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Abstract

Fermentative production of microbial lipid requires high fresh water input. The utilization of high saline seawater

or industrial wastewater is an important alternative to reduce the freshwater consumption. This study revealed that
oleaginous yeast Trichosporon cutaneum was tolerant to a high salinity up to 130 g/L of NaCl after long-term adaptive
evolution. Lipid fermentation of T. cutaneum in seawater achieved the lipid production of 31.7 g/L with approximately
36% greater than that in freshwater. The saline water containing phenol was also tested for lipid fermentation and
23.6 g/L of lipid was produced simultaneously with the complete biodegradation of phenol. An interesting phenom-
enon was also observed that the yeast cells spontaneously segregated onto the upper surface of the saline water. This

study extended the lipid fermentation options with practical application potentials.
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Introduction

Microbial lipid provides an important alternative of veg-
etable lipid feedstock for production of aviation fuel and
biodiesel (Ju et al. 2016; Li et al. 2008). Oleaginous yeast
is the major cell factory for fermentative production
of microbial lipid. However, microbial lipid fermenta-
tion requires high fresh water input then generates large
amount of wastewater, resulting in the heavy burdens of
fresh water usage and downstream wastewater treatment
(Yen et al. 2016).

One practical solution is to use saline water such as
seawater or industrial saline wastewater as alternative
of fresh water. Seawater has the typical salinity of 3.5%
and has been used for lipid production by microalgae
(Sabeela Beevi and Sukumaran, 2015; Takagi et al. 2006).
Oleaginous yeasts Yarrowia lipolytica (Dobrowolski et al.
2019) and Rhodotorula glutinis (Yen et al. 2016) were also
tested in seawater, but their cell growth was significantly
suppressed. Wastewater from textiles, pharmaceuticals,
tannery, petroleum, petrochemical and pickled vegetable
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industries generally has a wide range of salinity from
0.2 to 15% (Ng et al. 2015; von Alvensleben et al. 2013;
Yurtsever et al. 2016; Lefebvre and Moletta 2006; Kubo
et al. 2001) and contains organic impurities such as phe-
nol (Ren et al. 2018). High saline tolerance and toxin bio-
degradability of oleaginous yeasts is the pre-condition of
saline water used for microbial lipid production.

This study investigated the use of seawater and phenol-
containing saline water for lipid fermentation by a robust
oleaginous yeast Trichosporon cutaneum (Hu et al. 2018;
Wang et al. 2016). T. cutaneum was found to be tolerant
to very high salinity after the long-term adaptive evolu-
tion. Adaptive evolution provides a practical method to
elevate the robustness of microorganisms under toler-
ance or inhibitions. For oleaginous yeast strains, adaptive
evolution is also a feasible way for improving the lipid
accumulation capacity under specific stress such as salin-
ity (Daskalaki et al. 2019). Lipid fermentation of T. cuta-
neum was conducted under typical salinities of seawater
and phenol-containing saline water. An interesting phe-
nomenon was found that the yeast cells floated on upper
layer of fermentation liquid in high salt conditions. The
result provided a practical and cost-effective method for
microbial lipid production using saline water.
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Materials and methods

Water sources and reagents

Seawater was taken from East China Sea (30.819° N,
121.528° E) at Fengxian Beach, Shanghai, China. The
salinity of seawater was 0.98% and the main metal ions
included 3.2 g/L of Na™, 0.43 g/L of Mg?*, 0.17 g/L of
Ca", 0.11 g/L of K. The seawater was adjusted to dif-
ferent salinities by adding NaCl. The phenol-containing
saline water was prepared by adding 35 g/L NaCl and
the given amount of phenol into freshwater.

Peptone and yeast extract were purchased from
Oxoid Co. (Hampshire, UK). Phenol and other ana-
lytical grade chemicals were purchased from Shanghai
Titan Scientific Co. (Shanghai, China).

Strains, media and culture conditions

Trichosporon cutaneum ACCC 20271 was obtained
from Agricultural Culture Collection of China (ACCC,
http://www.accc.org.cn), Beijing, China. T. cutaneum
MP11 was a mutant strain obtained in our lab and
stored in China General Microorganisms Collection
Center (CGMCC, http://www.cgmcc.net), Beijing,
China, with the registration number of 20481.

YPD medium and synthetic medium referred to Hu
et al. (2018), but 60 g/L of glucose was added to the
synthetic medium instead of inhibitor. The fermenta-
tion medium in 3-L bioreactor was supplemented with
150 g/L of glucose, and the remaining components
were all added twice as much as the synthetic medium.

Lipid fermentation and extraction
Lipid fermentation was carried out in a 3-L bioreactor
(Baoxing Biotech, Shanghai, China) with a working vol-
ume of 800 mL. The fermentation was maintained for
120 h at 30 ‘C and 450 rpm with Rushton impeller and
pH 5.0 by using 5 M NaOH and 4 M HCl solutions.

The microbial lipid was extracted by the methanol-
chloroform method (Wang et al. 2016).

Analytical methods

Glucose was measured using the biosensor analyzer
SBA-40D (Shandong Academy of Sciences, Jinan,
China). The metal ions were measured by ICP-OES
(Agilent, California, USA) (Fingerova and Koplik 1999).
Cell growth was detected by the method depicted in
Jin et al. (2019). Phenol was analyzed using HPLC
(Shimadzu, Kyoto, Japan) according to the method
described in Kilic (2009).
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Results and discussion

Saline tolerance evolution of T. cutaneum under different
salinities

Saline tolerance of T. cutaneum ACCC 20271 was
examined in the 168-day long-term adaptive evolution
(Fig. 1). The salinity was gradually increased by add-
ing sodium chloride into synthetic medium. The results
show that T. cutaneum tolerated up to 130 g/L of NacCl,
an extremely high salinity. The advantage of adaptive
evolution is mainly the cell growth in high saline condi-
tion. This experiment mainly focused on the evaluation
of saline tolerance in the long-term adaptive evolution.
In the transfer time 25, the salt concentration in the
medium reached 115 g/L; in the transfer time 55, the
salt concentration reached 130 g/L. The cell growth
maintained constant although the salt concentration
increased 13% in this period. The cell growth decreased
with the increasing NaCl concentration, but still in the
relatively normal growth period. The cell morphology
maintained relatively unchanged when NaCl was below
125 g/L, till the cell corruption at 130 g/L of NaCl. T
cutaneum is an environmental microorganism and has
strong adaptability to various conditions. This study con-
ducted a preliminary evaluation on lipid fermentation of
T. cutaneum under high saline tolerance. The high salin-
ity tolerance of T. cutaneum is speculated to come from
the capacity of T. cutaneum cells of strong Na™/H" anti-
transport activity to pump the intracellular Na™ into the
extracellular medium under high saline condition. The
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Fig. 1 Adaptive evolution of T. cutaneum ACCC 20271 under varying
saline conditions. Synthetic medium supplemented with increasing
sodium chloride (from 0 to 130 g/L). The transfer was conducted
every 72 h at 30 C into fresh synthetic medium at 10% (v/v)
inoculation. Cell morphology was observed with an optical electron
microscope (x 100)
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molecular biology mechanism is under investigation and
expected to be available in the near future.

Then T. cutaneum ACCC 20271 was used for lipid fer-
mentation in 3-L bioreactor under different salinities.
These salinities ranged from 1.0 to 6.0%, corresponding
to the salinities of textiles and electro-dialysis wastewa-
ter (1.0%) (Tiwari et al. 2003; Vo et al. 2020; Maeng et al.
2018), aquaculture and seawater (3.5%) (Zaky et al. 2018;
Ren et al. 2017; Song et al. 2018), seawater in arid areas
and petrochemical (4.4%) (Jorfi et al. 2019; Tiwari et al.
2003), tannery and pharmaceutical factories (6.0%) (Lefeb-
vre et al. 2005; Ng et al. 2015), respectively. Figure 2 shows
that the lipid yields at the lower salinity of 1.0% and 3.5%
were similar to that of freshwater, then decreased when the
increasing salinity of 4.4% and 6.0%. The results indicate
that T cutaneum well tolerated the salinity of 3.5%, but
6.0% salinity obviously inhibited its lipid production.

Lipid fermentation of T. cutaneum under different salinities
T cutaneum ACCC20271 has relatively high saline toler-
ance, but its low lipid production was not suitable for prac-
tical lipid fermentation. T. cutaneurm MP11 was obtained
by long-term adaptive evolution and ultra-centrifugation
screening with higher lipid accumulation. Therefore, T.
cutaneum MP11 was used for lipid fermentation under
high salinity condition to evaluate its potentials (Fig. 3). The
results show that the higher lipid production was observed
at 1.0% and 3.5% salinity. With further increase of salinity
(up to 4.4% and 6.0%), both the glucose consumption rate
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Fig. 2 Lipid production of T. cutaneum ACCC 20271 at different
salinities. The lipid production was measured after 120 hin a 3-L
bioreactor with a work volume of 800 mL, 10% (v/v) inoculum size,
30°C, 450 rpm, pH 5.0 by 5 M NaOH and 4 M HCl, and the aeration at
1.0 vwvm. Fresh water was used as the control. All experiments were
performed in duplicate
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and the lipid accumulation decreased. The maximum lipid
production (31.7 g/L) was obtained at 3.5% salinity, which
was even 36% greater than that using fresh water (23.3 g/L).
Only few studies were reported on the microbial lipid fer-
mentation in high saline water. Yen et al. (2016) studied
that the growth of R. mucilaginosa in seawater using crude
glycerol and the lipid production reached 12.2 g/L. The
lipid production (31.7 g/L) is the highest that has been
reported under high saline condition.

The cell morphology of T. cutaneum MP11 was cor-
related with the varying salinities (Fig. 4). The yeast cells
appeared as long and large rods when the salinity was
below 3.5%, then the cells changed to small round balls at
the salinity of 4.4%, and finally shrank and died due to a
stronger saline osmotic pressure when the salinity reached
6.0%. The results show that high saline conditions induced
strong stress on the cell morphology and then changed the
lipid accumulation performance.

An interesting phenomenon was observed that the T
cutaneum cells spontaneously floated on the upper layer of
the fermentation broth at high saline conditions, while this
phenomenon was not observed in the freshwater medium
(Fig. 5). The possible reasons might be the higher lipid con-
tent in cells in the saline water with higher density. This phe-
nomenon is important for the recovery of microbial lipid.

Lipid fermentation of T. cutaneum

under phenol-containing saline water

Industrial wastewater is the typical saline water contain-
ing heavy metals, aromatics and other organic compounds.
Phenol is one of the commonly existing organic com-
pounds in various industrial wastewater sources (Jiang
et al. 2016; Kamali et al. 2019). The phenol tolerance of T.
cutaneum MP11 was tested by inoculating into the 3.5%
saline water with different initial phenol concentrations
ranging from 700 to 1600 mg/L (Fig. 6a). The results show
that T. cutaneum MP11 was tolerant to 1000 mg/L of phe-
nol. Metabolic pathway of phenol degradation by T. cuta-
neum has been not yet well established in the previous
studies. However, the pathway of similar phenolic com-
pounds of p-hydroxybenzaldehyde, 4-hydroxy-3-methoxy-
benzaldehyde (vanillin) and syringaldehyde by T. cutaneum
has been investigated in our previous studies (Wang et al.
2016; Hu et al. 2018). It is speculated that the phenol deg-
radation by T cutaneum is conducted in a similar way
with above phenolic aldehydes. First, phenol is converted
to its corresponding alcohol, then further oxidizes into the

(See figure on next page.)

Fig. 3 Cell growth, glucose and lipid production of T. cutaneum MP11 under different salinities. Conditions: a fresh water, b 1.0% salinity, ¢ 3.5%
salinity, d 4.4% salinity, e 6.0% salinity, other fermentation conditions were the same as T. cutaneum. ACCC 20271. All experiments were performed

in duplicate




Fig. 3 (See legend on previous page.)
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corresponding acid, and finally to acetyl-CoA or succinyl-
CoA as the precursors of TCA cycle or lipid synthesis.

The lipid fermentation of 7. cutaneum MP11 was car-
ried out in a 3-L bioreactor under the initial phenol con-
centration of 1000 mg/L (Fig. 6b). The initial glucose
was adjusted to 60 g/L, and then added to 150 g/L dur-
ing the fermentation. The cell growth and lipid produc-
tion (23.6 g/L) of T. cutaneum MP11 were similar to that
in freshwater without phenol. Approximately 76.8% of
phenol was degraded by T. cutaneums MP11 at 24 h and

finally approximately consuming all of the phenol added.
The result indicates that T. cutaneurmn MP11 not only
achieved a high lipid production, but also performed a
high phenol degradation under saline wastewater.

Conclusions

High saline tolerance (130 g/L NaCl) of T. cutaneum was
found after the long-term adaptive evolution. A higher
lipid production of T. cutaneum was obtained at 3.5%
salinity compared with fresh water and other typical
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Fig. 4 Lipid production and cell morphology of T. cutaneum MP11 under different salinities. Lipid production was obtained at 96 h for the control,
1.0% and 3.5% salinity, 120 h for 4.4% and 6.0% salinity. Cell morphology was photographed after 96 h with enlargement of x 100

Fig. 5 Broth samples of T. cutaneum MP11 under different salinities.
These samples were cultured for 96 h in a fresh water, b 3.5% salinity,
and ¢ 6.0% salinity, respectively

salinities. Moreover, T. cutaneum MP11 has the ability
of high lipid production (23.6 g/L) and phenol degrada-
tion (800 mg/L) under saline wastewater containing phe-
nol. An interesting phenomenon was found that the yeast
cells floated on upper layer of fermentation liquid in high
salt conditions. The results show that T. cutaneum has
the potential of lipid production using high saline water.

(a) Phenol tolerance at 3.5% salinity in flasks
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Fig. 6 Phenol tolerance and lipid production of T. cutaneum MP11

in saline water. a Phenol tolerance at 3.5% salinity in flasks. 35 g/L
NaCl and defined phenol were added into the synthetic medium. 7.
cutaneum MP11 was cultured at 30 °C for 120 h. b Lipid production

in the medium containing 35 g/L of NaCl and 1000 mg/L of phenol.
The initial concentration of glucose is 60 g/L, and added to 150 g/L at
48 h. All experiments were performed in duplicate
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