
Morris et al. Bioresour. Bioprocess.            (2020) 7:31  
https://doi.org/10.1186/s40643-020-00318-6

RESEARCH

Bigdata analytics identifies metabolic 
inhibitors and promoters for productivity 
improvement and optimization of monoclonal 
antibody (mAb) production process
Caitlin Morris1†, Ashli Polanco1†, Andrew Yongky2, Jianlin Xu2*, Zhuangrong Huang1, Jia Zhao2, 
Kevin S. McFarland2, Seoyoung Park2, Bethanne Warrack3, Michael Reily3, Michael C. Borys2, Zhengjian Li2 
and Seongkyu Yoon1* 

Abstract 

Recent advances in metabolite quantification and identification have enabled new research into the detection and 
control of titer inhibitors and promoters. This paper presents a bigdata analytics study to identify both inhibitors and 
promoters using multivariate data analysis of metabolomics data. By applying multi-way partial least squares (PLS) 
model to metabolite data from four fed-batch bioreactor conditions where feed formulation and selection agent 
concentrations varied, metabolites which exhibited the most significant impact on titer during cultivation were 
ranked from highest to lowest. The model outputs were then constrained to reduce the number of statistically rel-
evant inhibitors or promoters to the top ten, which were used to conduct metabolic pathway analysis. Furthermore, a 
method is presented for identifying amino acids that prevent the accumulation of the inhibitors and/or enhance the 
formation of promoters during production. Finally, the metabolomics and pathway analysis results were integrated 
and validated with transcriptomics data to characterize metabolic changes occurring among different growth condi-
tions. From these results, new feeding strategies were implemented which resulted in increased fed-batch produc-
tion titer. Methodology from this work could be applied to future process optimization strategies for biotherapeutic 
production.
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Introduction
Monoclonal antibodies (mAbs) are traditionally manu-
factured in large-scale bioreactors which require cells, 
metabolites, nutrients, air, and other life-supporting com-
pounds. As the cellular environment has a direct impact 
on the growth, metabolism, and protein production in 

mammalian cells, establishment of process parameters 
which optimize yield and maintain consistent prod-
uct quality is essential to the biotherapeutics industry. 
Throughout the cultivation of cells in a bioreactor, several 
samples are analyzed to assure that the reactor is operat-
ing properly, assess cell health, and analyze the consump-
tion or formation of key metabolites that directly impact 
mAb quality (Dunn and Ellis 2005). In addition, multiple 
titer measurements, as well as other monitoring tech-
niques (i.e., pH, temperature, % DO, CO2) are employed 
which lead to an overwhelming amount of data left for 
analysis. Although these measurements ensure cells 
are growing and producing at an ideal rate, they do not 
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provide insight on the metabolism within the cells which 
can be influenced by changes in raw materials such as 
the cell culture media composition or nutrients supple-
mented during fed-batch processes.

Metabolomics enables the identification and exami-
nation of biochemical reactions and metabolic path-
way activation occurring within living cells (Zhang et al. 
2013). More specifically, metabolomics has been used to 
characterize the impact of small molecules (i.e., amino 
acids and metabolites) present in cell culture media on 
CHO cell growth behavior and productivity (Mohmad-
Saberi et al. 2010; Chong et al. 2009). Levels of identifi-
able metabolites in cell culture media or feed can pose a 
significant impact on either protein titer or cell growth in 
a positive or negative manner, and are commonly referred 
to as promoters or inhibitors, respectively (Mohmad-
Saberi et al. 2010; Mulukutla et al. 2017). This approach 
when integrated with gene expression analysis has shown 
to reveal connections among complex cellular regulatory 
pathways and the biologic response of cells to selection 
agents, genetic factors, and/or environmental changes 
(Ferrara et  al. 2008; Cuperlović-Cul et  al. 2010). There-
fore, a useful bioprocessing optimization strategy would 
involve identifying, understanding, and manipulating the 
production and consumption of metabolites of interest to 
enhance cell productivity.

Traditionally, inhibitors and promoters are identified 
through extensive data analysis of metabolite profiling 
data derived from various instrument platforms includ-
ing nuclear magnetic resonance (NMR) spectroscopy, 
mass spectrometry, chromatographic and column sepa-
ration, vibrational spectroscopies such as Fourier-trans-
form infrared (FTIR) and hybrid instruments such as gas 
chromatography mass spectrometry (GC–MS) and liquid 
chromatography mass spectrometry (LC–MS) (Khoo 
et al. 2007). Most of these platforms are insensitive (i.e., 
NMR), require chemical derivatization of biomolecules 
(i.e., GC–MS), or destroy the sample via laser acquisi-
tion (i.e., FTIR or Raman) which can be time consuming, 
costly, and may require volatile chemicals (Bradley et al. 
2010; Griffin 2003; Dippel 2011). LC–MS has proven 
to be an effective and robust platform for identifying 
and quantifying metabolites in mammalian cell culture 
that requires no derivatization of samples. The analy-
sis of LC–MS metabolomic data can be used to classify 
inhibitors, for example, through identifying correlations 
between low producing cells and the metabolites that 
accumulated in that bioreactor culture. One such inhibi-
tor that was identified through trials of experimentation 
is lactate, which is known to be a by-product of cellular 
metabolism and inhibitor to cell growth and titer during 
late-stage culture (Gagnon et al. 2011). Many companies 
have adapted strategies to control lactate accumulation 

(Gagnon et al. 2011) but very few have adapted strategies 
that address the various other growth and/or titer inhibi-
tors and promoters present during fed-batch cultures.

Strategies for promoting higher titers and avoiding the 
accumulation of inhibitors are currently being explored 
by research and development teams across the industry. 
One such method involves monitoring and supplement-
ing amino acid levels in real time, ensuring that concen-
trations within the bioreactor remain within specified 
limits that prolong culture time while maintaining anti-
body product quality (Powers et  al. 2019). The theory 
behind this approach is that the inhibitors and promot-
ers that are being formed in the bioreactor are derived 
from amino acids (Mulukutla et  al. 2017). This is sup-
ported by metabolic pathway analysis which shows the 
correlation between a given amino acid and the associ-
ated metabolite (Mulukutla et  al. 2010; Mulukutla et  al. 
2017). In addition, integration of transcriptomics analysis 
with metabolite profiling and metabolic pathway analy-
sis can serve as validation method (Bradley et  al. 2010; 
Lei et al. 2011). The following research presents a novel 
method to identify both titer inhibitors and promoters 
through multivariate analysis of metabolomics data. By 
altering specific amino acid concentrations in the feed 
media, cell culture performance LC–MS data can serve 
as an input for chemometric models that identify key 
metabolites that influence cell productivity. In this study, 
chemometric model outputs led the pathway enrich-
ment analysis to identify metabolic pathways activated 
that lead to increased titer, and findings were validated 
with transcriptomic differential gene expression analysis. 
Then, a new feed medium was designed based on amino 
acid level changes that the original model predicted 
would improve titer. Finally, a validation bioreactor run 
confirmed that the model accurately identified specific 
metabolite promoters and inhibitors that impact titer.

Materials and methods
Cell line, media, and cell culture
A CHO-K1 GS knockout cell line was used for expression 
of a proprietary recombinant monoclonal antibody. Pro-
prietary chemically defined seed, basal, and feed media 
were used in this study unless otherwise specified. Pre-
liminary cell culture experiments were conducted with 
four different production culture conditions based on the 
level (1 × or 4 ×) of selection agent methionine sulfoxi-
mine (MSX) in the seed train. All the production cultures 
used the same proprietary basal medium containing no 
MSX. The feeding conditions include a standard feed for-
mulation and the standard feed supplemented with four 
amino acids that had been previously identified as being 
useful in improving productivity. The initial experimental 
conditions are described in Table 1.



Page 3 of 13Morris et al. Bioresour. Bioprocess.            (2020) 7:31 	

Each experimental condition was tested in duplicate 
or triplicate in 5-l bioreactors under standard conditions 
(Table 2) over the course of 14 days, resulting in 10 total 
sample sets. Feeding at 3.5% (v/v) of initial volume was 
started when appropriate viable cell density (VCD) was 
achieved and fed daily thereafter. Additional glucose was 
supplied to maintain its concentration at a proprietary 
level. The pH was controlled through the addition of CO2 
gas to decrease pH or addition of 1  M Na2CO3 base to 
increase pH as needed. Daily samples were drawn from 
the bioreactors to measure cell density and viability, while 
supernatant and cell pellets were collected and stored as 
well. Viable cell density and viability were quantified off-
line using a Vi-CELL XR automatic cell counter (Beck-
man Coulter). The supernatant samples were used to 
determine titers, metabolite concentrations, and amino 
acid concentrations. A Protein A high-performance liq-
uid chromatography (HPLC) was used to measure the 
protein titer (Xu et al. 2018). For bioreactor samples, off-
line pH, pCO2, and pO2 were detected using a Bioprofile 
pHOx analyzer (Nova Biomedical). The cell pellet sam-
ples were used for RNA-sequencing analysis.

UHPLC‑mass spectrometric metabolomics data collection 
and analysis
Frozen supernatant samples were thawed at room tem-
perature for 2 h and gently vortexed. A 50-µL aliquot of 
each sample was transferred to the corresponding well of 

an Axygen 96-well plate (Corning Life Sciences, Edison, 
NJ). 150 µL of ice-cold methanol containing 0.1% for-
mic acid and d5-glutamic acid, d3-carnitine, d8-pheny-
lalanine, d5-hippuric acid, d16-sebacic acid, d4-palmitic 
acid, d3-octanoyl carnitine, and d4-deoxycholic acid as 
internal standards were added to all samples. These inter-
nal standards were used to ascertain that the mass spec-
trometer performance was stable during the analysis of 
the set. The plate was vortexed for 1 min and then spun 
for 10 min at 5000 rpm in a Beckman Coulter Allegra 25 
centrifuge with a TA 10.25 rotor (Beckman Coulter Inc., 
Indianapolis, IN). 50 µL of supernatant was transferred 
to a new 96-well plate for reversed phase LC–MS analy-
sis and a second 96-well plate was similarly prepared with 
another 50-µL aliquot for hydrophilic interaction liquid 
chromatography mass spectrometry (HILIC-MS) analy-
sis. The reversed phase and HILIC plates were evapo-
rated to dryness under nitrogen.

Reversed phase LC–MS
The reversed phase plate was reconstituted with 90:10 
water:methanol. Samples were analyzed by LC–MS using 
a Nexera ultra-high-performance liquid chromatography 
(UHPLC or UPLC) (Shimadzu Scientific Instruments, 
Columbia, MD) interfaced to an Exactive Plus ion trap 
mass spectrometer with a heated electrospray ionization 
(HESI) source (ThermoFisher Scientific, San Jose, CA). 
Chromatographic separations were achieved employ-
ing a 2.1 × 150  mm, 1.7  µm, Acquity BEH C18 column 
(Waters, Milford, MA) with gradient elution at 0.6  mL/
min. The column temperature was maintained at 65  °C. 
Mobile phase A was water with 0.1% formic acid and 
mobile phase B was 98:2 acetonitrile:water with 0.1% 
formic acid. Mobile phase A was held at 99% for 0.5 min 
and then a three-step linear gradient was formed from 
1% to 20% mobile phase B over 2.5 min, to 60% mobile 
phase B in 1 min and then to 100% phase B in 3 min. The 
final composition was held for 2 min before returning to 
the initial conditions. Positive and negative electrospray 

Table 1  Initial experimental conditions

Condition Reactor label Expansion medium Basal medium Feed medium

1 V201, V202 and V203 Seed medium with 1X MSX Basal medium Feed medium

2 V204 and V205 Seed medium with 1X MSX Basal medium Feed medium with an 
increased concentra-
tion of Ser, Thr, Tyr, 
and Lys

3 V206, V207 and V208 Seed medium with 4X MSX Basal medium Feed medium

4 V209 and V210 Seed medium with 4X MSX Basal medium Feed medium with an 
increased concentra-
tion of Ser, Thr, Tyr, 
and Lys

Table 2  Standard bioreactor conditions

Parameter Condition

Seeding density 1.5 × 106 cells/mL

Working volume 3.3 L

Temperature 36.5 °C

Dissolved oxygen target 40%

Agitation 260 rpm

pH range 7.1 ± 0.5
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ionization (ESI) data were acquired (separate injections) 
with a mass accuracy within 5 ppm at 35,000 resolution. 
A single 10-µL injection was used for each ionization 
mode. Instrumental settings follow maximum injection 
time 10 ms, capillary temperature 275 °C; tube lens volt-
age 175 V; ESI spray voltage 3.7 kV; sheath gas 60 arbi-
trary units (arbs).

Hilic‑ms
The HILIC plate was reconstituted with 25:75 
methanol:acetonitrile. Samples were analyzed by LC–
MS as described above. Chromatographic separations 
were achieved by employing a 2.1 × 150  mm, 1.7 µm, 
Acquity BEH Amide column (Waters, Milford, MA) with 
gradient elution at 0.3  mL/min. The column tempera-
ture was maintained at 65  °C. Mobile phase C was 95:5 
water:acetonitrile with 10  mM ammonium acetate and 
0.05% ammonium hydroxide. Mobile phase D was ace-
tonitrile with 0.05% ammonium hydroxide. A linear gra-
dient was formed from 5% to 63% mobile phase C over 
3.5 min. The final composition was held for 5 min before 
returning to the initial conditions.

Peak areas for LC–MS quantification of 150 metabo-
lites were calculated using Component Elucidator, a 
software package developed at Bristol-Myers Squibb 
(Hnatyshyn et  al. 2013). Quantification of amino acid 
concentrations in supernatant was conducted using a 
UPLC system. The supernatants were diluted in Milli-Q 
water containing a standard. The derivatization reagent 
(Waters AccQ•Tag Ultra Derivatization Kit, Cat#03836), 
6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, was 
added into the diluted samples and vortexed at 55 °C for 
10  min. The derivatized amino acids were detected at 
260 nm as they eluted from the column.

Chemometric analysis of metabolomic data
Final metabolite concentrations as well as daily pH, viable 
cell density profile, and viability profile were compiled 
into a dataset with approximately 140 rows by 2400 col-
umns. Preliminary analysis of the bioreactor runs was 
performed using SIMCA® software (version 15, Umet-
rics, Umeå, Sweden) via principal component analysis 
(PCA) from which a score plot summarizes the relation-
ship between the different reactor conditions. A partial 
least squares (PLS) model was then applied to determine 
the effect of given input variables on a designated output 
(Wu et  al. 2010). In this way, the relationships between 
multiple inputs and multiple outputs can be explained 
(Bylesjö et al. 2006).

From the PLS model, a batch evolution model (BEM) 
and a batch level model (BLM) were constructed so that 
the entire bioreactor dataset could be analyzed as sepa-
rate batches, with each batch being a different reactor 

condition (V201 through V205). The BEM produces con-
trol charts for each variable which can show time-based 
trends that can be used to identify potential avenues for 
further investigation. These control charts display the 
normal process “trajectory” or “path” a batch may take 
which enables the user to identify batches that do not 
evolve in the normal way by tracking deviations in the 
control chart (Svante and Michael 1977). Therefore, a 
BEM can be used to detect early batch deviations and can 
provide avenues for batch maturity prediction.

Once the raw data from the BEM is processed, a BLM 
is generated via batch decomposition. The BLM searches 
for correlations between the data matrix X and the out-
put matrix Y (Svante and Michael 1977), then decom-
poses the data provided to the BEM into a set of several 
matrices. Each matrix contains the data for one param-
eter (such as metabolite concentration, pH, etc.) for every 
reactor for every time point. This differs from the BEM 
which contains the data for all parameters in one matrix. 
In this dataset, it was found from the BEM control charts 
that there were deviations in the titer values for specific 
bioreactor conditions. Thus, potential effects of the other 
amino acids and metabolites on titer were investigated 
further using the BLM.

To determine how metabolites, amino acids, and other 
bioreactor conditions influence titer during each biore-
actor run, variable influence on projection (VIP) plots 
and coefficient correlation matrices were generated from 
the BLM. These plots quantify the influence of an input 
variable on an output variable and determine the relative 
positive or negative correlation among input and output 
variables, respectively. To reduce the number of metab-
olites being analyzed via pathway analysis, a VIP cut-off 
value of 1.35 was applied, where a VIP value greater than 
1.0 indicates a variable that is statistically significant. 
Utilizing this VIP cut-off value, the top 10 metabolites 
that correlated to titer were considered as pathway can-
didates for pathway enrichment analysis. A coefficient 
correlation matrix was used to distinguish a positive cor-
relation coefficient as promoter-like behavior or a nega-
tive correlation coefficient as inhibitor-like behavior for 
each metabolite influence on final titer and each amino 
acid influence on the metabolites of interest. Correlations 
among the top 10 metabolites and the 20 amino acids 
were carried out using a PLS-DA model. Then, a VIP plot 
was generated (not shown) with a cut-off criterion of 1*** 
rank the amino acids in terms of its effect on the concen-
tration of the given metabolite was formed.

Pathway enrichment analysis
Chosen pathway candidates were inputted into Kyoto 
Encyclopedia of Genes and Genomes (KEGG) path-
way mapping tool (https​://www.genom​e.jp/kegg/) using 

https://www.genome.jp/kegg/
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Cricetulus griseus (Chinese hamster) as the species to 
determine the metabolic pathways that are impacted 
(Kanehisa and Goto 2000; Kanehisa et al. 2016). In addi-
tion, amino acid metabolism pathways were assessed 
using KEGG to identify upregulated pathways in samples 
with higher titer. Then a pathway network was manually 
constructed with the pathways identified. A list of some 
of the important pathways is provided in Additional 
file 1: Table S1. Pathway analysis was then validated with 
transcriptomics data.

Transcriptomics
RNA sequencing (RNAseq) was performed to identify 
genes that were up-regulated and down-regulated within 
each of the bioreactors to gain a more in-depth under-
standing of the biological mechanisms that impact titer. 
This dataset was used to evaluate the metabolomics 
approach to identifying inhibitors and promoters by cor-
relating specific changes in CHO cell titer to differential 
gene expression data. Cell pellet samples for RNA-Seq 
analysis were collected at day 6 and day 10, correspond-
ing to exponential growth and stationary phase, respec-
tively. Approximately 5×106 cells were separated from 
culture broth by centrifugation at 1000 rpm for 10 min. 
Then the cell pellets were immediately frozen in (dry ice 
or liquid nitrogen) and stored at −80  °C. For the detailed 
information of mRNA isolation and sequencing, one can 
refer to Sha et al. (2018).

Gene differential expression and function analysis
The results of RNA-Seq by Expectation Maximization 
(RSEM) in the form of expected counts of gene levels 
were imported to an interactive interface for data exami-
nation and differential expression called DEBrowser 
(Kucukural et  al. 2018). Principal component analysis 
(PCA) was then applied to cluster samples with trimmed 
mean of M-values (TMM) method and analyze the top 
1000 most variant genes between the compared sam-
ple groups. Using DESeq  2 (Love et  al. 2014), differen-
tial expression (DE) analysis was performed between 
the sample groups as well. DESeq 2 analysis provides an 
output of differentially expressed genes (DEGs) listed by 
their relative p-adj values and fold change. Positive and 
negative log-fold change values determined if specific 
genes were upregulated or downregulated between the 
compared sample groups.

RNAseq results were analyzed in various ways. First, 
gene expression across the tested bioreactor conditions 
was compared by performing PCA on the top 1000 most 
variant genes expressed. This analysis allowed for cluster-
ing of gene expression variations based on day collected, 
selection agent concentration, and amino acid concen-
tration. RNA-sequence data were further analyzed in 

two-condition comparisons that determine the top genes 
that were up-regulated and which genes were down-regu-
lated based on the fold change in gene expression. KEGG 
database of biological systems was utilized to determine 
the reaction networks associated with upregulated genes 
in higher titer batches (Kanehisa et al. 2017). GO-enrich-
ment software was used to confirm pathways that the top 
identified up- or down-regulated genes were associated 
with. From there, pathway analysis was confirmed via the 
relationship between the upregulated genes and the role 
of amino acids as well as metabolites in metabolic path-
ways that impact protein production.

Data integration
To effectively compare the results from all three meth-
odologies, it was necessary to convert the results to an 
integrated table listing consistencies among findings. 
To this end, each set of results (either a set of genes or 
metabolites) from each omics technique was associated 
with the metabolic pathways that are most impacted dur-
ing protein production. This type of data processing is a 
potential analysis tool that will guide future process opti-
mization. In this way, an experimental proposal could be 
more strongly supported by such a metabolic pathway 
analysis tool before the actual experiment is performed. 
The results of the integrated data analysis will be pre-
sented in “Results” section.

Validation experiment
Based on the combined assessment of the BLM, meta-
bolic networks, and transcriptomics data, a new feed 
medium was designed by altering the levels of specific 
amino acids that were found to correlate the most with 
the top 10 identified metabolites that influence final titer. 
Their respective concentrations were adjusted based on 
the model either to enhance or inhibit titer production. 
Feeds were altered by increasing or decreasing specific 
amino acids by 100%. Figure 6 summarizes the bioreactor 
conditions used to perform the validation experiment.

Results
Multivariate data analysis
Following the completion of the parallel bioreactor run 
composed of the conditions listed in Table  1 and bio-
reactor settings listed in Table  2, a large dataset was 
generated. This dataset included viable cell densities, 
metabolite and amino acid concentrations, and titer val-
ues. This dataset was analyzed in SIMCA via a decompo-
sition methodology.

The decomposition of a raw data set into a BEM as 
performed by SIMCA is shown in Fig. 1. SIMCA decom-
poses multiple data points comprising several batches 
into a BLM based on the 3-dimensional matrix composed 
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of the different batches (V201 through V210), the time-
point at which samples were collected in days (1 to “n” 
(or 0 to 14 in this case)), and input variables (metabolite 
concentration data). An example of how the raw data is 
processed by SIMCA is shown in Fig. 1a. Figure 1b dis-
plays how SIMCA breaks down the batch information to 
compare the time series information per batch for one 
variable at a time. Starting from the left in Fig.  1b, the 
three-dimensional matrix containing cell culture perfor-
mance data for each day is shown. Then, moving to the 
right side of Fig. 1b, SIMCA decomposes a portion of this 
3D matrix and forms 2D matrices that contain timewise 
data for each parameter across batches (Wu et al. 2010). 
The BLM can then analyze multiple matrices for each 
parameter at once, which was advantageous for such a 
large dataset.

Graphical outputs from the BEM model are shown in 
Fig.  2. The proximity of batch scores on the score plot 
confirms the similarities among the performance of 

bioreactors that were operated under the same condi-
tions. The duplicate and triplicate bioreactor conditions 
tend to cluster, and their relative final titer values are des-
ignated by a color spectrum. The score plot dot colors 
indicate that bioreactor V205 (Condition 2) had the high-
est final titer.

Clustering patterns and titer color gradient of the score 
plot imply that amino acid addition to the low MSX bio-
reactor condition caused an increase in final titer. Thus, 
as a starting point of the analysis, metabolomics data 
were analyzed to determine how and why these specific 
amino acids help to improve the titer. The hypothesis was 
the added amino acids were either constraining the pro-
duction of inhibitory metabolites or promoting the pro-
duction of metabolites that stimulate protein production.

Half of the top ten identified metabolites from the 
VIP plot are characterized as fatty-acid-like compounds 
(as denoted by the C# DCA (dicarboxylic acid) metabo-
lite names) (Fig.  3). Other metabolites in the top ten 

Fig. 1  Batch decomposition: a This is a direct capture of the methodology that the data are uploaded into SIMCA. Each row contains the data from 
one reactor (i.e., V201, V202, etc.). Each column contains data for a parameter such as pH, metabolite concentration, or other parameter for a given 
time point. b This shows the methodology that a batch evolution model (BEM) is converted to a batch level model (BLM). The first matrix shown 
on the far left represents the method that the BEM has stored the data as shown in a. Then, the second matrix (middle) shows how the BLM takes 
a portion of this matrix in the form of capturing the data for a single parameter (such as pH or a given metabolite concentration). Finally, the matrix 
on the right shows how the data for a BLM are inputted into SIMCA. This final matrix shows that the matrix being analyzed by the BLM contains 
data for one parameter for all the batches for every time point. The BLM is capable of analyzing the multiple matrices that are produced via this 
methodology for each parameter that is being analyzed
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included some that have been previously identified (see 
discussion) and others that have not yet been highlighted 
as important to control during cell culture. All but two 
of the top ten metabolites had positive correlation 

coefficient with respect to titer, indicating promoter-like 
behavior, with the exception for amino benzoic acid and 
keto-isoleucine which had negative correlation coeffi-
cient values. Characterized by pathway analysis, the top 

Fig. 2  Score plot: The score plot given in this figure is a direct result from the batch evolution model (BEM) that SIMCA analyzes. It shows that 
each of the reactors from each condition appears to group together on the score plot. This indicates high similarity between each bioreactor in a 
given condition which would be expected. Furthermore, from this score plot, it is apparent that with the addition of amino acids there is a distinct 
improvement in titer. This is apparent from the coloration of each data point (representing each reactor) where a bluish color indicates low titer 
and a reddish color indicates high titer. When comparing the first group of reactors (green circle with V201, V202, and V203) with the second group 
of reactors (purple circle with V204 and V205), it is possible to see that the titer of the first group is lower than that of the second group which 
indicates that the addition of 4 amino acids to the bioreactor cultivation had a positive impact on titer

Fig. 3  VIP Plot and Correlation Heat Map generated from BLM model (R2X (cum) = 0.635, R2Y (cum) = 0.992, and Q (cum) = 0.957). The VIP plot 
generated from the BLM model using a PLS approach includes all the metabolites analyzed in the study (c). For simplicity, a cut-away of the VIP plot 
displays the top 10 metabolites in closer detail (a). A correlation matrix in the form of a heat map (b) displays the relative metabolite correlations to 
titer as positive (green) or negative (red). Highlighted in boxes are the locations of the top ten metabolites identified from the VIP plot
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identified metabolites are involved in several different 
pathways across CHO metabolism including the metabo-
lism of lipids and transport of inorganics (as identified by 
KEGG). As these metabolites are not easily found in the 
central metabolism pathways (which includes glycolysis 
and the citric acid cycle) or pathways for degradation or 
production of amino acids, it is unlikely that they would 
be easily identified as regulators of titer without the use 
of MVDA. Overall, the metabolites listed would be dif-
ficult to pinpoint without prior knowledge. Furthermore, 
the process of identifying the amino acids that correlate 
with these metabolites would have been laborious.

Subsequent VIP and coefficient plots (not shown) gen-
erated from a PLS-DA model built using the concentra-
tion data versus time for the 20 amino acids and each 
metabolite of interest provided a list of the amino acids 
ranked by their significance to each metabolite’s forma-
tion (+) or inhibition (−). For example, for C10 DCA 
Sebacic Acid, alanine, aspartate, and glutamine scored 
the highest values on the VIP plot, yet alanine correlated 
positively (+), aspartate correlated negatively (−), and 
glutamate correlated negatively (−) with the concentra-
tion of this metabolite. Therefore, to promote the forma-
tion of this metabolite only, a feed should be designed 
with higher alanine and lower aspartate/glutamate con-
centration. Table 3 lists the top ten identified, their type 
of correlation (positive or negative) with final titer, and 
the top three amino acids that were found to be corre-
lated to each metabolite.

Transcriptomics analysis
Transcriptomic analysis was carried out on 1 × and 
4 × MSX samples collected at different time points (days 
0, 6, and 10) to support the metabolomic results from the 
initial screening. Initial PCA (Fig.  4a) shows that both 
1 × and 4 × MSX seed trains have highly correlated gene 

expression at day 0. By day 6, all sample conditions still 
cluster very tightly, indicating similar gene expression at 
the end of the exponential growth phase. At day 10, gene 
expression varies the most, especially among 1 × MSX 
samples with and without supplemented amino acids 
(Fig.  4b). This observation at day 10 supports the claim 
that the added amino acids do not impact cell growth 
and titer until the stationary phase is reached (Templeton 
et al. 2017). However, amino acid addition did not seem 
to impact gene expression of 4 × MSX samples as it did 
1 × MSX samples. This is most likely due to the increased 
selection stringency and inhibition of enzyme activity in 
both the glutamine synthetase (GS) and γ-glutathione 
synthetase (GSH) pathways, which occurs in a selection 
agent concentration-dependent manner (Fan et al. 2013). 
Gene expression changes for 1 × MSX samples at day 10 
were further analyzed to determine function of added 
amino acids in CHO cell productivity and growth.

Differential gene expression (DGE) analysis comparing 
the “1 × MSX + AAs” condition that produced the higher 
titer (V204 and V205) to the control batches (V202 and 
V203) revealed a large number of upregulated and down-
regulated genes as displayed in the volcano plot (Fig. 5). 
From the DGE output, a list of the top 1000 upregulated 
and down-regulated genes in V204/V205 (based on fold 
change and p-agj values) was generated and this list of 
genes was utilized to conduct further pathway analysis 
using KEGG.

KEGG database search for CHO cell metabolism pathways 
involving supplemented AA (Ser, Lys, Thr, Tyr)
There are three pathways which are involved in the 
metabolism of the four amino acids of interest, including 
the glycine, serine, threonine metabolism pathway, tyros-
ine metabolism pathway, and lysine degradation pathway. 
Within each of these pathway maps, upregulated genes 

Table 3  Metabolite list with characterization and corresponding amino acids

a  The sign next to each amino acid indicates the correlation that amino acid has with the given metabolite (i.e., a “+” sign indicates that the amino acid has a positive 
correlation or promoter-like behavior with the given metabolite

Order by VIP Metabolite Correlation with titer Top amino acidsa

1 C10 DCA sebacic acid Positive 1. Ala (+) 2. Asp (−) 3. Glu (−)

2 C12 DCA Positive 1. Ala (+) 2. Asp (−) 3. His (+)

3 C14 DCA Positive 1. Asp (−) 2. Ala (+) 3. Ile (−)

4 C14-1 DCA Positive 1. Ala (+) 2. Asp (−) 3. His (+)

5 Homocysteine Positive 1. Ala (+) 2. Asp (−) 3. His (+)

6 Amino benzoic acid Negative 1. Ala (+) 2. Ile (+) 3. Leu (+)

7 Prolyl-hydroxyproline Positive 1. Ala (+) 2. Ser (−) 3. Pro (−)

8 C12-1 DCA Positive 1. Ala (+) 2. Asp (−) 3. His (+)

9 2-Hydroxybutyrate Positive 1. Thr (+) 2. Trp (−) 3. Ala (+)

10 Keto-isoleucine Negative 1. Glu (+) 2. Ser (−) 3. Thr (−)
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present in higher titer samples were located to determine 
the function of the supplemented amino acid of inter-
est. Table 4 outlines the pathways, identified upregulated 
genes based on gene expression fold change and p value 
in V205 (the highest titer condition), as well as the identi-
fied gene function during metabolism.

Four genes (GCDH, ECHS1, HADH, OGDH) related 
to the lysine degradation pathway in CHO cells were 
upregulated in amino acid-supplemented cultures. The 
genes involved function specifically to convert Glutaryl-
CoA into Acetyl-CoA which is consumed by the citrate 
cycle (TCA cycle). Two genes (FAH and FAHD1) related 
to tyrosine metabolism are upregulated in amino acid 
supplemented cultures, specifically genes for enzymes 
that convert 4-fumaryl acetoacetate and 3-fumaryl-pyru-
vate to fumarate, which is a precursor to the TCA cycle. 
Finally, one gene (SDSL) involved during glycine, serine, 
and threonine metabolism pathway is upregulated which 
functions in two ways: (1) conversion of serine to pyru-
vate, a precursor for TCA cycle or pyruvate metabolism, 
or (2) conversion of threonine to 2-oxobutanoate, a pre-
cursor for the valine, leucine, isoleucine biosynthesis 
pathway which is a precursor pathway to the TCA cycle. 
In addition, several genes that regulate the TCA cycle 
were upregulated as well, such as PDHB, DLAT, PCK2, 
and OGDH.

In addition to genes related to amino acid metabolism 
and the TCA cycle being upregulated in amino acid-sup-
plemented cultures, several key genes involved in fatty 
acid metabolism and degradation were upregulated as 
well, which supported the metabolomics MVDA find-
ings. Important genes to note due to their high posi-
tive fold change values and low p values are ECHS1 and 

Fig. 4  PCA plots of a all bioreactor conditions at day 0, 6, and 10, and b day 10 samples only

Fig. 5  Volcano plot representing differential gene expression of 204 
and 205 (+AA) when compared to BR 202 and 203 (no AA). Green 
encircled dots in the represent the 489 total upregulated genes in 
V204 and V205 (with a fold change cut-off of 3.5 with p-adj < 0.005), 
while red encircled dots represent the 67 total downregulated genes 
with the same cut-off criteria
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OXSM, which metabolize fatty acids (i.e., C12 DCA and 
C10 DCA, specifically) into acetyl-CoA in mitochondria 
before entering the TCA cycle and metabolize acetyl-
CoA into acyl carrier proteins, respectively. Overall, 
many of the upregulated genes promoted direct or indi-
rect activation of the TCA cycle at day 10, which could 
provide enhanced energy consumption during the sta-
tionary phase in cell culture and explains the increases in 
cell growth and productivity.

Integrated data analysis and feed media design
The integration of MVDA analysis and transcriptom-
ics is a complex process as results described in previous 
sections are not directly comparable. Therefore, findings 
from each technique were integrated into a table which 
classifies significant consistencies in analysis results so 
that reasonable conclusions can be drawn. Integrated 
analysis of metabolomic and transcriptomic data for 
key metabolic pathways revealed that abundance of the 
metabolites and amino acids are virtually consistent with 
changes in transcript levels of catalytic enzyme genes 
within the same pathway. For example, the top identi-
fied metabolite that positively correlated with titer, C10 
DCA Sebacic Acid, was found to have a positive corre-
lation with alanine concentration, whereas aspartate and 
glutamate levels were found to have highly negative cor-
relations with the same metabolite. This could be inter-
preted as the metabolic shift that drives the formation 

of C10 DCA Sebacic Acid leads to alanine production, 
while aspartate and glutamate are being consumed at a 
high rate. Pathway enrichment analysis located C10 DCA 
Sebacic Acid in the metabolism of lipids pathway of CHO 
cells. Transcriptomic results supported these findings, 
as specific genes involved in the same fatty acid metabo-
lism pathway are shown to be upregulated in the highest 
titer-yielding condition (see Additional file  1: Table  S1). 
Thus, to enhance the productivity of the cells, the recom-
mended course of action would be to increase the levels 
of amino acids that positively correlate with promoter-
like metabolites yet are not considered metabolic waste 
products. Careful analysis was performed for each of the 
top ten metabolites until a final recommendation for a 
new feed medium formulation that increases (or inhibits) 
cell productivity was made. For the positive, high extreme 
condition (based upon Table  3) metabolites that were 
able to increase the production of only metabolites which 
correlate positively with titer or decrease the production 
of only metabolites which correlate negatively with titer 
were selected for further review. In this instance, it was 
found that His, Glu, Leu, Met, and Tyr were correlated 
with positive changes with titer whereas Asp, Cys, Ile, 
Ser, Thr, and Trp were correlated with negative changes 
in titer. On the other hand, some metabolites such as Ala 
were found to correlate with both a positive change in 
titer (see C10 Sebacic Acid, C12 DCA, C14 DCA, etc.), 
but Ala also correlated with an increase in a metabolite 

Table 4  KEGG pathway analysis summary

a  Genes also involved in fatty acid degradation pathway
b  Genes also involved in fatty acid metabolism
c  Genes also involved in TCA cycle. Fold change values included here only represent differentially expressed genes in V205, the highest titer condition overall

Gene Description Fold change (p value)

Gly, Ser, Thr metabolism

 Sdsl N-Sulphoglucosamine sulphohydrolase 1 +1.89 (7.31E − 3)

Tyrosine metabolism

 Fadh1 Acylpyruvase FAHD1, mitochondrial +9 (9.47E − 3)

 Fah Fumarylacetoacetase isoform X3 +5.54 (8.95E − 34)

Lysine degradation

 Echs1a,b Enoyl-CoA hydratase 1 +6.08 (8.22E − 9)

 Ogdhc 2-oxoglutarate dehydrogenase +3.02 (1.48E − 56)

 Hadha,b Hydroxyacyl-coenzyme A dehydrogenase +1.96 (6.31E − 13)

 Gcdha Glutaryl-CoA dehydrogenase +1.28 (1.11E − 1)

TCA cycle

 Pck2 Phosphoenolpyruvate carboxykinase 2 +3.09 (3.84E − 10)

 Pdhb Pyruvate dehydrogenase +1.75 (1.43E − 6)

 Dlat Dihydrolipoamide S-acetyltransferase +1.13 (1.91E − 1)

Fatty acid metabolism/degradation

 Oxsmb 3-oxoacyl-ACP synthase +3.44 (1.28E − 5)

 Acadsba acyl-CoA dehydrogenase +1.44 (1.02E − 3)
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that was found to be negatively correlated with titer (see 
Amino Benzoic Acid). Thus, with conflicting correla-
tions, further changes in the alanine concentration were 
not recommended. A validation bioreactor run incorpo-
rating the new feed tested the hypothesis.

Validation run results
The aim of this experiment was to determine whether 
the productivity of the cells could be improved fur-
ther by adjusting feed media formulations based on the 
MVDA model output. In the new feed conditions, amino 
acids that were found to correlate most strongly with the 
putative inhibitors and promoters were either reduced 
or increased in concentration twofold. This is the first 
iteration of a process that can be used to optimize feed 
formulations for enhanced productivity. The feed condi-
tions listed in Fig. 6 were used to test the MVDA results. 
It is important to note that the “control” condition con-
tained the same amino acid supplement that was found 
to increase the titer during the initial run. Thus, this 
validation experiment was used to instigate an additional 
increase in titer over what these four amino acids were 
able to provide.

The “high extreme” was determined by directly using 
the amino acid recommendations from the MVDA analy-
sis, which were to increase concentrations of histidine, 
glutamine, leucine, methionine, and tyrosine. The “low 
extreme” was set up by implementing amino acids’ con-
centrations that should promote the formation of inhibi-
tors (i.e., the opposite recommendations from the MVDA 
results, which were aimed at limiting the concentration 
of inhibitors being formed), and decreasing concentra-
tions of aspartate, cysteine, isoleucine, serine, threonine, 
and tryptophan in the original  feed were recommended 
for this condition.

The validation experimental results showed that the 
titer of the “high extreme” which did in fact produce 

higher titer (8.2%) compared to the control condition. On 
the other hand, the “low extreme” condition which was 
anticipated to yield poor results did in fact yield a lower 
titer (−7.1%) compared to the control condition. Fig-
ure 6 summarizes the titer results from this experiment. 
The titer measurements have been normalized to protect 
proprietary information. The p values were used to vali-
date the statistical significance of the titer values of each 
condition. The p values were calculated based on 4 titer 
measurements (from 2 experimental runs for each condi-
tion and 2 measurement techniques for titer) using a nor-
mal distribution, two tails, the standard deviation of the 
four measurements, the mean value of the titer, and a test 
statistic (based on the entire population of titer values 
from all three conditions). The test statistic provides an 
avenue to compare all three of the conditions and incor-
porate the differences among the conditions.

Discussion
The metabolites detected from the analysis include 
some that have been previously identified as promoters 
or inhibitors, such as 2-hydroxybutyrate, which had also 
been identified as an inhibitor in another study (Mulu-
kutla et  al. 2017), and homocysteine, which was previ-
ously identified as an inhibitor (Mulukutla et  al. 2017), 
but is described above as a promoter in this study. The 
rationale for why Table  2 shows conflicting results with 
previously identified inhibitors is twofold. First, inhibi-
tors and promoters may be cell line or process specific 
especially if a cell line has been genetically modified 
to improve titer or prevent the accumulation of cer-
tain metabolites or if a specialized process is being used 
to deter lactate formation. Second, the above analysis 
involves developing an overall correlation between all the 
metabolites and the titer, and thus, this analysis consid-
ers potential interactions between multiple metabolites 
that may cause a metabolite to have inhibitory behavior 

Fig. 6  Validation results: The validation experiment demonstrated that the “high extreme” and “low extreme” conditions were able to provide a 
relative increase or decrease (respectively) in titer. The control condition that was used includes the four additional amino acids that were previously 
identified. Thus, an overall increase in titer can be observed based upon a previously optimized feeding condition
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when in the presence of other metabolites. Therefore, a 
questionable metabolite like homocysteine may appear 
to have inhibitory behavior when it is analyzed alone in 
spiking studies, but it may actually shift to behaving as 
a promoter while in the presence of other metabolites. 
These inconsistencies could be further explored through 
additional bioreactor testing involving more feed condi-
tions which will lead to improvement of the MVDA mod-
el’s predictive ability.

For the other metabolites presented in this analysis, 
specifically the dicarboxylic acid (DCA) components, it is 
hypothesized that these metabolites enhance titer. In lit-
erature, some success in enhancing titer has been shown 
for adding carboxylic acids to CHO cell cultures (Camire 
et al. 2017). In addition, other metabolites that were iden-
tified in this study alone include amino benzoic acid and 
keto-isoleucine which have a negative impact on titer 
whereas prolyl-hydroxyproline has a positive impact on 
titer. This study presents a method to analyze the overall 
effect of a metabolite in the presence of all other metabo-
lites at concentrations that are present during an actual 
cultivation.

The proposed methodology in this paper was effec-
tive in finding metabolites that correlated positively or 
negatively with titer. Furthermore, application of pro-
cess control changes via feed media optimization fur-
ther increased titer. The feed media were optimized by 
increasing amino acids that were found to be correlated 
with the formation of positively correlating metabo-
lites (with titer) or the prevention of the formation of 
negatively correlating metabolites (with titer). Further 
iteration of this process could lead to substantial titer 
increases after few experimental bioreactor runs.

MVDA analysis revealed the inhibitor and promoter 
metabolites were easily identifiable. The first four pro-
moters identified were all DCA compounds, which are 
involved in fatty acid metabolism and can be correlated 
with energy production. Thus, with more of these DCA 
compounds being formed, it may be assumed that the 
cells are producing ample amounts of energy and must, 
therefore, be more metabolically productive. Moreo-
ver, the “High Extreme” validation condition aimed to 
enhance the production of these compounds yielded 
a higher titer, which supports the hypothesis that these 
compounds may be promoters. To our knowledge, DCA 
compounds have not been noted in previous works as 
promoters, whereas 2-hydroxybutyrate is a previously 
identified inhibitor (Mulukutla et al. 2017).

Alleged inhibitors and promoters from this study did 
correlate with the results from the transcriptomic analy-
sis, leading to further confidence in the model. Genes 
that were found to be differentially upregulated in the 
higher producing condition were shown through pathway 

analysis to be involved in amino acid-related meta-
bolic pathways as well as energy production pathways. 
In addition, the identified upregulated genes translate 
to enzymes involved in the biosynthesis or degradation 
of fatty acids, which were the top metabolites identified 
from the MVDA model to influence titer.

This methodology could be useful for various other 
bioreactor experiments aimed at improving CHO cell 
productivity through feed media optimization. The 
model set-up is based on the data derived from the biore-
actor experiment and is not based on the actual bioreac-
tor conditions, and therefore this model could be applied 
to larger scale bioreactors and various cell lines. Also, as 
confidence in the model’s ability to predict and identify 
titer promoter and inhibitors increases, the need for vali-
dation via transcriptomics analysis will no longer be nec-
essary. In this way, the model is very versatile and may be 
able to produce positive results at an industrial scale.

Conclusion
The ability to improve titer through simple manipulations 
such as feed adjustments is a massive area of research 
today. The work presented in this paper illustrates how 
bigdata analytics can analyze massive amounts of bio-
logical data. The analysis method can also be used to 
determine which metabolites are acting as inhibitors or 
promoters and which metabolites are acting as putative 
inhibitors and promoters of cell growth and productivity. 
This methodology has been used in practice to increase 
titer through simple feed manipulations and with few 
bioreactor experiments. Thus, the need for full facto-
rial designs of experiments can be reduced and time and 
money can be saved. In conclusion, the bigdata analytics 
provides a new avenue to explore in the effort to push 
productivity limits higher.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s4064​3-020-00318​-6.

Additional file 1: Table S1. Integrated data analysis results.

Acknowledgements
The authors are grateful for the financial support of this work provided by 
Bristol-Myers Squibb. Satorius Analytics provided the SIMCA license.

Authors’ contributions
CM performed the multivariate data analysis including building all data-
driven models and determining the correlations between amino acids and 
metabolites. CM was a major contributor to the writing of the manuscript. AP 
performed all the transcriptomics data analysis and was a major contribu-
tor to the writing of the manuscript. CM and AP contributed equally to the 
manuscript. AY provided insight from BMS and assisted in the writing of the 
manuscript. JX was in charge of defining the project, outling the manuscript, 
and assisted in the writing of the manuscript. ZH assisted in the data analysis. 
JZ, KSM, SP, BW, MR, MB, and ZL were involved in the raw data analysis of the 
data that were inputted into data analysis tool and its generation at BMS. SY 

https://doi.org/10.1186/s40643-020-00318-6
https://doi.org/10.1186/s40643-020-00318-6


Page 13 of 13Morris et al. Bioresour. Bioprocess.            (2020) 7:31 	

was in charge of defining the project and outling the manuscript. He contrib-
uted to the writing of the manuscript. All authors read and approved the final 
manuscript.

Funding
Bristol Meyers Squibb provided the funding for this study as it pertained to the 
understanding of proprietary information.

Availability of data and materials
The datasets generated and/or analyzed during the current study are not pub-
licly available due the use of proprietary information but are available from the 
corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Not applicable.

Author details
1 Department of Chemical Engineering, University of Massachusetts Lowell, 
University Ave, Lowell, MA 01854, USA. 2 Biologics Process Development, 
Bristol-Myers Squibb, 38 Jackson RD, Devens, MA 01434, USA. 3 Research 
and Development, Bristol-Myers Squibb, Princeton, MA, USA. 

Received: 23 January 2020   Accepted: 25 May 2020

References
Bradley SA, Ouyang A, Purdie J, Smitka TA, Wang T, Kaerner A (2010) Fermenta-

nomics: monitoring mammalian cell cultures with NMR spectroscopy. J 
Am Chem Soc 132:9531–9533. https​://doi.org/10.1021/ja101​962c

Bylesjö M et al (2006) OPLS discriminant analysis: combining the strengths of 
PLS-DA and SIMCA classification. J Chemom 20(8–10):341–351. https​://
doi.org/10.1002/cem.1006

Camire Joseph, Kim Dongjoo, Kwon Soonjo (2017) Enhanced production of 
recombinant proteins by a small molecule protein synthesis enhancer in 
combination with an antioxidant in recombinant chinese hamster ovary 
cells. Bioprocess Biosyst Eng 40(7):1049–1056

Chong WP, Goh LT, Reddy SG, Yusufi FN, Lee DY, Wong NS, Heng CK, Yap MG, 
Ho YS (2009) Metabolomics profiling of extracellular metabolites in 
recombinant Chinese Hamster Ovary fed-batch culture. Rapid Commun 
Mass Spectrom 23:3763–3771. https​://doi.org/10.1002/rcm.4328

Čuperlović-Culf M, Barnett DA, Culf AS, Chute I (2010) Cell culture 
metabolomics: applications and future directions. Drug Discov Today 
15(15):610–621

Dippel B (2011) http://www.raman​.de/htmlE​N/home/advan​tageE​n.html. 
Accessed 25 Sept 2012

Dunn Warwick B, Ellis David I (2005) Metabolomics: current analytical plat-
forms and methodologies. Trends Anal Chem 24(4):285–294. https​://doi.
org/10.1016/j.trac.2004.11.021

Fan Lianchun, Frye Christopher, Racher Andrew (2013) The use of glutamine 
synthetase as a selection marker: recent advances in Chinese hamster 
ovary cell line generation processes. Pharm Bioprocess 1:487–502. https​
://doi.org/10.4155/pbp.13.56

Ferrara CT, Wang P, Neto EC, Stevens RD, Bain JR, Wenner BR, Attie AD (2008) 
Genetic networks of liver metabolism revealed by integration of meta-
bolic and transcriptional profiling. PLoS Genet 4(3):e1000034. https​://doi.
org/10.1371/journ​al.pgen.10000​34

Gagnon M et al (2011) High-end PH-controlled delivery of glucose effectively 
suppresses lactate accumulation in CHO fed-batch cultures. Biotechnol 
Bioeng 108(6):1328–1337. https​://doi.org/10.1002/bit.23072​

Griffin JL (2003) Metabonomics: NMR spectroscopy and pattern recognition 
analysis of body fluids and tissues for characterisation of xenobiotic toxic-
ity and disease diagnosis. Curr Opin Chem Biol 7:648–654. https​://doi.
org/10.1016/j.cbpa.2003.08.008

Hnatyshyn S, Shipkova P, Sanders M (2013) Expedient data mining for nontar-
geted high-resolution LC-MS profiles of biological samples. Bioanalysis 
5(10):1195–1210. https​://doi.org/10.4155/bio.13.86

Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. 
Nucleic Acids Res 28:27–30

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a 
reference resource for gene and protein annotation. Nucleic Acids Res 
44:D457–D462

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new 
perspectives on genomes, pathways, diseases and drugs. Nucleic Acids 
Res 45:D353–D361

Khoo SHG, Al-Rubeai M (2007) Metabolomics as a complementary tool in 
cell culture. Biotechnol App Biochem 47:71–84. https​://doi.org/10.1042/
BA200​60221​

Kucukural A, Yukselen O, Ozata DM, Moore MJ, Garber M (2019) DEBrowser: 
interactive differential expression analysis and visualization tool for count 
data. BMC Genom 20:6

Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in 
metabolomics. J Biol Chem 286:25435–25442

Love MI, Huber W, Anders SJGB (2014) Moderated estimation of fold change 
and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. 
https​://doi.org/10.1186/s1305​9-014-0550-8

Mohmad-Saberi SE, Hashim YZ, Mel M, Amid A, Ahmad-Raus R, Packeer-
Mohamed V (2010) Metabolomics profiling of extracellular metabolites in 
CHO-K1 cells cultured in different types of growth media. Cytotechnol-
ogy 28(9):476–484. https​://doi.org/10.1007/s1061​6-012-9508-4

Mulukutla BC, Khan S, Lange A, Hu WS (2010) Glucose metabolism in mam-
malian cell culture: new insights for tweaking vintage pathways. Trends 
Biotechnol 28(9):476–484

Mulukutla BC et al (2017) Identification and control of novel growth inhibitors 
in fed-batch cultures of Chinese Hamster Ovary Cells. Biotechnol Bioeng 
114(8):1779–1790. https​://doi.org/10.1002/bit.26313​

Powers DN, Wang Y, Fratz-Berilla EJ et al (2019) Real-time quantification and 
supplementation of bioreactor amino acids to prolong culture time 
and maintain antibody product quality. Biotechnol Progress. https​://doi.
org/10.1002/btpr.2894

Sha S, Bhatia H, Yoon S (2018) An RNA-seq based transcriptomic investigation 
into the productivity and growth variants with Chinese hamster ovary 
cells. J Biotechnol 271:37–46

Svante W, Michael S (1977) SIMCA: a method for analyzing chemical data in 
terms of similarity and analogy. ACS Symp Ser 52:243–282

Templeton N, Smith KD, McAtee-Pereira AG, Dorai H, Betenbaugh MJ, Lang SE, 
Young JD (2017) Application of (13)C flux analysis to identify high-pro-
ductivity CHO metabolic phenotypes. Metab Eng 43(Pt B):218–225

Wu Z, Li D, Meng J, Wang H (2010) Introduction to SIMCA-P and its application. 
In: Esposito Vinzi V, Chin W, Henseler J, Wang H (eds) Handbook of Partial 
Least Squares. Springer Handbooks of Computational Statistics, Springer

Xu J, Rehmann MS, Xu X, Huang C, Tian J, Qian NX, Li ZJ (2018) Improving titer 
while maintaining quality of final formulated drug substance via opti-
mization of CHO cell culture conditions in low-iron chemically defined 
media. mAbs 10(3):488–499

Zhang A, Sun H, Xu H, Qiu S, Wang X (2013) Cell metabolomics. OMICS 
17(10):495–501. https​://doi.org/10.1089/omi.2012.0090

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1021/ja101962c
https://doi.org/10.1002/cem.1006
https://doi.org/10.1002/cem.1006
https://doi.org/10.1002/rcm.4328
http://www.raman.de/htmlEN/home/advantageEn.html
https://doi.org/10.1016/j.trac.2004.11.021
https://doi.org/10.1016/j.trac.2004.11.021
https://doi.org/10.4155/pbp.13.56
https://doi.org/10.4155/pbp.13.56
https://doi.org/10.1371/journal.pgen.1000034
https://doi.org/10.1371/journal.pgen.1000034
https://doi.org/10.1002/bit.23072
https://doi.org/10.1016/j.cbpa.2003.08.008
https://doi.org/10.1016/j.cbpa.2003.08.008
https://doi.org/10.4155/bio.13.86
https://doi.org/10.1042/BA20060221
https://doi.org/10.1042/BA20060221
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1007/s10616-012-9508-4
https://doi.org/10.1002/bit.26313
https://doi.org/10.1002/btpr.2894
https://doi.org/10.1002/btpr.2894
https://doi.org/10.1089/omi.2012.0090



