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Abstract 

Organofluorines are widely used in a variety of applications, ranging from pharmaceuticals to pesticides and 
advanced materials. The widespread use of organofluorines also leads to its accumulation in the environment, and 
two major questions arise: how to synthesize and how to degrade this type of compound effectively? In contrast 
to a considerable number of easy-access chemical methods, milder and more effective enzymatic methods remain 
to be developed. In this review, we present recent progress on enzyme-catalyzed C–F bond formation and cleav‑
age, focused on describing C–F bond formation enabled by fluorinase and C–F bond cleavage catalyzed by oxidase, 
reductase, deaminase, and dehalogenase.
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Introduction
Incorporation of fluorine into organic compounds usu-
ally endows organofluorines with unique chemical and 
physical properties, a strategy that has been successfully 
applied in agrochemicals, materials science, and pharma-
ceutical chemistry (Phelps 2004; Müller et al. 2007; Shah 
and Westwell 2007; Hagmann 2008; Nenajdenko et  al. 
2015; Zhang et al. 2016; Lowe et al. 2017). Especially in 
medicinal chemistry, the unique elemental properties 
of fluorine have been proved to enhance metabolic sta-
bility and alter pharmacokinetic characteristics without 
increasing the apparent spatial volume; thus, more than 
20% of drugs are organofluorines (Zhou et al. 2016; Gillis 
et al. 2015; Spooner et al. 2019). The wide application of 
organofluorines has motivated fast methodology devel-
opment for fluorine incorporation (Purser et  al. 2008; 
Berger et  al. 2011). In contrast to their synthesis, their 
degradation has also attracted significant attention due to 
their increased use and the cumulative pollution result-
ing from their high stabilities.

Chemists have developed versatile methods for the for-
mation and cleavage of C–F bonds, but these methods 

usually require harsh conditions and are not environ-
ment friendly (Dillert et al. 2007; Lin et al. 2012; Sulbaek 
Andersen et  al. 2005). To solve these problems, devel-
opment of mild and green methods is urgently needed. 
Biocatalysis has been playing an increasingly more 
important role in modern chemistry due to its high effi-
ciency, specific selectivity, and more environmentally 
friendly characteristics compared to chemical cataly-
sis. Thus, introducing biocatalytic methods into organic 
fluorine chemistry is a good choice to counter the defi-
ciencies of chemical catalysis (Kim et  al. 2000; Liu and 
Avendaño 2013; Murphy 2016; Rotander et  al. 2012). 
Although biocatalysis has achieved significant progress in 
recent years, the field of biocatalytic C–F bond formation 
and cleavage is almost at an open stage.

Since fluorine atoms are very small and strongly elec-
tro-negative, when in an aqueous system fluoride ions 
are always tightly wrapped by the water molecules, and 
thus, it is very difficult to form C–F bonds in an aqueous 
system (O’Hagan 2008; Ni and Hu 2016). Therefore, fluo-
rine-containing natural products are very rare despite the 
fact that elemental fluorine is the most fecund halogen in 
the Earth’s crust (O’Hagan and Deng 2014). To the best of 
our knowledge, only two different examples of enzyme-
catalyzed C–F bond formation have been reported: one 
is catalyzed by a mutant of glycosyltransferase, which 
catalyzes α-fluoroglycosides as transient intermediates 
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from DNP-activated sugars (Zechel et al. 2001), and the 
other is the natural fluorinase, prompting the conversion 
of 5′-fluoro-5′-deoxyribose-1-phosphate (5′-FRP) from 
S-adenosyl-l-methionine (SAM) (Deng et  al. 2004). In 
this review, we focus on summarizing the recent progress 
in mining and directed evolution of fluorinase and expect 
to inspire the development of more unnatural fluorinases 
in the future.

The C–F bond is the strongest σ bond, and thus, it is 
difficult to cleave it under mild conditions (Goldman 
1969; Lemal 2004). When hydrogen is substituted by 
fluorine, the metabolic stability of the compounds will be 
significantly improved; this property benefits the phar-
maceutical industry, but leads to the accumulation of 
organofluorines in the environment (Wang et  al. 2016). 
Enzyme-catalyzed C–F bond cleavage has attracted 
attention from researchers in environmental protec-
tion, C–F bond activation, and enzymology, and several 
reviews have been published on the subject (Natara-
jan et al. 2005). However, in recent years, reports in this 
area have been very rare. Herein, therefore, we present 
recently published examples of enzyme-catalyzed C–F 
bond cleavage, dividing them into two types: hydrolytic 
defluorination, and oxireductive defluorination. Hope-
fully, this review will attract increasing numbers of work-
ers to this important field.

Enzyme‑catalyzed C–F bond formation
The first natural organofluorine compound, identified 
in 1943, was fluoroacetate, a metabolite of the South-
ern African plant Dichapetalum cymosum (Marais 1943, 
1944). The second one was isolated in 1956 from Strepto-
myces calvus; it is a nucleoside product named nucleoci-
din 1 which belongs to a new form of fluorine metabolites 
(Scheme  1a). Subsequently, the third structurally novel, 
fluorine-containing natural product 4-fluorothreonine 
was isolated from the bacterium Streptomyces cattleya in 
1986 (Sanada et  al. 1986). Despite considerable interest 
and a variety of speculative suggestions for uncovering 
the biochemical mechanism of fluorination, no spe-
cific details of fluorination’s biochemistry in any organ-
ism were provided until 2002. This milestone regarding 
fluorinase was published in 2002 by O’Hagan’s group 
(O’Hagan et  al. 2002), who first described an enzy-
matic reaction occurring in the bacterium Streptomy-
ces cattleya that catalyzes the conversion of fluoride 
ions and S-adenosylmethionine (SAM) to 5′-fluoro-5′-
deoxyfluoroadeno-sine (5′-FDA) (O’Hagan et  al. 2002; 
see Scheme  1b). In the following year, O’Hagan’s team 
isolated and characterized fluorinase from Streptomyces 
cattleya (Schaffrath et al. 2003), and the crystal structure 
of fluorinase was resolved by the same group in 2004 
(Dong et al. 2004; Deng et al. 2004). Although the basic 

enzyme was characterized before 2005, it took approxi-
mately 10 years to clarify the biosynthetic pathway of all 
fluorinated products in Streptomyces cattleya, and their 
work proved that fluorinating enzyme that converts inor-
ganic fluorine into organic fluorine (Deng et al. 2006; Zhu 
et  al. 2007; Winkler et  al. 2008; Dall’Angelo et  al. 2013; 
O’Hagan and Deng 2014; Wang et al. 2014; Carvalho and 
Oliveira 2017). However, attempts to identify enzymes 
that biosynthesize nucleocidin 1 have failed for decades, 
because the production of this molecule has been mys-
teriously silenced in the bacterium Streptomyces calvus 
(Jenkins et  al. 1976; Nashiru et  al. 2001; Zechel et  al. 
2003). In 2015, Zechel’s group reported that complemen-
tation of S. calvus ATCC13382 with a functional bldA-
encoded Leu-tRNAUUA​ molecule restores the production 
of nucleocidin 1 and identified the genes encoding the 
biosynthesis of the 5′-O-sulfamate group of the nucleoci-
din 1 (Zhu et al. 2015). In the next year, O’Hagan’s group 
provided the first biosynthetic data on nucleocidin 1 
assembly from isotope labeling studies (Bartholomé et al. 
2016; Feng et al. 2017). However, there was still no illumi-
nation for the mechanism of fluorination involved in this 
biosynthetic pathway. In 2019, O’Hagan group disclosed 
two structures of novel fuorometabolites in S. calvus, 
which belong to 3′-O-glucosylated, 4′-fuoro-riboad-
enosines (6 and 7) (Scheme  1a). They are analogous of 
nucleocidin 1 and suspect to incorporate fluorine via a 
same biocatalytic pathway (Feng et  al. 2019). The iden-
tification of these metabolites highly suggests that there 
is a new type of fluorinase existing in S. calvus which 
deserves our attention.

Although the specific activity of fluorinase has 
attracted considerable attention, its application is lim-
ited due to the drawbacks of narrow substrate scope and 
low activity. To explore its utilization, it is necessary to 
mine new types of fluorinase or improve the activity of 
known forms of fluorinase by directed evolution. Most 
research on fluorinase is focused on discovering new 
forms of fluorinase through gene mining. To date, four 
new fluorinases have been identified, three of which have 
been characterized (see Table 1) (Deng et al. 2014; Wang 
et al. 2014; HimáTong 2014). The first was identified from 
Streptomyces sp. MA37, a strain isolated in 2011 from 
Ghana. Full genome sequences of the South American 
hospital pathogens, Nocardia brasiliensis (Deng et  al. 
2014; Wang et al. 2014) and Actinoplanes sp. N902-109, 
were deposited into the public domain in 2012 and 2013, 
respectively. The draft genome of the marine bacterium 
Streptomyces xinghaiensis NRRL B-24674 was depos-
ited in the public domain in 2011. More recently, a new 
fluorinase (FIA) gene has been identified in the Strep-
tomyces xinghaiensis genome. Full genome sequencing 
of the organism revealed a gene encoding of a putative 
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fluorinase with 80% sequence identity to that of Strepto-
myces cattleya. Although the fluorinase in Streptomyces 
xinghaiensis was not isolated, the production of fluoro-
acetate in culture suggests a functioning fluorinase. This 
is the first instance of a fluorometabolite isolated from a 
marine organism (HimáTong 2014).

In addition to mining new fluorinases, directed evo-
lution has achieved new progress. In 2016, Zhao’s 
group first directed evolution of the fluorinase FIA1 
for improved conversion of the non-native substrate 
5′-chloro-5′-deoxyade-nosine (5′-ClDA) into 5′-fluoro-
5′-deoxyadenosine (5′-FDA) (see Table  2; Sun et  al. 

(a)

(b)

Scheme 1  a Putative minimal pathway for nucleocidin 1 biosynthesis. b Intermediates and enzymes on the biosynthesis of fluoroacetate and 
4-fluorothreonine



Page 4 of 8Tong et al. Bioresour. Bioprocess.            (2019) 6:46 

2016). NNK-based saturated mutagenesis of the active 
sites (within 5 Å of substrate) was performed on the 
FIA1 gene to generate libraries for high-throughput 
screening. The evolutionary variants fah2081 (A279Y) 
and fah2114 (F213Y and A279L) have been success-
fully applied to the radiosynthesis of 5′-[18F] FDA, and 
their total radiochemical conversion (RCC) is more than 
threefold higher than wild-type FIA1. In 2016, O’Hagan’s 
group found that fluorinase can be applied to the synthe-
sis of 5′,5′-Difluoro-5′-deoxyadenosine. (see Scheme  2; 
Thompson et  al. 2016). Some research has also been 

done on the recognition of substrates by fluorinase (Yeo 
et al. 2017; Sun et al. 2018). In 2017, Yeo’s team explored 
fluorinase specificity (Yeo et al. 2017). In addition, their 
evolved FIA1 luciferin variants are active against sub-
strates modified at the C-2 and C-6 positions of the ade-
nine ring, although they are directed against 5′-ClDA 1 
and L-Met bottoms and conferred novel activity towards 
substrates not readily accepted by wild-type FIA1 (see 
Scheme  3). Regarding the recent research progress on 
fluorinase, the application of fluorinase is still very lim-
ited. We believe that the directed evolution can be used 
on fluorinase to catalyze more non-natural fluorination 
reactions.  

Enzyme‑catalyzed C–F bond cleavage
Large-scale applications of fluorinated compounds have 
caused increasing environmental concerns due to their 
toxicity, global warming potential, environmental per-
sistence, and bioaccumulation character (Douvris and 
Ozerov 2008; Houde et al. 2006). Environmental biotrans-
formation, one of the most promising strategies with the 
lowest energy consumption, has provided some encour-
aging results in cleaving the highly stable C–F bond, the 
dissociation energy of which is the highest among all the 
natural products. At present, there are two ways of cata-
lyzing the cleavage of C–F bonds by enzymes: hydrolytic 
defluorination and oxireductive defluorination.

The presence of naturally produced fluoroacetate 
in the environment has resulted in the evolution of 
mechanisms to degrade this substrate. Goldman identi-
fied the first microbial defluorinases in Pseudomonas 
sp., which catalyzed the hydrolytic cleavage of the C–F 
bond, yielding glycolate and fluoride ions (Goldman 

Table 1  Comparative kinetic data of known fluorinase enzymes

Fluorinase (FIA) source SAM Km (μM) Turnover no. kcat 
(min−1)

Specificity constant kcat/Km 
(mM−1 min−1)

References

S. cattleya 29.2 ± 2.41 0.083 2.84 Schaffrath et al. 2003

Streptomyce sp. MA37 82.4 ± 18.6 0.262 3.18 Deng et al. 2014

N. brasiliensis 27.8 ± 4.23 0.122 4.40 Wang et al. 2014

Actinoplanes sp. N902-109 45.8 ± 7.91 0.204 4.44 Deng et al. 2014

Table 2  Fluorinase variants obtained by  directed 
evolution 

a  Overall RCC = % radioactivity in supernatant W% RCC based on radioHPLC. 
Typical % radioactivity in supernatant is in the range 73–80%

Fluorinase T (oC) RCC 
(analytical) 
(%)

RCC​a (overall) (%)

FIA1 42 8 ± 1 7 ± 1

FIA1 47 11 ± 2 8 ± 2

fah2081 (A279Y) 42 32 ± 3 24 ± 2

fah2114 (F213Y, A279L) 47 46 ± 2 34 ± 3

Scheme 2  Enzymatic transformation of 16 to its corresponding 17 

Scheme 3  Two-step fluorinase reaction and the corresponding 
products
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1965). Subsequently, other defluorinases were isolated 
from several micro-organisms (Goldman 1965; Kawa-
saki et  al. 1981; Walker and Lien 1981; Liu et  al. 1998; 
Kurihara et  al. 2003; Donnelly and Murphy 2009). The 
mechanism of C–F bond cleavage by defluorinases has 
been investigated (see Fig. 1; Liu et al. 1998; Chan et al. 
2011; Kim et  al. 2017; Mehrabi et  al. 2019), and a two-
step reaction mechanism for fluoroacetic acid dehalo-
genase was proposed. First, aspartate attacks α-carbon 
connected with F atom. This leads to the leaving of F 
atom from the substrate. The covalent intermediate, thus, 
produced is then hydrolyzed by a histidine-activated 
water molecule, which is assisted by the second aspartate 
residue. The catalytic process involves the conservative 
aspartic acid–histidine–aspartic acid catalytic triad. In 
2017, Reetz’s group reported a study of substrate range 
and enantioselectivity of defluorinases via using ste-
reochemical probes (Wang et al. 2017). A favorable (S)-
configuration was observed in the fast reaction using 
racemic 2-fluoro-2-phenylacetic acid (see Scheme  4a). 
Surprisingly, the results show that the enzyme pocket 
can accept a larger substrate than the natural substrate 
fluoroacetic acid, and that this non-natural compound 
is more reactive than fluoroacetic acid. Another hydro-
lyzed defluorinated enzyme is transaminases (Cuetos 
et al. 2016); transaminases are valuable enzymes in indus-
trial biocatalysis and enable the preparation of optically 
pure amines. Lavandera reported a non-natural reac-
tion type of transaminase, and the promiscuous reactiv-
ity of transaminases can be applied to obtain a series of 
enantiopure β-fluoroamines by an unprecedented formal 
tandem hydrodefluorination or deamination kinetic reso-
lution of racemic β-fluoroamines (see Scheme 4b). 

Oxireductive dehalogenation is a common pathway 
for detoxification of organic halide by micro-organ-
isms. Biocatalytic oxidation and reduction defluorina-
tion by micro-organisms containing organic fluorine 
compounds have been reviewed to analyze their abil-
ity to handle such specific chemicals and to explore the 
potential of this knowledge in biotechnology applica-
tions (Natarajan et  al. 2005). To avoid unnecessary rep-
etition, here we only introduce works published in the 
last 5  years. In 2016, Bergen’s team reported that ATP-
dependent BzCoA reductase can promote C–F bond 
cleavage. An ATP-dependent study of defluorination 

of 4-fluorobenzoacyl-CoA (4-F-BzCoA) with benzoyl-
CoA (BzCoA) and HF catalyzed by class I BzCoA reduc-
tase was carried out. An unprecedented mechanism for 
reductive arylic C–F bond cleavage via a Birch reduc-
tion-like mechanism resulting in a formal nucleophilic 
aromatic substitution was proposed (see Fig.  2; Tiedt 
et al. 2016). In 2018, Liu et al. reported cleavage of a C–F 
bond by an engineered cysteine dioxygenase (​Whittaker 
2003; Simmons et al. 2006; Li et al. 2018). Experimental 
data suggest that protein-bound O2-dependent carbon–
halogen bonds cleave iron centers under mild, physi-
ologically relevant conditions. Although the C–F bond 
is the strongest covalent single bond in organic chem-
istry, cysteine dioxygenase is able to cleave a C–F bond 
to realize co-factor biogenesis (see Scheme 5a). In 2019, 
Wang’s group discovered that a histidine-linked heme 
enzyme can catalyze the cleavage of C–F by hydroxyla-
tion (Wang et al. 2019). LmbB2 has a wide range of cata-
lytic activities toward l-tyrosine analogues, as long as the 
4-hydroxyl group is present. The monosubstituted tyros-
ine analogues represented by 3-fluoro-l-tyrosine pre-
sumably bind in two different orientations at the heme 

Fig. 1  Proposed two-step reaction mechanism of fluoroacetate

(a)

(b)

Scheme 4  Enzymatic hydrolysis of defluorination reaction: a 
hydrolytic kinetic resolution of racemate catalyzed by fluoroacetate 
dehalogenase RPA1163 and b novel tandem hydrodefluorination/
deamination kinetic resolution of racemic β-fluoroamines

Fig. 2  Possible mechanism for reductive defluorination of BzCoA by 
ATP-dependent class I BCR
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active site, with the substituents pointing away from or 
toward the heme center (see Scheme 5b). A mono-substi-
tuted tyrosine analog represented by 3-fluoro-l-tyrosine 
may have two different binding modes at the heme active 
site, and the substituent is directed to the center of the 
heme or away from its center. For example, the C–F bond 
undergoes hydroxylation to generate DOPA. The above 
describes the enzymatic hydrolysis or oxidation of the 
C–F bond, broadening the scope of fluorine chemistry 
and further expanding the potential industrial applica-
tion of natural or engineered proteins. 

Conclusions
Organofluorines play an increasingly important role in 
the pharmaceutical and agrochemical industries, mak-
ing the prospect of using enzymatic reactions to form 
C–F bonds bright. However, the extensive use of organo-
fluorines has also caused environmental pollution, and 
thus, development of a mild green enzyme to degrade 
these compounds is a matter of urgency. With its highly 
catalytic selectivity and environmental friendliness, enzy-
matic catalysis will play an increasingly more important 
role in fluorine organic chemistry. In this review, details 
of the formation of C–F bonds catalyzed by fluorinase 
and the cleavage of C–F bonds by oxidase, reductase 
deaminase, and fluoroacetate dehalogenase are demon-
strated. These fluorinase and defluorinase all have been 
isolated and identified for more than a decade, and their 
catalytic mechanisms illuminated. However, a narrow 
substrate range or low activity has hindered their applica-
tion. With the fast development of biotechnology, mining 
new enzymes or improving their properties by directed 
evolution holds promise to eliminate these barriers, 
which will greatly accelerate the development of enzy-
matic organic fluorine chemistry.
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