, new generation xylanase obtained from Bacillus 
Licheniformis, can help in improving dough properties at 
low enzyme dosage. It helps in achieving the desired tex-
ture, appearance, loaf volume and crumb structure (Baj-
pai 2014). Similarly, recombinant xylanase (r-XynBS27) 
obtained from Pichia pastoris (xynBS27 gene from Strep-
tomyces sp. S27) used as an additive during bread-making 
process. The recombinant xylanase resulted in improve-
ment in a specific volume and reducing sugar content 
with a decrease in firmness, consistency, and stiffness (De 
Queiroz Brito Cunha et al. 2018a, b).

Fruit juice clarification
The enzymatic process in fruit juice extraction and clari-
fication is widely used. Raw juices of fruit contain poly-
saccharides such as cellulose, hemicellulose, starch pectin 
and surface-bound lignin and decrease the quality of the 
juice, e.g., hazy color and high viscosity (Danalache et al. 
2018). The use of enzymes decreases the viscosity and 
avoids the formation of clusters, by removing the sus-
pended and undissolved solid using centrifugation and 
filtration methods. This increases the clarity, aroma, and 
color of the juice (Danalache et al. 2018). Xylanase from 

Streptomyces sp was used for the clarification of orange, 
mousambi, and pineapple with 20.9%, 23.6% and 27.9% 
clarity, respectively (Rosmine et  al. 2017). Immobilized 
xylanase obtained from Bacillus pumilus VLK-1 was 
used for orange (29%) and grape juice (26%) enrichment 
(Kumar et  al. 2014). Xylanase immobilized on 1,3,5-tri-
azine-functionalized silica-encapsulated magnetic nano-
particles was reported to clarify the three different types 
of fruit juices after five hours of incubation at 50  °C 
(Shahrestani et al. 2016). Partially purified xylanase from 
Streptomyces sp AOA40 was used in fruit juice industry 
for increased clarity of juices from apple (17.8%), orange 
(18.4%) and grape (17.9%) (Adigüzel and Tunçer 2016). 
Glutaraldehyde-activated immobilized xylanase was 
used for the clarification of tomato juice. Xylanase from 
P. acidilactici GC25 was used to treat the kiwi, apple, 
peach, orange, apricot, grape, and pomegranate in which 
increase in the amount of reducing sugar was observed 
along with the decrease in turbidity of the juice (Adiguzel 
et al. 2019).

Animal feed
Xylanases plays an important role in animal feed by 
breaking the feed ingredient arabinoxylan and reduces 
the raw material viscosity. Aspergillus japonicus C03 with 

Fig. 6  Xylanase as a greener tool in different industries
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good endoxylanase and cellulase production ability with 
high stability in the presence of goat ruminal environ-
ment showed ruminant feed applications (Facchini et al. 
2011). A number of studies reported the availability of 
distillers dried grains with soluble (DDGS) to be utilized 
in animal feeds and use of exogenous xylanase in poul-
try diets to treat the higher fiber content (Pirgozliev et al. 
2016; Whiting et al. 2019). The exogenous enzymes effec-
tively improved the nutritional value of co-products of 
bioethanol as reported previously with DDGS obtained 
from corn (Liu et al. 2011). Xylanases have been involved 
in animal feed over decades, as it reduces the viscos-
ity of digesta in poultry. Xylanase addition showed the 
weight gain improvement and enhanced feed conver-
sion ratio because of the improvement in the arabinoxy-
lan digestibility in monogastric animal diets (Paloheimo 
et al. 2010; Van Dorn et al. 2018). Xylanase utilized as a 
dietary supplement for the nutrients digestibility, digesta 
viscosity growing pigs fed corn intestinal morphology 
diet based on soybean meal was reported by Passos et al. 
(2015). ECONASE XT a well-known commercial endo-
1,4-β-xylanase which has been used as feed additives for 
chicken fattening, weaned piglets and fattening for pigs 
(Rychen et al. 2018).

Xylanase in paper and pulp industries
Bio‑bleaching
The process of removal of lignin from wood pulp to 
produce bright and completely white finished paper 
is known as bleaching (Beg et  al. 2001). Traditionally, 
chemical bleaching agents (such as chlorine) were used 
for bleaching (Subramaniyan and Prema 2002). The use 
of ligno-hemicellulolytic enzymes for bleaching has 
gained impetuous all over the world. Xylanases are capa-
ble of hydrolyzing xylan which is linked to the cellulose 
and lignin of the pulp fiber. Thus, xylan disruption will 
eventually lead to the separation between these compo-
nents, enhance swelling in the fiber wall, and improve 
lignin extraction from the pulp (Thomas et  al. 2015). 
Thus, xylanase in combination with lignin-degrading 
enzyme help in increasing the brightness of pulp (Vii-
kari et al. 1994; Sunna and Antranikian 1997; Pérez et al. 
2002; Motta et  al. 2013). The exposures of the cellulose 
fiber to enzymatic pulping enhance the bonding forces 
of paper and improve paper strength via degradation of 
xylan and removal of lignin during enzymatic treatment 
(Lin et al. 2018). The enzymatic system has been highly 
selective, non-toxic, environmentally friendly approach 
for bio-bleaching (Bajpai 2012).

Paper and biomass pulp processing takes place at vary-
ing pH and temperature. Therefore, thermo-alkali stable 
xylanases are required for the bio-bleaching. An alkaliph-
ilic Bacillus strain produced thermoactive cellulase-free 

xylanase using agro-residues active at high temperature 
60 °C and pH 6–10 and was utilized for bio-bleaching of 
kraft pulp (Azeri et al. 2010). Paenibacillus campinasen-
sis BL11 xylanase pretreatments showed the increased 
brightness and viscosity of hardwood kraft pulp (Ko et al. 
2010). S. thermophilum xylanase active at high tempera-
ture (50–70  °C) was used for the bleaching of bagasse 
pulp (Joshi and Khare 2011). T. lanuginosus VAPS24 
xylanase was stable at wide range pH that can be use-
ful in both alkaline and acidic bioprocesses (Kumar and 
Shukla 2018). An alkaliphilic Bacillus liceniformis Alk-1 
xylanase was utilized in a purified form for the enzy-
matic pretreatment on eucalyptus kraft pulp bleach-
ing (Raj et  al. 2018). The xylanase preparation obtained 
from white-rot fungi, S. commune ARC-11 was capable of 
ethanol soda pulp pre-bleaching from Eulaliopsisbinata 
(Gautam et  al. 2018). The paper  manufacturing units 
of various countries, i.e., Japan. South America, North 
America and Europe are slowly replacing chemical pulp 
bleaching by xylanase mediated pulp bleaching. Canada 
is known to be the leading producer of pulp and they are 
bleaching more than 10% its pulp via xylanase (Dhiman 
et al. 2008a). In addition to that, several reports also sug-
gest that the xylanase enzyme-mediated pretreatment 
can help in generation of cellulosic nanofibres (CNF) 
with improved crystallinity from unbleached bagasse and 
eucalyptus pulp (Nie et  al. 2018; Zhang et  al. 2018; Tao 
et  al. 2019). Zhang et  al. (2018) suggested that applica-
tion of commercial Novozyme X2753 can simplify the 
CNF’s production and purification process. Tao et  al. 
(2019) demonstrated that xylanase can directly act on 
the unbleached pulp, where it acts on the covalent bond 
between hemicellulose molecule and hydrogen bond 
between hemicelluloses and cellulose. The presence of a 
small amount of hemicelluloses in cellulose nanofibrils 
increases light blockage efficiency and subsequently the 
energy storage capacity of solar cells. Thus, xylanase-
mediated bio-bleached pulp acts as a potential substrate 
for flexible solar cells.

Deinking of waste paper
The dislodgement of ink from the waste used paper is 
required for its recycling and reuse. Chemical-based 
methods involving chlorine or chlorine-based deriva-
tives, ClO−, NaOH, NaCO3, H2O2, Na2SiO2, have been 
used for removing ink from the paper. This resulted in 
generation of hazardous effluents and required tedious 
treatment before disposal to the environment (Maity 
et  al. 2012). The enzyme-based methods utilizing xyla-
nase and laccase have been suggested for the removal of 
ink from paper and pulp industries effluents (Chandra 
and Singh 2012; Dhiman et al. 2014).
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Virk et  al. (2013) explored the deinking efficiencies of 
bacterial alkalophilic laccase and xylanase along with 
physical deinking methods such as microwave and ultra-
sound for recycling of waste paper. The combination of 
xylanase and laccase enzymes showed an increase in 
brightness of different waste pulp old newsprint pulp 
(21.6%), inkjet print pulp (4.1%), laser print pulp (3.1%), 
magazine pulp (8.3%), and xerox paper pulp (1.9%) only. 
Gupta et  al. (2015) reported that synergistic action 
of xylanase and laccase enzyme (co-cultivation of Bacillus 
sp. and B. halodurans FNP135) resulted in improvement 
of physical properties like freeness, breaking length, burst 
factor and tear factor by 17.8%, 34.8%, 2.77%, and 2.4%, 
respectively, of old newspaper. The appearance of the 
newspaper was also improved with an increase in 11.8% 
brightness and 39% whiteness. The effective dose of com-
mercial cellulase and xylanase from Bacillus halodurans 
TSEV1 for removal of ink was determined at 1.2. U/mg 
(each enzyme) by Kumar and Satyanarayana (2014). The 
cellulase and xylanase complex obtained from Escheri-
chia coli SD5 facilitated the reduction in hexenuronic 
acid (Hex A) and kappa number, increase in brightness 
(10%) and tear strength of recycled paper (Kumar et  al. 
2018c).

Xylanase employed in textile industries
The textile processing can be broadly divided into desiz-
ing, scouring and bleaching. Desizing involves removal 
of adhesive material from plant fibers and scouring 
to remove the inhibitory material from desized fibers 
(Hartzell et al. 1998; Dhiman et al. 2008b). The conven-
tional method used for desizing and scouring involves 
the application of high temperature under the influence 
of oxidizing agents in the alkaline system. This method 
is not only chemical intensive but also non-specific that 
causes hamper to the useful cellulosic fractions compro-
mising the overall strength of the textile fibers. Therefore, 
application of highly thermo-alkali stable cellulase-free 
xylanolytic enzyme can efficiently be used for desizing 
and scouring (Csiszár et  al. 2001; Losonczi et  al. 2005; 
Dhiman et al. 2008b; Bajpai 2014).

Dhiman et al. (2008b) demonstrated the application of 
alkalo-thermophilic xylanase from Bacillus stearothermo-
philus SDX for processing of cotton and microply fabrics. 
The desizing and bioscouring treatments were performed 
using 5 g/L of xylanase at 70 °C, pH 9.5, for 90 min. This 
resulted in weight loss for 0.91% in microply and 0.83% 
in cotton with overall whiteness index of 11.81% for cot-
ton and 52.15% for micropoly. The processed fabric has 
increased tensile strength (1.1–1.2%) and tearness value 
(1.6–2.4%) as compared to control.

Garg et  al. (2013) demonstrated the application of 
alkalo-thermostable xylanase from Bacillus pumilus ASH 
in bioscouring of jute fabric. The oven-dried jute fabric 
when incubated with a small dose of 5  IU/g xylanase at 
55  °C for 2  h resulted in an increase in 4.3% whiteness 
and 10.7% brightness of fabric. Further, it also helped in 
decreasing in yellowness of fabric by 5.57%. Similarly, 
xylanase from Bacillus pumilus was studied for enzy-
matic desizing of cotton and micropoly fabrics (Battan 
et al. 2012). The enzymatic desizing with enzyme load of 
5 IU/g at pH 7.0, temperature 60 °C for 90 min resulted 
in improved whiteness of 0.9% with respect to the chemi-
cal process. The addition of surfactant such as EDTA 
improved the desizing and bioscouring efficiency (Loson-
czi et al. 2005; Battan et al. 2012; Garg et al. 2013).

The synergistic action of xylanase and pectinase 
enzyme was used for scouring of cotton fabrics. The bios-
couring was performed with 5.0  IU xylanase and 4.0  IU 
pectinase from Bacillus pumilus  strain AJK (MTCC 
10414) along with surfactants such as 1.0  mM EDTA 
and 1% Tween-80 at high pH 8.5 for 1 h at 50  °C. They 
observed improvement in whiteness, brightness, and 
reduction in yellowness by 1.2%, 3.2%, and 4.2% respec-
tively  that is better  in comparison to chemical-based 
alkaline scouring method (Singh et  al. 2018). El et  al. 
(2018) reported improvement in desizing, bioscouring 
and bio-finishing efficiency using xylanase obtained from 
T. longibrachiatum KT693225 without any requirement 
of additives.

Xylanase employed in chemical 
and pharmaceutical industries
The non-digestible sugar molecules together form oli-
gomers known as xylooligosaccharides, which are made 
up of xylose monomers (Vazquez et  al. 2000). XOS has 
various applications in biotechnology, pharmaceuti-
cal, food and feed industries (Chang et  al. 2017). XOS 
plays a vital role as prebiotic as it is not hydrolyzed 
or absorbed in the gastrointestinal tract. Thus, XOS 
selectively stimulates the growth of important gastro-
intestinal microorganisms regulating the human diges-
tive health (Roberfroid 1997; Collins and Gibson 1999; 
Vazquez et al. 2000). The potential of XOS as an efficient 
feed alternative is established by the fact that it  help in 
cholesterol reduction, inhibit starch retro-gradation, 
improve the bioavailability of calcium thus improving 
the nutritional and sensory properties of food (Voragen 
1998; Motta et al. 2013). XOS has shown the application 
in pharmaceutical sectors due to its immunomodulatory 
(Chen et  al. 2012), anti-cancerous (Gupta et  al. 2018), 
anti-microbial, antioxidant (Kallel et  al. 2015b), anti-
allergy, anti-inflammatory (Aachary and Prapulla 2011), 
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and anti-hyperlipidemic activity (Li et  al. 2010). XOS 
have also shown phyto-pharmaceutical and feed applica-
tions such as growth regulatory activity in aquaculture 
and poultry. These properties may be due to the presence 
of uronic substituents in acidic oligosaccharides.

The process of XOS synthesis involves the physi-
cal (autohydrolysis), chemical (hydronium ions gener-
ated by water autoionization and in  situ organic acids) 
or enzymatic hydrolysis (xylanase or β-xylosidase) of 
hemicellulose-rich agricultural wastes (Aachary and 
Prapulla 2011). Several reports suggested that XOS can 
be enzymatically produced from different agro-residues 
such as hardwoods (Huang et  al. 2016), straws (Gullón 
et  al. 2008; Kallel et  al. 2015a; Moniz et  al. 2016) corn 
cobs (Chapla et  al. 2013; Gowdhaman and Ponnusami 
2015), bran (Otieno and Ahring 2012), sugarcane bagasse 
(Jayapal et al. 2013) and bamboo (Xiao et al. 2013) using 
microbial xylanases.

Alkaline xylanase from Bacillus mojavensis A21 utilized 
corncob xylan for the release of xylotriose and xylobiose 
(Haddar et  al. 2012). Bacillus aerophilus KGJ2 xylanase 
showed efficiency toward XOS synthesis, e.g., xylobiose, 
xylotriose, and xylose after hydrolysis of xylan (Gowdha-
man et al. 2014). A cellulase free xylanase (EX624) from 
Streptomyces sp. CS624 produced xylose, xylobiose and 
xylotriose with commercial beech wood xylan and wheat 
bran (Mander et al. 2014). Using deoiled Jatropha curcas 
seed cake as substrate, Sporotrichum thermophile xyla-
nase was produced which showed the efficiency to pro-
duce XOS by the hydrolysis of oat spelt xylan, with 73% 
xylotetraose, 15.4% xylotriose and 10% xylobiose (Sadaf 
and Khare 2014). Xylanase obtained from the mixed 
microbial culture of Cellulomonas uda NCIM 2523 and 
Acetobacter xylinum NCIM 2526 using Prosopis juliflora 
showed the potential to produce XOS with probiotic 
activity from beech wood xylan (Anthony et  al. 2016). 
A xylanase gene PbXyn10A isolated from Paenibacil-
lus barengoltaii cloned in E. coli showed 75% XOS yield 
from xylan extracted from raw corncobs (Liu et al. 2018). 
The hydrolysis of xylan using xylanase from Pichia stipitis 
produced 2% XOS consisting of xylotetraose 14%, xylotri-
ose 49% and xylobiose 29% (Ding et al. 2018). Bhardwaj 
et al. (2019) demonstrated the partially purified xylanase 
obtained from Aspergillus oryzae LC1 resulted in the 
generation of xylobiose, xylotriose, and xylotetraose.

Xylanase employed in biorefinery
Efficient conversion of lignocellulosic biomass (LCB) into 
fuel-grade ethanol has become a world priority for pro-
ducing environmentally friendly renewable energy at a 
reasonable price for the transportation sector. The pro-
cess of bioconversion of lignocellulosic biomass requires 

hydrolysis of the pretreated biomass for the conversion 
of complex carbohydrate polymer of LCB to the simple 
monomers which will be further converted to ethanol by 
fermentation. The xylanolytic enzyme in combination 
with cellulolytic enzyme plays an important role in the 
hydrolysis process.

Several reports suggest that xylanase obtained from sev-
eral microorganisms plays an important role in sacchari-
fication of LCB for lignocellulosic-based biorefinery (Hu 
et  al. 2011; Choudhary et  al. 2014; Ramanjaneyulu et  al. 
2017; Basit et  al. 2018). Hydrolysis and fermentation are 
important steps in biomass to bioethanol generation. Ini-
tially, several groups demonstrated separate hydrolysis of 
biomass followed by fermentation (SHF). SHF is a time-
consuming process and thus increases the overall cost of the 
process. Later on, different integrated process (combined 
hydrolysis and fermentation) have been developed such as 
simultaneous saccharification and co-fermentation (SSCF), 
simultaneous saccharification and fermentation (SSF), and 
consolidated bioprocessing (CB) (Malhotra and Chapad-
gaonkar 2018). These strategies resulted in an enhancement 
in reaction rates and ethanol yields (Eklund and Zacchi 
1995; Sun and Cheng 2002). Bibra et  al. (2018) showed 
thermostable xylanase production using Geobacillus sp. 
DUSELR13, which is applied further for ethanol generation 
from LCB. SSF Geobacillus sp. DUSELR13 and Geobacillus 
thermoglucosidasius are co-cultured for SSF of prairie cord 
grass (PCG), and corn stover (CS). The SSF resulted in 3.53 
and 3.72 g/L ethanol from PCG and CS, respectively.

Hu et  al. (2011) suggested that xylanase causes fiber 
swelling improving porosity that helps in improving 
the accessibility of cellulose. To ferment both cellulose-
derived hexoses (C6) and xylan-derived pentoses (C5), 
simultaneous saccharification and co-fermentation 
(SSCF) was introduced which causes ethanol production 
using single microorganisms co-cultured with cellulase 
and xylanase producing strain. Yasuda et al. (2014) dem-
onstrated bioethanol generation by SSCF of anhydrous 
ammonia-pretreated  Pennisetum purpureum Schumach 
(Napier grass) using Escherichia coli KO11 and Saccha-
romyces cerevisiae cellulase, and xylanase. SSCF for 96 h 
was reported to have a maximum 74% ethanol yield as 
compared to theoretical yield calculated based on glucan 
and xylan yield of 397 mg/g and 214 mg/g, respectively.

Bondesson and Galbe (2016) designed experimen-
tal setup of SSCF for ethanol production from steam-
pretreated, acetic acid-impregnated wheat straw using 
a pentose fermenting S. cerevisiae KE6-12b strain. The 
highest 37.5  g/L ethanol concentration with 0.32  g/g 
ethanol yield was obtained based on the glucose–xylose 
available in the pretreated wheat straw. Shariq and Sohail 
(2018) demonstrated that yeast strain Candida tropicalis 



Page 26 of 36Bhardwaj et al. Bioresour. Bioprocess.            (2019) 6:40 

MK-160 can help in xylanase and endoglucanase produc-
tion as well as ethanol production. Therefore, it can be 
potentially used for SSCF involves single microorganism.

The consolidated processing or simultaneous deligni-
fication, saccharification, and fermentation involve the 
cultivation of ligno-hemicellulolytic enzyme-producing 
strains along with ethanol-producing strain in a reactor. 
It may be monoculture or co-culture of different microor-
ganisms. It will help to decrease the overall process cost 
required for bioreactor and operation of different enzyme 
production and ethanol generation (Chadha et al. 1995).

To design a monoculture-based consolidated pro-
cessing, different engineered microorganisms are used 

having ligno-hemicellulolytic enzymes having the capa-
bility along with ethanol generating potential. Shen et al. 
(2012) engineered a thermostable self-splicing bacterial 
intein-modified xylanase for consolidated lignocellu-
losic biomass processing. Sun et al. (2012) demonstrated 
expression of recombinant Saccharomyces cerevisiae 
strain having an engineered minihemicellulosome. It 
has the capability of converting xylan directly to ethanol. 
Horisawa et  al. (2019) suggested direct ethanol produc-
tion from lignocellulosic materials by consolidated bio-
processing using the mixed culture of wood rot fungi, i.e., 
Schizophyllum commune, Bjerkandera adusta, and Fomi-
topsis palustris.

Fig. 7  Future prospect for development in area of xylanase production using conventional and advanced approaches
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Commercial xylanase enzyme and their application
The xylanase enzyme is commercially employed in sev-
eral industries such as pulp bleaching, food, feed, and 
brewing. The major application of the xylanase is in pulp 
bleaching and is produced by different companies around 
the world with various trade name such as Bleachzyme 
(Biocon, India), Cartzyme (Sandoz, US), Cartzyme MP 
(Clarient, UK), Ecozyme (Thomas Swan, UK), Irgazyme 
10 A & Irgazyme 40–4× (Genercor, Finland), Ecopulp 
(Alko Rajamaki, Finland), VAI Xylanase (Voest Alpine, 
Austria), and Rholase 7118 (Rohm, Germany). Xylanase 
is commercially produced by several international indus-
tries for its application in food and feed industries. San-
kyo from Japan, Ciba Giegy from Switzerland produces 
xylanase as trade name Sanzyme, and Albazyme-10A, 
respectively, and has been used commercially in food and 
baking industries. A Danish firm Novo Nordisk, produces 
three commercial xylanases namely Pulpzyme (HA, HB, 
HC), Biofeed (Beta, plus) and Ceremix and used in pulp 
bleaching, feed and brewing industries, respectively 
(Walia et al. 2017). An American firm Alltech, Inc., com-
mercially produces xylanase with trade name Allzym PT 
and Fibrozyme and has been used for the upgrading the 
animal feed. A Japanese firm named Amano Pharmaceu-
tical Co, Ltd. produced xylanase enzyme named Amano 
90 and it has been used in food, feed and pharmaceuti-
cal industries. Most of the commercial xylanases are 
produced by fungal source due to its high production 
potential.

Challenges and future trends in commercial 
production, purification and application 
of xylanase
The search of super xylanase is still on, therefore, search-
ing for new microbial source with the ability to produce 
highly active and stable xylanase is going on around the 
world. The strains isolated from different extreme habitat 
can be of potential applications as these strains already 
possesses the ability to withstand different stress such 
as high temperature and pH variations. The selection 
of such thermal and pH tolerant strains and subjecting 
them to different optimization strategies for enhanced 
xylanase production can be one alternative. The advance-
ment in biotechnological tools and techniques (Recom-
binant DNA technology or genetic engineering) provides 
an opportunity to select the gene responsible for xylanase 
production that can be isolated and efficiently transferred 
to the expression system. These expression systems can 
be regulated for enhanced production of xylanase with 
desired property for specific industrial applications. The 
availability of a high amount of genomics, proteom-
ics and metabolomics data can be used via different 

bioinformatics tools to develop different approaches for 
enhanced xylanase production. The combination of new 
technology such as synthetic biology (DNA oligo-synthe-
sis) and conventional recombinant DNA technology can 
be used for attaining the objective of high xylanase pro-
duction with desired industrial properties (Fig. 7). How-
ever, limitations associated with mimicking the natural 
system into synthetic system need to be taken care before 
full-scale applications. Also, the ethical, socio-economic 
and health concerns need to taken care before commer-
cial exploitation of the developed strategies.

Conclusion
The enzymatic breakdown of the xylan into its constitu-
ent component requires the synergistic action of xyla-
nases and other debranching enzymes. The key enzyme 
used for xylan hydrolysis is endo-1,4-β-xylanase that 
cleaves β-1,4-glycoside linkage of xylan. The xylanase 
can be grouped under different GH families with major 
xylanases from GH10 or GH11 families, followed by 
GH5, GH7, GH8 and GH43. The xylanase enzyme acts 
as a “Green” alternative to already existing industrial 
processes for processing of xylan to different industrially 
important product such as paper, textile, food, feed, phar-
maceuticals, and biofuels. The application of xylanases 
in the production of the above-mentioned products can 
regulate the overall economics of the process. Therefore, 
already existing method can be further improved or new 
strategies may be developed for enhanced and cost-effi-
cient production of xylanase with desired characteristics. 
Further, it is often observed that native enzyme cannot 
meet the industrial process requirement; thus, the com-
bination of already existing technology with new tech-
nology such as synthetic biology (DNA oligo-synthesis), 
rational engineering and directed evolution can be used 
for attaining the objective of high xylanase production 
with desired industrial properties.
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