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Sugarcane bagasse: a biomass sufficiently 
applied for improving global energy, 
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Abstract 

Sugarcane (Saccharum officinarum) bagasse (SCB) is a biomass of agricultural waste obtained from sugarcane process-
ing that has been found in abundance globally. Due to its abundance in nature, researchers have been harnessing this 
biomass for numerous applications such as in energy and environmental sustainability. However, before it could be 
optimally utilised, it has to be pre-treated using available methods. Different pre-treatment methods were reviewed 
for SCB, both alkaline and alkali–acid process reveal efficient and successful approaches for obtaining higher glu-
cose production from hydrolysis. Procedures for hydrolysis were evaluated, and results indicate that pre-treated SCB 
was susceptible to acid and enzymatic hydrolysis as > 80% glucose yield was obtained in both cases. The SCB could 
achieve a bio-ethanol (a biofuel) yield of > 0.2 g/g at optimal conditions and xylitol (a bio-product) yield at > 0.4 g/g in 
most cases. Thermochemical processing of SCB also gave excellent biofuel yields. The plethora of products obtained 
in this regard have been catalogued and elucidated extensively. As found in this study, the SCB could be used in 
diverse applications such as adsorbent, ion exchange resin, briquettes, ceramics, concrete, cement and polymer 
composites. Consequently, the SCB is a biomass with great potential to meet global energy demand and encourage 
environmental sustainability.

Highlights 

•	 Sugarcane bagasse (SCB) has been identified as a biomass that is abundantly available and can be harnessed for 
various applications.

•	 To optimally utilise SCB for its numerous applications, pre-treatment and hydrolysis are important processes.
•	 Various biofuels such as bio-ethanol, bio-methane, bio-hydrogen and bio-butanol have been successfully pro-

duced using SCB as a feedstock.
•	 Apart from being a source of energy, SCB is a sustainable feedstock for the productions of adsorbent, briquette, 

ceramic, concrete and composite.
•	 The SCB is a biomass that can be sufficiently applied for improving global energy, environment and economic 

sustainability.
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Introduction
Energy security and environmental conservation issues 
are likely to remain two of the major long-term chal-
lenges facing human existence globally (Sheikhdavoodi 
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et  al. 2015). Meanwhile, lignocellulose biomass such as 
sugarcane bagasse (SCB), corn stover, cereal straw, and 
forest woody residue (e.g., birch, spruce, eucalyptus) are 
substances with a high energy content that can assuage 
the impending energy crisis (Yin 2011; Ajala et al. 2020). 
They are organic materials obtained from biological 
sources, mostly plants biomass which is the most abun-
dant global source of renewable materials and their 
annual global production has been estimated to be 1010 
MT (Ajala et al. 2020). The SCB is one of these residues 
that are in abundance globally, which has the key to solv-
ing the global energy problem and environmental con-
cern (Scaramucci et al. 2006).

The annual production of sugarcane globally is about 
1.6 billion tons and this generates about 279 million met-
ric tons of SCB (Chandel et al. 2012). The global outlook 
for sugarcane production shows that Brazil is currently 
the largest producer at about 7,39,300 metric tons per 
year followed by India, China, Thailand, Pakistan, Mex-
ico, Colombia, Indonesia, Philippines, and the United 
States (Khoo et  al. 2018), as shown in Fig.  1. This indi-
cates that the processing of this high quantity of sugar-
cane would unintentionally contribute to the production 
of a large amount of waste. The SCB from the magnitude 
of the sugarcane is huge which invariably poses a serious 
environmental concern if not attended to, hence the need 
for this study.

The SCB is a potential feedstock for numerous appli-
cations due to its chemical composition, as shown in 

Fig.  2. It is typically rich in cellulose (44%) and hemi-
cellulose (28%), lignin (21%), ashes (5%) and extractive 
(2%) (Karp et al. 2013). More extensive information on 
chemical composition and morphology are available in 
the literature (Sanjuan et al. 2001; Maryana et al. 2014).

The cellulose, hemicellulose, lignin, and small 
amounts of extractives and mineral salts of SCB are 
bonded together, physically and chemically with link-
ages between lignin and cell wall polysaccharides, as 
shown in Fig. 3.

This prevents the easy breakdown of the complex 
compound into simple sugars (Sun et  al. 2003). This 
affects the rate of the de-lignification reaction and 
the quality of the final products. Hence, the need for 

Fig. 1  Top 10 producers of sugarcane globally (Khoo et al. 2018)

Fig. 2  Typical chemical composition of SCB (Karp et al. 2013)
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pre-treatment methods that are rapid, non-destructive, 
and simple to isolate lignin from the cell walls of SCB 
(Sun et al. 2003). The methods of pre-treatment would 
fractionalise the SCB into its main components with 
high quality which is necessary to allow this renewable 
feedstock to be transformed into value-added products. 
The goal is to disrupt the complex of cellulose–hemi-
cellulose–lignin, an important technological phase 
in the bio-refining of lignocellulosic materials (De 
Moraes Rocha et al. 2015). The pre-treatment is there-
fore essential for transforming SCB into high-quality 
fermentable sugars. Since the crystallinity of cellulose, 
degree of polymerisation, moisture content, surface 
area and lignin content are barriers to hydrolysis, which 
can be overcome by pre-treatment (Karp et al. 2013).

Furthermore, the SCB can be used for the production 
of bricks (Faria et al. 2012), ceramics (Souza et al. 2011), 
cement additive (Andreão et  al. 2019), concrete (Payá 
et al. 2002), reinforcements in polymer composites (Khoo 
et al. 2018), biogas (Nosratpour et al. 2018), bio-ethanol 
(Antunes et al. 2018), bio-hydrogen (Manish and Baner-
jee 2008), bio-jet fuel (Diederichs et al. 2016) and adsor-
bents (Fideles et al. 2018). It is also used as a feedstock in 
pyrolysis, gasification, steam reforming, combustion, bio-
chemical and chemical processes for the production of 
other valuable products. Due to the multiplicity of appli-
cations of SCB, it is important to review these uses and 
see the extent of work done in these areas over the years. 

This is an extensive review of SCB to support the fact that 
it is a biomass with potential for energy and environmen-
tal sustainability.

This study aimed to review various preparation tech-
niques for optimum use of SCB for biofuel and biochemi-
cal development. The study also evaluated the important 
impact of various pre-treatment approaches on SCB. 
Few of the SCB applications that could boost the global 
energy outlook and maintain the environment have been 
considered in this work. An extensive google search of 
scholarly articles has been undertaken by considering 
publications of over 2 decades for an in-depth review on 
the subject of this study.

Preparation strategies
For the SCB to be suitable as a feedstock for its numer-
ous applications, preparation and purification to modify 
its physical and chemical properties are of necessity. For 
instance, before the SCB is used for the production of 
biofuels and other biochemicals, de-lignification is the 
initial step to be taken, followed by pre-treatment and 
hydrolysis. The de-lignification is necessary to make the 
SCB more susceptible to enzyme attack. In some pro-
cesses, lignin is first broken down and removed by spe-
cial enzymes or chemicals (such as alkali), before further 
steps are taken to convert the remaining part of the SCB 
to bio-ethanol (Niju and Swathika 2019).

Fig. 3  Chemical linkages between lignin and cellulose (Maryana et al. 2014)
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Lignin peroxidase, manganese peroxidase and laccase 
are the major enzymes for de-lignification and can be 
produced by white-rot fungi (Malik et  al. 2021). Asgher 
et al. (2013) undertook a comparison of both enzymatic 
and alkali de-lignification of SCB. Findings from the 
study revealed that alkali de-lignification is a better tech-
nique for maximum ethanol production. Liu et al. (2006) 
delignified SCB by the use of 6% sodium chloride solu-
tion at pH 3.8–4 and 75 °C for 2 h. The process was then 
followed by sonication for cellulose production. Rezende 
et  al. (2011) characterised delignified SCB by chemical 
and morphological techniques. It was observed that the 
morphological changes due to de-lignification led to the 
improvement of enzymatic digestibility of the biomass.

The pre-treatment process also has great effects on the 
hemicellulose, cellulose, and lignin fraction (Antunes 
et al. 2018). Hemicellulose is a highly branched polymer 
that consists of pentose (xylose and arabinose) and hex-
ose (glucose, mannose, and galactose) sugars (Ajala et al. 
2020). However, the choice of pre-treatment method 
counts on the effective de-lignification and hemicellu-
lose removal as it also has economic benefits, saves time, 
reduces sugar levels and causes less environmental pol-
lution (Sabiha-Hanim et  al. 2018). The general aim of 
pre-treatment is to boost feedstock tolerance for further 
processes, increase the efficiency of hydrolysis, improve 
overall product yield, eliminate inhibitory compounds 
and sterilise feedstock (Lucas et al. 2021). Therefore, for 
the efficient use of SCB as a biomass sufficient to boost 
global energy, it is important to evaluate the best pre-
treatment method, which is economically viable and 
meets the required quality as a feedstock for industrial 
purposes. The use of the alkaline solution is one of the 
pre-treatment methods which has been experimentally 
proven to improve enzyme susceptibility of SCB (Aiello 
et  al. 1996). This pre-treatment method modifies the 
lignin–carbohydrate complex in the feedstock by effec-
tively interrupting the ester bonds that co-exist between 
lignin and hemicellulose (Cao and Aita 2013).

Maryana et al. (2014) conducted an excellent study to 
optimise the alkaline pre-treatment of SCB using sodium 
hydroxide (NaOH). Nosratpour et  al. (2018) evaluated 
the use of various concentrations of sodium sulphite 
(Na2SO3), sodium carbonate (Na2CO3) and sodium 
acetate (CH3COONa) as the source of alkaline environ-
ment for the pre-treatment of SCB for bio-ethanol and 
bio-methane productions. The highest biogas and bio-
methane productions were obtained from the SCB pre-
treated with 0.5  M Na2CO3 at 140  °C. Several chemical 
compounds have been used for the provision of an alka-
line environment in the pre-treatment process, as shown 
in Table 1.

Another pre-treatment technique in the literature 
is a hybrid of the acid/alkali–acid method which has 
been reported for the SCB. Compared to the other pre-
treatment methods, acid/alkali–acid was found more 
effective as it is mostly used for biomass pre-treat-
ment (Zhu et  al. 2016). Teixeira et  al. (1999) studied 
the alkali–acid pre-treatment of SCB using NaOH–
peracetic acid at various concentrations to obtain a 
high yield of reducing sugar for bio-ethanol produc-
tion. Xu et al. (2006) utilised mild alkali (1 M NaOH) 
and acidic 1,4-dioxane as a pre-treatment of SCB and 
shown to be effective. Zhao et  al. (2009) made use of 
an alkali–peracetic acid process by first treating the 
SCB with 10% NaOH (at 90  °C for 1.5  h) and further 
de-lignifying by 10% peracetic acid (at 75 °C for 2.5 h) 
to obtain a reducing sugar yield of 92.04% after enzy-
matic hydrolysis.

The alkali–acid technique could also be assisted with 
a microwave energy process for the effective removal 
of lignin in the SCB (Binod et al. 2012). Several other 
pre-treatment methods have been reported in the lit-
erature for modification of SCB for efficient hydroly-
sis. These methods include steam explosion (Pitarelo 
et al. 2016), liquid hot water (LHW) (Wang et al. 2018), 
organosolv (Novo et al. 2011) and ionic liquid (Zhang 
et al. 2012).

Worthy of note is that all the aforementioned pre-
treatment procedures can be combined for optimum 
glucose recovery from the SCB. The alkaline pre-
treatment using dilute NaOH was combined with a 
microwave energy-assisted process for successful pre-
treatment of SCB (Zhu et  al. 2016). While the steam 
explosion was also accompanied by auto-hydrolysis 
(Dekker and Wallis 1983) or alkali de-lignification 
(Albuquerque Wanderley et  al. 2013). The pre-treat-
ment with LHW can also be used in conjunction with 
other reactives such as aqueous ammonia (Yu et  al. 
2013) and dilute alkali (Gao et al. 2013).

Table 1  Chemical compounds utilised for alkaline pre-treatment

Compound Source(s)

Sodium hydroxide (NaOH) Maryana et al. (2014)

Ammonia (NH3) Krishnan et al. (2010)

Sodium sulphite (Na2SO3) Nosratpour et al. (2018)

Sodium carbonate (Na2CO3) Nosratpour et al. (2018)

Sodium acetate (CH3COONa) Nosratpour et al. (2018)

Calcium hydroxide (Ca(OH)2) Rabelo et al. (2011)

Hydrogen peroxide (H2O2) Rabelo et al. (2011)

Potassium hydroxide (KOH) Bian et al. (2013)
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Production of biofuels and bioproducts using SCB 
as a feedstock
For the SCB to be suitable for the production of biofu-
els and biochemical products, it has to be hydrolysed 
after the pre-treatment, otherwise, its conversion by 
bioprocesses such as fermentation would not be achiev-
able. This is due to the polymeric sugars in the SCB that 
must be broken down into simpler units so that micro-
bial activity can take place. The term ‘Hydrolysis’ simply 
means breaking down complex substances with the aid of 
water in the presence of a catalyst and this case of SCB, 
the catalyst could either be an enzyme or an inorganic 
chemical substance (Ajala et al. 2020).

Enzyme-catalysed hydrolysis is a biochemical process 
of breaking down a complex sugar into simple sugars by 
enzymatic action before fermentation. This is necessary 
to make the glucose in the complex sugar susceptible 
to microorganisms. The enzyme that breaks cellulose is 
known as cellulase which in most cases are commercial 
cellulases such as Spezym, Novozym, and viscozyme. 
However, culture enzymes can also be employed. The 
aim of enzymatic hydrolysis (and hydrolysis in general) 
is to break down cellulose and hemicellulose into hex-
ose and pentose sugars (Dekker and Wallis 1983) which 
serve as appropriate feedstocks for the fermentation 
process (Pramanik et al. 2021). Cao and Aita (2013) uti-
lised commercial enzymes (Spezym CP and Novozym 
188) for the hydrolysis of SCB before fermentation by 
Saccharomyces cerevisiae. Krishnan et  al. (2010) also 
utilised commercial enzymes (Spezym CP and Novo-
zym 188) for the hydrolysis of SCB. However, several 
cultured enzymes have been reported for hydrolysis of 

biomass which includes Cellulomonas flavigena (Vel-
murugan and Muthukumar 2012), Trichoderma reesei 
(Rabelo et  al. 2008), Penicillium janthinellum (Adsul 
et  al. 2007), Penicillium echinulatum (Camassola and 
Dillon 2007) and a host of others (Maeda et  al. 2011). 
Velmurugan and Muthukumar (2012) studied the enzy-
matic hydrolysis of SCB by cellulase in an ultra-sound 
energy-assisted process. It was shown that applying 
low-intensity ultrasonic energy to the process enhanced 
enzyme-release and intensified enzyme-catalysed reac-
tions. Therefore, the sonication step can improve the 
enzymatic hydrolysis procedure (Campos et  al. 2013). 
As shown in Table 2, enzymatic hydrolysis of SCB at a 
temperature range of 40–50  °C, acidic medium (4.8–
6.0), moderate agitation speed and 72  h of hydrolysis 
yielded an excellent concentration of glucose and other 
hydrolysates.

Acid hydrolysis is another method of obtaining glu-
cose syrup from SCB which involves the use of a dilute 
solution of an inorganic acid to break down the com-
plex sugar in biomass into simple sugars. The inorganic 
acids such as sulphuric acid, nitric acid (Rodrıguez-
Chong et  al. 2004) and phosphoric acid (Gámez et  al. 
2006) have been utilised for acid hydrolysis of SCB. 
Canilha et  al. (2010) utilised a 2% w/v H2SO4 solution 
in the hydrolysis of SCB. The process was done with 
the acid solution and SCB in a sealed vessel heated to 
150 °C for 30 min. Roberto et al. (1991) also performed 
an acid hydrolysis process in combination with a steam 
explosion pre-treatment by impregnating a 35  mM 
H2SO4 solution in SCB for 16 h before the subsequent 
steam explosion at 190 °C for 5 min.

Table 2  Different pre-treatment methods and their process conditions for enzymatic hydrolysis of SCB

a Yield of ethanol from final fermentation, bultrasound-assisted process, ccellulose conversion

Pre-treatment Temp (oC) Time (h) Agitation (rpm) pH Maximum glucose 
yield (%)

Source

Steam 40 72 300 – 85 Carrasco et al. (2010)

Steam 50 – 150 4.8 92–94 Ewanick and Bura (2011)

Alkaline 45 72 120 4.8 - Nosratpour et al. (2018)

Alkaline 50 – 100 4.8 87.5 Rabelo et al. (2008)

Alkaline 50 72 – 4.8 87 Antunes et al. (2018)

Alkaline 40 6 – 6.0 91.28a, b Velmurugan and Muthukumar (2012)

Alkaline 45 26 150 4.8 92.11b Velmurugan and Muthukumar (2012)

Steam and alkali 50 96 150 4.5 – Adsul et al. (2007)

Organosolv 50 24 150 4.8 0.285 (g/g) Mesa et al. (2010)

Steam 45 72 100 4.8 89.2c Silva et al. (2011)

Steam 50 72 150 5.0 86 Da Silva et al. (2016)

LHW 50 72 90 4.5 0.432 (g/g) Wang et al. (2018)

Steam 50 48 130 5.0 – Carvalho et al. (2018)

Steam 45 96 150 4.8 – Pitarelo et al. (2016)
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De Moraes Rocha et  al. (2011) studied the dilute acid 
hydrolysis of SCB by a combined sulphuric and ace-
tic acid solution and obtained a 90% optimum conver-
sion of the hemicellulosic hydrolysate by the 1%, w/v 
H2SO4 + 1%, w/v CH3COOH solution. Velmurugan and 
Muthukumar (2011) evaluated acid hydrolysis pre-treat-
ment, but with a novel sono-assisted technique.

Ultra-sonic energy was pulsed into the system using a 
cycle control system and revealed that the optimal condi-
tions for the process are 2% w/v H2SO4, 45 min and 20:1 
liquid–solid ratio. From Table  3, it was observed that 
some processes that utilise acid hydrolysis did not carry 
out any other first stage pre-treatment. This is because 
the acid process is capable of converting the SCB to 
reducing sugars in a one-pot synthesis by effectively pre-
treat whilst carrying out the hydrolysis function.

Therefore, successful conversion of SCB to reducing 
sugars is germane for the biomass utilisation to biofu-
els and biochemical products, and acid hydrolysis was 
reported to be preferred over the enzymatic, as it is a 
faster process and is highly efficient (Ajala et al. 2020).

Biofuels
The economic viability of second-generation feedstock 
(corn cob, cassava peel and SCB) for biofuels production 
depends on their availability and process techniques, to 
obtain different types of biofuel (Akhabue et  al. 2019). 
The foregoing subsections show the different techniques 
that could be deployed for bioprocessing of the SCB to 
produce respective biofuel.

Bio‑methane (biogas)
The major constituent of biogas is methane as such can 
be called bio-methane, a renewable natural gas, which 
is a product of anaerobic digestion of biomass (SCB) 
(Sołowski et  al. 2020). Badshah et  al. (2012) evaluated 
the potential of SCB as a feedstock for the production 

of bio-methane and compare the effect of pre-treatment 
on the process, to determine the best route to producing 
the bio-methane from the SCB. Their study concluded 
that the acid pre-treatment is preferred above enzymatic 
pre-treatment to attain optimum yield of bio-methane 
(Ling et al. 2021). It was also observed that the maximum 
methane production rate from SCB is achieved after 
18  days, using inoculum in the form of sludge from an 
anaerobic digestion factory. Rabelo et al. (2011) also stud-
ied the production of bio-methane from the pre-treated 
and enzymatically hydrolysed SCB which was carried out 
in a bioreactor at 35 °C in the presence of a buff solution, 
macro-elements, inoculum and oligo-elements. Upon 
nitrogen degasification, 165–168 LN of methane/kg of 
biogas was obtained after 36 days.

Bio‑ethanol
Renewability, cost-effectiveness, and environmental 
friendliness are the major advantages of biofuel that 
makes it a potential option for fossil fuels replacement 
(Ajala et al. 2015). Bio-ethanol is one of the examples of 
biofuel that can be produced from the fermentation of 
reducing sugars obtained from SCB by Saccharomyces 
cerevisiae. Different sources of Saccharomyces cerevisiae 
(yeast) could be used for the fermentation of hydrolysate 
from SCB to produce bio-ethanol (Velasco et  al. 2021). 
Canilha et  al. (2010) studied the production of bio-eth-
anol from SCB hydrolysate using Pichia stipites and 
obtained yield in the range of 0.2–0.3 g/g. Cao and Aita 
(2013) studied the production of bio-ethanol using Sac-
charomyces cerevisiae and obtained a yield of 0.2  g/g of 
SCB at 30  °C, 48 h incubation time and pH of 4.8. Dias 
et al. (2009) performed a simulation and thermal integra-
tion analysis of a conventional sugar distillery integrated 
bio-ethanol production with organosolv pre-treatment 
and dilute acid hydrolysis of SCB. The research was able 
to underline the value of integrating a hydrolysis plant 

Table 3  Summary of process conditions for acid hydrolysis

a Optimum yield of ethanol from fermentation

Pre-treatment Concentration Temp (oC) Time (mins) Maximum 
conversion/yield 
(%)

Source

2% w/v H2SO4 150 30 30.0a Canilha et al. (2010)

Steam 35 mM H2SO4 35 960 35.0a Roberto et al. (1991)

1% w/v H2SO4 + 1% w/v CH3COOH 190 10 90.9 De Moraes Rocha et al. (2011)

1.8% w/v H2SO4 95 360 38.0a Van Zyl et al. (1988)

Acid 2% w/v H2SO4 (ultra-sound assisted) 50 45 92.81a Velmurugan and Muthukumar (2011)

– 1% v/v H2SO4 121 40 – Borges and Pereira (2011)

– 100 mg H2SO4 per g SCB 121 10 – Rodrigues et al. (2001)

– Dil. H2SO4 (microwave-assisted) 180 30 – Chen et al. (2012)
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into the power and energy optimisation sugar process-
ing facilities. Apart from Saccharomyces cerevisiae, Ged-
des et al. (2011) reported that Escherichia coli is another 
microorganism that could be used to ferment SCB for 
bio-ethanol production at a temperature of 37  °C and a 
pH of 6.5. In their study, a maximum bio-ethanol yield of 
0.21 g/g was gotten from the process which is compara-
tively good when compared to those of other studies, as 
shown in Table  4. According to Roberto et  al. (1991), 
Candida utilis, Pichia stipitis, Candida tropicalis and 
Pichia tannophilus are other microorganisms that could 
be employed in the production of bio-ethanol. Table  4 
presents a summary of the microorganisms, process con-
ditions and bio-ethanol yields that were reported in the 
literature for the fermentation process of SCB.

Other bio‑fuels
Some other biofuels that can be produced from the 
hydrolysate of SCB are bio-hydrogen and bio-butanol. 
Hydrogen fuel has been given great attention as an energy 
transmitter due to its high energy yield, lightest weight 
and non-release of toxic gas or carbon dioxide dur-
ing the combustion process (Yue et al. 2021). The use of 
bio-hydrogen as a biofuel has unrivalled advantages over 
bio-methane such as good heating value and non-release 
of greenhouse gases after combustion (An et  al. 2020). 
Recent findings revealed that bio-butanol is an improved 
fuel than ethanol because of its superior features, there-
fore, could be a potential replacement to gasoline or a 
better additive fuel (Prasad 2020). The amalgamation 
of bio-butanol with diesel and gasoline could also help 
towards minimising greenhouse gas emissions (Fonseca 
et al. 2021). The production of bio-hydrogen from renew-
able sources via anaerobic fermentation has been deemed 

as a technically possible way and has drawn more atten-
tion (Zacharia et al. 2020). It has been reported that the 
production of bio-butanol from hydrolysates of starch or 
lignocellulosic feedstock is feasible through the fermen-
tation process (Veza et  al. 2021). Fangkum and Reung-
sang (2011) studied the production of bio-hydrogen from 
SCB by utilising an inoculum rich in microorganisms 
from cattle dung. The hydrogen-producing bacterium in 
the inoculum was Clostridium pasteurianum and yielded 
maximum hydrogen of 0.84 mol H2/mol total sugar at a 
pH of 6.5. Mariano et al. (2013) investigated the technical 
and economic aspects of bio-butanol production from 
SCB in a first-generation biorefinery. It was observed that 
the process was more energy-intensive and has a greater 
volume of associated stillage. The claims by the afore-
mentioned authors justify that the SCB is a sustainable 
feedstock for bio-ethanol production.

Bioproducts
The bioprocessing of SCB is a very popular method 
of producing numerous biochemical substances for 
different applications. Several types of microorgan-
isms like fungi (Kewalramani et  al. 1988) and bacteria 
(Chávez-Gómez et  al. 2003) are utilised to digest the 
SCB substrate with the desired product being the meta-
bolic wastes of these organisms. The production of bio-
chemical substances from SCB is important for more 
profitability and the ultimate achievement of economic 
sustainability. The availability of SCB makes it a cheaper 
alternative to other feedstock, an indication that the bio-
chemicals can be produced at a lower cost. A number of 

Table 4  Summary of bio-ethanol production from SCB

Hydrolysis type Microorganism Fermentation conditions Ethanol yield (YP/S) Source

Enzymatic hydrolysis Scheffersomyces shehatae 30 °C, 48 h and pH of 5.5 0.34 g/g Antunes et al. (2018)

Acid hydrolysis Pichia stipites 30 °C, 48 h and pH of 5.5 0.30 g/g Canilha et al. (2010)

Enzymatic hydrolysis Saccharomyces cerevisiae 30 °C, 48 h and pH of 4.8 0.20 g/g Cao and Aita (2013)

Enzymatic hydrolysis (SSF) Saccharomyces cerevisiae 37 °C, 32 h and pH of 5.5 – Ewanick and Bura (2011)

Enzymatic hydrolysis (L + SScF) Escherichia coli 37 °C, 240 h and pH of 6.5 0.21 g/g Geddes et al. (2011)

Acid hydrolysis Pichia stipites 30 °C, 24–96 h and pH of 5.0 0.35 g/g Roberto et al. (1991)

Acid hydrolysis Pichia stipites 27 °C, 72 h and pH of 6.5 0.42 g/g Van Zyl et al. (1988)

Acid hydrolysis (ultra-sound 
assisted)

Saccharomyces cerevisiae 30 °C, 72 h and pH of 5.0 0.36 g/g Velmurugan and Muthukumar 
(2011)

Enzymatic hydrolysis (ultra-
sound assisted)

Zymomonas mobilis 30 °C, 48 h and pH of 5.7 91.22% Velmurugan and Muthukumar 
(2012)

Enzymatic hydrolysis Saccharomyces cerevisiae 30 °C and 24 h 92.8% Mesa et al. (2010)

Enzymatic hydrolysis Saccharomyces cerevisiae 35 °C, 150 rpm, 34 h and pH 
of 4.8

– Pitarelo et al. (2016)
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bioproducts produced from SCB are thus identified and 
discussed based on findings in literature.

Xylitol
Xylitol is a sweetener used in food and pharmaceutical 
industries, and studies have shown that with the appro-
priate type of enzyme, it can be obtained from SCB 
substrate. Carvalho et  al (2005) produced xylitol from 
SCB hydrolysate using Candida guilliermondii immobi-
lised in calcium alginate to obtain an optimum yield of 
0.81 g/g of biomass at 30  °C, 144 h, 300 rpm and pH of 
6. Gurgel et  al. (1995) also produced xylitol from acid-
hydrolysed SCB using Candida guilliermondii. The study 
was focused on examining the best means of clarifying 
the fermentation broth and recovering xylitol by activa-
tion carbon treatment, ion exchange treatment then crys-
tallisation. Martín et al. (2007) utilised an adapted strain 
of Saccharomyces cerevisiae for the production of xylitol 
from SCB hydrolysate in the presence of inhibitory com-
pounds to obtain a maximum yield of 0.38 g/g biomass. 
A more extensive summary of xylitol production under 
various process conditions and microorganisms is given 
in Table 5.

Organic acids
Recently, agricultural residues, mainly lignocellulosic 
materials (molasses, whey, corn straw, corn cob, alfalfa 
fibres and waste wood) are being used as carbon sources 
for organic acid production. These wastes were evaluated 
as cheap substrates for the cost-effective fermentation of 
organic acid production as they would not compete with 
food and feed.

Therefore, exploring other cheap substrates that are 
renewable and environment-friendly for organic acid 
production are of great concern and interest to research-
ers. So, the use of less expensive carbon sources such as 
SCB instead of petroleum or natural gas to synthesise 

organic acid is cost-effective and advantageous as afore-
mentioned (Ajala et al. 2021).

Studies have also shown that with the appropriate type 
of enzyme, organic acids such as lactic, succinic, citric 
and ferulic acids can be obtained from SCB substrate. 
Adsul et  al (2007) produced lactic acid from SCB fer-
mentation using Lactobacillus delbrueckii. They obtained 
a lactic acid yield of 0.83  g/g from a simultaneous sac-
charification and fermentation (SSF) process. Borges and 
Pereira (2011) produced succinic acid from acid-hydro-
lysed SCB using Actinobacillus succinogenes and opti-
mised the process using response surface methodology. 
They obtained an optimum succinic acid yield of 0.43 g/g 
at 37 °C, 24 h at a pH of 7.

Kumar et  al. (2003) produced citric acid from SCB 
substrate using Aspergillus niger in a solid-state fermen-
tation process. The optimal levels of factor parameters 
were 75% moisture content, 31.8 g sugar/100 g dry solid, 
4% w/v methanol and particles of the size between 1.2 
and 1.6 mm. The optimal reported yield in the work was 
about 20 g/100 g dry solid. Ou et al. (2007) prepared feru-
lic acid from SCB by alkaline hydrolysis. The process was 
done with 0.5 M NaOH (with the addition of NaHSO3 to 
prevent ferulic oxidation) at 50 °C, 150 rpm and 4 h. The 
same research team (Ou et al. 2009), prepared coumaric 
acid from SCB also by alkaline hydrolysis using the same 
methodology. A summary of organic acids production 
from SCB is presented in Table 6.

Xylooligosaccharides
Xylooligosaccharides can be produced from xylan 
(derived from SCB hydrolysis) by some enzymes (Jaya-
pal et  al. 2013). It should be noted that this process 
is not a fermentation process but a hydrolysis pro-
cess. Bian et  al. (2013) examined the structural fea-
tures of xylooligosaccharides derived from the action 

Table 5  Summary of xylitol production from SCB

Method of hydrolysis Microorganism Process conditions Xylitol yield (YP/S) Reference

Acid hydrolysis Candida guilliermondii 30 °C, 144 h, 300 rpm at a pH of 6 0.62 g/g Carvalho et al. (2005)

Acid hydrolysis Candida spp. 30 °C, 60–160 h, 160 rpm – Chen et al. (2006)

Acid hydrolysis Candida guilliermondii 30 °C, 70 h and 300 rpm – Gurgel et al. (1995)

- Saccharomyces cerevisiae 30 °C and 48 h 0.38 g/g Martín et al. (2007)

Steam explosion acid hydrolysis Debaryomyces hansenii 40 °C, 5–10 days, 180 rpm at a pH of 6 0.69 g/g Prakash et al. (2011)

Steam explosion acid hydrolysis Candida guilliermondii 30 °C, 130 h and 200 rpm 0.48 g/g Roberto et al. (1991)

Acid hydrolysis Candida guilliermondii 30 °C, 48 h and 300 rpm and pH of 5.5 0.64 g/g Rodrigues et al. (2003)

Acid hydrolysis Candida guilliermondii 30 °C, 48 h and 200 rpm 0.54 g/g Rodrigues et al. (2003)

– Candida guilliermondii 30 °C, 24 h and 200 rpm 0.65 g/g Santos et al. (2008)
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of Pichia stipites on SCB derived xylan and obtained 
the maximum conversion of 31.8% at 12 h. The hydro-
lysate consisted mainly of xylobiose, xylotriose, xylo-
tetraose, xylopentose and xylohexose. Brienzo et  al. 
(2010) produced xylooligosaccharides from SCB using 

Thermoascus aurantiacus. The maximum conversion 
of 37.1% was obtained at optimal conditions shown in 
Table 7. Besides the above reported enzymatic hydrol-
ysis process,   a  auto-hydrolysis  process has also been 

Table 6  Summary of organic acid production from SCB

Organic acid Method of hydrolysis Microorganism Process conditions Acid yield (YP/S) Reference

Succinic Acid hydrolysis Actinobacillus succinogenes 37 °C, 24 h at a pH of 7 0.43 g/g Borges and Pereira (2011)

Lactic Enzymatic hydrolysis Lactobacillus delbrueckii 42 °C, 72 h at a pH of 6 0.83 g/g Adsul et al. (2007)

Citric – Aspergillus niger 30 °C for 9 days 0.2 g/g Kumar et al. (2003)

Table 7  Summary of oligosaccharides from SCB

Pre-treatment Microorganism Process conditions Percentage 
conversion

Reference

Alkali Pichia stipites 50 °C, 150 rpm, 12 h at a pH of 5.4 31.8 Bian et al. (2013)

Alkali Thermoascus aurantiacus 50 °C, 150 rpm, 96 h at a pH of 5 37.1 Brienzo et al. (2010)

Steam Auto-hydrolysis 5 N H2SO4 sol, 180 °C for 45 min 28 Fernandez et al. (2018)

Table 8  List of enzymes produced using SCB as the substrate

Enzyme Microorganism Reference

Cellulase Penicillium echinulatum Camassola and Dillon (2007)

Hemicellulase Penicillium echinulatum Camassola and Dillon (2007)

Lipase Rhizomucor pusillus Cordova et al. (1998)

Lipase Rhizopus rizopodiformis

Cellulase Aspergillus niger Cunha et al. 2012) and De Souza et al. (2011)

Hemicellulase Aspergillus niger De Souza et al. (2011)

Cellulase Trichoderma reesei, Aspergillus awamori Gottschalk et al. (2010)

Xylanase Trichoderma reesei, Aspergillus awamori

β-glucosidase Trichoderma reesei, Aspergillus awamori

Ferulic acid esterase Trichoderma reesei, Aspergillus awamori

Cellulase Trichoderma reesei Gutierrez-Correa and Tengerdy (1997)

β-Glucosidase Aspergillus phoenicis

Cellulase Trichoderma reesei, Aspergillus niger Gutierrez-Correa et al. (1999)

Endoglucanase Trichoderma reesei, Aspergillus niger

β-Glucosidase Trichoderma reesei, Aspergillus niger

Xylanase Aspergillus fumigatus Lamounier et al. (2018)

β-Glucosidase Aspergillus fumigatus

Cellulase Ganoderma lucidum Manavalan et al. (2012)

Protease Ganoderma lucidum

Inulinase Kluyveromyces marxianus Mazutti et al. (2006)

Cellulase Trichoderma reesei Muthuvelayudham and Viruthagiri (2006)

Manganese peroxidase Phanerochaete chrysosporium Mohammadi and Nasernejad (2009)

α-Amylase Bacillus subtilis Rajagopalan and Krishnan (2008)

Xylanase Trichoderma harzianum Rezende et al. (2002)
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utilised in the production of xylooligosaccharides 
(Zhang et al. 2021).

Enzymes
The SCB has been used in numerous studies as a sub-
strate for the production of enzymes, as presented in 
Table  8. Camassola and Dillon (2007) produced cellu-
lase and hemicellulase using a solid-state fermentation 
process and Penicillium echinulatum enzyme. Cordova 
et al. (1998) produced lipase using a solid-state fermenta-
tion process in the presence of Rhizomucor pusillus and 
Rhizopus rizopodiformis enzymes as catalysts. Cunha 
et  al. (2012) produced cellulase from SCB using Asper-
gillus niger in a sequential solid-state and submerged 
cultivation process. Gottschalk et  al. (2010) studied the 
synergistic activity of Trichoderma reesei and Aspergil-
lus awamori in the production of cellulase, xylanase, 
β-glucosidase and ferulic acid esterase. Although SCB 
possesses additional hemicellulose in contrast to paper 
sludge, this could be more easily reached than enzy-
matic hydrolysis. This is due to its lower lignin propor-
tion which could elucidate more sugar discharged in 
paper sludge (Almeida Scarcella et  al. 2021). Gutierrez-
Correa and Tengerdy (1997) produced cellulase and 
β-glucosidase using Trichoderma reesei and Aspergillus 
phoenicis respectively, in a mixed and single-culture solid 
substrate fermentation process.

Lamounier et  al. (2018) used Aspergillus fumigatus in 
the saccharification of SCB extract to produce xylanase 
and β-glucosidase. Manavalan et  al. (2012) used Gano-
derma lucidum on SCB for the production of proteases 
and cellulase. Mazutti et  al. (2006) produced Inulinase 
from the solid-state fermentation of SCB using Kluyvero-
myces marxianus. Mohammadi and Nasernejad (2009) 
utilised manganese peroxidase synthesised by Phanero-
chaete chrysosporium for the enzymatic degradation of 
anthracene. Table  8 gives a more exhaustive listing of 
enzymes produced with SCB as a substrate.

Other bioproducts
Poly-3-hydroxybutyrate can be obtained by the action 
of Burkholderia cepacia and Burkholderia sacchari on 
SCB (Da Silva et al. 2004). Polymer yields of 0.39 g/g and 
0.29  g/g were obtained from B. cepacia and B. sacchari 
respectively. The SCB has been converted by alkaline and 
enzymatic approaches to obtain xylan of 53% (w/w) and 
22% (w/w), respectively (Sporck et  al. 2017). Although 
alkaline gave a higher yield of xylan, the enzymatic pro-
duced the xylan with the lowest contamination of lignin 
and glucan components. Tsigie et al. (2011) utilised SCB 
substrate to cultivate Yarrowia lypolytica for the pro-
duction of lipids and obtained a maximum lipid yield of 
6.68  g/L when peptone served as the nitrogen source. 

Cerqueira et al. (2007) produced and optimised cellulose 
acetate from SCB cellulose which can be used in coat-
ings, membranes and cigar filters. In a similar process, 
Shaikh et al. (2009) considered the novel use of residual 
hemicellulose as a plasticiser in the cellulose acetate pro-
duction process with positive results obtained.Chareon-
limkun et  al. (2010) studied the production of furfural 
and 5-hydroxymethylfurfural via a hot compressed water 
process catalysed by oxides of transition metals. The 
hemicellulose of SCB has been used as a precursor for the 
production of xylose monomers and oligomers (Jacobsen 
and Wyman 2002).

The SCB has also been reportedly used for the pro-
duction of nano-cellulose via a high-pressure homog-
enisation process (Li et  al. 2012). Carboxyl methyl 
hemicellulose (CMH) has been prepared from SCB 
hemicellulose by a process known as carboxymethylation 
using sodium mono-chloroacetate and sodium hydroxide 
in ethanol/water medium (Ren et al. 2008).

Da Silva (2013) depolymerised industrial organosolv 
lignin and traditionally extracted the lignin from SCB in 
the presence of an anthraquinone acid catalyst. The study 
was able to show the substitution of formaldehyde by glu-
taraldehyde (a dialdehyde that can be obtained from nat-
ural sources) by reacting the lignin with glutaraldehyde 
and studied as phenolic-type resins for thermosets.

Thermochemical processing
A variety of technologies have been employed to con-
vert biomass into valuable forms of energy (Umenweke 
et  al. 2021). The type of conversion technology is influ-
enced by some factors such as the type and quantity of 
biomass, and also the form of energy required (Prasad 
2020). The SCB can be processed thermo-chemically to 
give value-added products that would invariably help in 
the achievement of energy, environmental and economic 
sustainability. Thermochemical processes involve very 
high temperatures (> 200  °C) and other process condi-
tions which include combustion, pyrolysis and gasifica-
tion (Adelodun et al. 2020). Combustion is the ignition of 
the biomass into flames, usually done to utilise its heat-
ing value for in-house heating, cooking or energy gen-
eration. Pyrolysis is the heating up of the biomass in a 
de-oxygenated environment to give bio-oil, biochar and 
biogas (Ighalo and Adeniyi 2020). The gasification pro-
cess is of two types which are air gasification and steam 
gasification (commonly known as steam reforming); each 
of the processes mainly produces gases (Igwegbe et  al. 
2021; Ramos et  al. 2018). The differences between both 
are that the former involves a constant inlet stream of air 
and the latter, a stream of steam (Adeniyi et al. 2019). The 
former yields producer gas while the latter yields synthe-
sis gas. The process of converting the SCB to more useful 
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products by different thermochemical processes are fur-
ther reviewed in this section.

Gasification (air gasification)
One of the earliest designs of a gasifier specifically for 
SCB was by Jorapur and Rajvanshi (1997). The system 
included a reactor, a gas conditioning system, a biomass 
feeding system and an instrumentation and control sys-
tem, as shown in Fig. 4. The reactor was of a downdraft 
configuration with a throat-less and open top. The rated 
thermal output of the commercial system was about 
1080  MJ/h, though the operational output did not 
exceed 684 MJ/h. The economic analysis by Jorapur and 
Rajvanshi (1997) was also able to buttress that the sys-
tem is profitable only if the biomass is sourced within a 
30-km radius.

Predating the studies of Jorapur and Rajvanshi (1997), 
Gómez et  al. (1999) conducted preliminary tests with 
SCB gasification using a fluidised bed reactor in 1996. 
The study pinpoints the key issues related to gasifier 

design at that particular time which include biomass 
characteristics issues that arose in the feeding system 
(such as clogging and bridging) and conduction of the 
test with an air factor greater than 0.22 was not permis-
sible. There were major heat losses from the system as 
it was uninsulated, however, other more successful tests 
have been conducted with a cyclone gasifier (Gabra 
et al. 2001).

Pellegrini and de Oliveira Jr (2007) conducted an 
exergy analysis of SCB gasification via minimisation of 
Gibbs free energy model. It was deduced that the mois-
ture content of the biomass is a major hindrance, as it 
was responsible for the increased destruction of exergy 
inside the gasification system. However, a pre-drying 
process to < 30% moisture was recommended for optimal 
gasification of SCB. Arteaga-Pérez et al. (2013) utilised a 
quasi-equilibrium model for their exergy analysis. Based 
on the exergy and energy efficiency, they put forth that 
the best operating temperature for SCB gasification is 

Fig. 4  The SCB gasifier designed by Jorapur and Rajvanshi (1997)

Fig. 5  SCB gasification model on ASPEN Plus (Mavukwana et al. 2013)
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1023 K and that exergy destruction within the system is 
about 75–80% of total losses.

Mavukwana, et  al. (2013) developed and validated a 
simulation model on ASPEN plus for the gasification of 
SCB, as shown in Fig.  5. The model did not involve tar 
forming reactions as they are the product of non-equi-
librium reactions. The gasifier itself was modelled by 
an RGIBBS block while the SCB biomass was broken by 
an RYIELD block. The simulation results were consist-
ent with those from open literature as observed by the 
authors. A similar test has also been conducted with an 
older version of the software (Dellepiane et al. 2003).

Steam reforming (steam gasification)
Several studies on the steam reforming of SCB have been 
conducted over the years. Erlich et  al. (2006) in their 
study observed that the SCB is less reactive in the steam 
reforming system than wood chips as smaller pellets 
give less char due to a lesser decrease in the reactive vol-
ume. Waheed and Williams (2013) evaluated the poten-
tial of SCB as a feedstock in a two-stage pyrolysis steam 
reforming system. The optimum yield of 25.41  mmol 
hydrogen gas per gram of SCB was obtained at 950  °C 
with a dolomite catalyst of 10 wt.%. The study, however, 
revealed that rice husk is a better feedstock for the steam 
reforming process than the SCB. Osada et al. (2012) stud-
ied the steam reforming of SCB with titania-supported 
ruthenium  (Ru) catalyst and compared it with the non-
catalysed steam reforming process. The Ru-catalysed 
process gave a hydrogen gas yield of 3.22  mmol/g and 
selectivity of 14.4% whilst the non-catalysed process was 
0.48  mmol/g and 9.9%, respectively. A recent study by 
Sheikhdavoodi et  al. (2015) reported a steam reforming 
of SCB in a supercritical water process under potassium 
oxide as a catalyst to obtain optimal hydrogen yield at 
75.6 mol/kg at 800  °C. However, the study revealed that 
the gas heating value and gasification efficiency of the 
alkali-catalysed process was not as good as those of other 
catalysts like nickel and potassium carbonate. Kruesi 
et  al. (2013) utilised a solar-driven system in the steam 
reforming of SCB in a novel reactor. The study of exergy 
and energy showed that such a solar-driven system is 
energetically more advantageous than the traditional 
auto-thermal system. It was further discovered that the 
syngas produced is of superior quality (heating value) to 
those provided by more traditional systems. Adeniyi et al. 
(2019) modelled the in-line steam reforming of SCB and 
revealed an optimal thermodynamic condition of 600–
700  °C, 1  atm and 10  kg/kg of steam-to-feed. It can be 
concluded that the SCB is a suitable feedstock for steam 
gasification if processed under appropriate conditions.

Pyrolysis
The SCB has also been studied as a feedstock in the 
pyrolysis process to obtain various grades of products 
such as biochar, bio-gas and bio-oil. Zandersons et  al. 
(1999) revealed the potential of SCB as a precursor for 
the production of biochar in a two-stage process (heating 
up and pyrolysis). It was concluded that SCB is a good 
feedstock for the production of biochar as it yielded 35% 
(w/w). On the other hand, the synthesis gas from SCB 
pyrolysis has been evaluated and considered for fuel 
cell applications (Al-Arni et  al. 2010). The synthesis gas 
obtained (about 40% optimum yield) was shown to be 
suitable for electricity generation via fuel cells. Asadullah 
et  al. (2007) pyrolyzed SCB to produce bio-oil and bio-
char as a by-product. They obtained an optimum oil yield 
of 66 wt.% bio-oil at 500 °C. The biochar yield was maxi-
mum at the lower temperature of 300  °C while biogas 
yield was maximum at the higher temperature of 700 °C. 
Carrier et al. (2011) undertook a comparison of slow and 
vacuum pyrolysis of SCB utilising response surface meth-
odology to optimise both processes. They were able to 
establish the optimal conditions for maximising biochar 
yield, bio-oil yield, oil heating value and biochar surface 
area. Darmstadt et  al. (2001) have earlier used SCB in 
a vacuum pyrolysis study by investigating the effect of 
petroleum residue as an additive in the pyrolysis system. 
They observed that co-pyrolysis yielded biochar with a 
small surface area. Erlich et al. (2006) also show that the 
size of the SCB pellets for pyrolysis has a significant effect 
on the product yield as small pellets (higher density) led 
to a high biochar yield and small shrinkage during the 
process. Garcı̀a-Pèrez et al. (2002) showed that SCB vac-
uum pyrolysis will give a high oil yield in a lab-scale setup 
than on a pilot scale and vice-versa for biochar yield. 
Waheed and Williams (2013) undertook a study on com-
bined pyrolysis and steam reforming system for different 
feedstocks including the SCB. They revealed that the SCB 
will give the highest oil yield among rice husk and wheat 
straw under similar experimental conditions. 

Ounas et  al. (2011) proceeded to carry out a stand-
alone SCB pyrolysis process as opposed to the earlier 
combined SCB-petroleum residues co-pyrolysis. The 
thermal degradation patterns and activation energies of 
the different constituents of the biomass were elucidated. 
The thermogravimetric analysis clearly shows that the 
SCB start degradation at a temperature of 746  °C. Two 
peaks were observed from the analysis; the first peak was 
the initial mass-loss associated with hemicellulose pyrol-
ysis which occurred between 811 and 816  °C; whereas, 
cellulose pyrolysis occurred at a higher temperature of 
between 873 and 880  °C, which was responsible for the 
second peak. The olive residue and SCB mostly devola-
tilised around 746–946  °C, with a total volatile yield 
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of about 70–75% and the char in the final residue was 
about 19–26%.  Also, the apparent activation energies 
in the 10–40% conversion range were reported to have 
a value of 153–162 kJ  mol−1 and 168–180 kJ  mol−1 and 
in the 50–80% conversion range, this value is 204–
215 kJ mol−1 and 231–240 kJ mol−1 for olive residue and 
SCB, respectively. This further corroborates that the SCB 
can produce biochar that has activation energy as much 
or more than other cellulosic materials, especially olive 
residue. Adeniyi et  al. (2019) modelled the pyrolysis of 
SCB in a thermodynamic predictions study and revealed 
that up to 63% oil yield can be obtained at 500  °C. The 
predictions also revealed that the oil was composed of 
hydrocarbons of different lengths, aromatic compounds 
and pyrolytic water (8.1%). The yield of SCB pyrolysis 
under different conditions is summarised in Table 9.

Other thermochemical processes
Combustion is the most common and the oldest way of 
transforming fossil fuels and biomass to valuable thermal 
energy. This process is used for basic cooking to more 
multifaceted ultra-high-pressure boilers to produce elec-
tricity (Peres et al. 2021).

Most households in the hamlet still choose to prac-
tice open fire for cooking (Athira et al. 2021). The Tropik 
Wood Fiji and three operational sugar mills Limited 
employ burning of hog fuel and bagasse, respectively 
in high-pressure boilers to produce electricity (Prasad 
2020). The briquetting process compresses large vol-
ume loose and low-density biomass into small volume 
compact lumps and high density (Julia and Sarwar Khan 
2021). It is a densification method that enhances the han-
dling characteristics, calorific value and cost of trans-
portation. Agricultural remains such as SCB are usually 
used for briquetting and they can be completed with or 

without a binder (Silveira Rossi et al. 2021). Briquetting 
process is cheaper, has higher practical thermal value, 
has no sulphur content and is non-polluting, has low ash 
content, is renewable, ideally sized for uniform and com-
plete combustion, eco-friendly and economical (Zhang 
et al. 2021).

Ahmad et  al. (2018) considered an integrated process 
for the thermo-catalytic reforming of SCB in a lab-scale 
reactor. At the experimental optimal conditions, they 
obtained 57 wt.% gaseous products, 23.5 wt.% biochar, 
4 wt.% bio-oil and 15.5 wt.% aqueous phase. The gase-
ous product was 37% hydrogen and possessed a heating 
rate of 16.40  MJ/kg and the bio-oil obtained possessed 
a relatively low water (2.6 wt.%) and oxygen (10.2 wt.%) 
content. Chen et  al. (2012) studied the hydrothermal 
carbonisation of SCB via a wet torrefaction process with 
water, spiked with sulphuric acid and heated in a micro-
wave-assisted process. The sulphuric acid doping was 
shown to have a positive effect on the process. Ramajo-
Escalera et al. (2006) modelled the kinetics of SCB dehy-
dration and combustion process; the SCB combustion 
flames had low luminosity, nearly transparent and spheri-
cal, however, the char combustion was bright and short-
lived. The thermal analysis and de-volatilisation kinetics 
of SCB in inert and non-inert environments have also 
been investigated (Munir et al. 2009). In all these, we can 
surmise that the combustion of SCB is a rapid process 
generating a relatively good amount of thermal energy.

Adsorbents
The SCB is an excellent precursor for the development 
of adsorbents for the removal of pollutants from aque-
ous solutions. The utilisation of biomass as an adsor-
bent has been expressed as an effective and cheaper 

Table 9  Summary of product yield from SCB pyrolysis

a Slow pyrolysis, bvacuum pyrolysis, claboratory-scale setup, dpilot-scale setup, eestimated by difference, fnon-catalysed process

Heating rate (oC/
min)

Temp (oC) Liquid (wt%) Char (wt%) Gas (wt%) [losses] Source

60 700 19.67 22.67 48.72 [8.95] Al-Arni et al. (2010)

50 500 66.1 24.9 9.0 Asadullah et al. (2007)

12 501 43.0 16 41e Carrier et al. (2011)a

21.3 420 43.0 32.6 24.4e Carrier et al. (2011)b

12 500 62.0 19.4 17.6 Darmstadt et al. (2001)

16.7 500 54.6 – – Drummond and Drummond (1996)

12 500 34.4 19.4 46.2e Garcı̀a-Pèrez et al. (2002)c

12 500 30.1 25.7 44.2e Garcı̀a-Pèrez et al. (2002)d

20 950 54.25 20.25 22.53 [2.97] Waheed and Williams (2013)

200 500 75 5 20e Tsai et al. (2006)

62.9 532 23 18 59 Kuan et al. (2013) f
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technology for the removal of the adsorbate of various 
forms from wastewater (Adelodun et al. 2021). The SCB 
has been used as an adsorbent for the removal of heavy 
metals (Khoo et  al. 2018), dyes (Fideles et  al. 2018) and 
motor oil (Sun et al. 2004). The adsorbents can be in the 
form of biosorbent (Brandão et  al. 2010), activated car-
bon (Xia et al. 1998) or ion exchange resins (Laszlo 1996). 
The preparation of SCB biosorbent is usually by wash-
ing, soaking in a chemical reagent to improve the surface 
properties, rinsing, drying, grinding and sieving (Eletta 
et al. 2020). The activated carbon is prepared by chemical 
or steam activation and carbonising in a furnace at very 
high temperatures (Adeniyi and Ighalo 2019).

Girgis et  al. (1994) in their study have revealed that 
phosphoric acid is a better chemical activation agent 
for the carbonisation of SCB than other chemicals  such 
as sulphuric acid, hydrochloric acid and nitric acid. An 
essential approach is the steam explosion, which serves as 
a physical treatment that augments the biomass surface 
area and as a result can enhances other treatments, such 
as enzymatic hydrolysis (Lucas et al. 2020). Abdullah et al. 
(2005) observed that sulphuric acid treatment of SCB is 
better than the formaldehyde treatment, for the removal 
of methylene red from an aqueous solution. They found 
out that the optimum pH for the biosorption process was 
9 in every case. At 25  °C and pH 5 the biomass had an 
experimental adsorption capacity of 2 mg/g and the pro-
cess was exothermic and spontaneous. Ali et  al. (2012) 
utilised raw ground SCB as a sorbent for the removal 
of oil from oil–water mixtures. Their studies showed 
an extra 10  g/g of SCB sorption ability, thus revealing 
its positive potential to be used in this regard. Krishnan 
et  al. (2011) studied the adsorption of Pb (II) unto 
unmodified SCB and SCB activated carbon (AC). The 
specific surface area of the AC from SCB was 536.5 m2/g 
compared to raw SCB which was 146.785 m2/g and com-
mercial AC which was 452.635  m2/g. The SCB AC also 
showed a greater adsorption capacity for nickel (which 
was 140.85 mg/g) than raw SCB (which was 73.56 mg/g) 
and commercial AC (which was 111.11  mg/g). Brandão 
et  al. (2010) examined the biosorption of petroleum 
hydrocarbons onto SCB biosorbent. The biosorbent was 
able to remove 99% gasoline and 90% n-heptane from an 
aqueous solution showing its potential to serve as a treat-
ment agent for hydrocarbon polluted waters. Carvalho 
et al. (2011) conducted a study to evaluate the potential 
of SCB as a sorbent for phosphate and were able to show 
that chemical modification of the biosorbent by FeCl2 
(referred to as doping with Fe2+) can improve the adsorp-
tion capacity by about 42%. Cronje et al. (2011) optimised 
the adsorption of hexavalent chromium by SCB activated 
carbon using response surface methodology; central 
composite design. The optimums were 6.85 g/L dosages, 

40 °C temperature, 77.5 mg/l initial metal concentration 
and pH of 8.58. 

Other researchers have also reported the use of modi-
fied SCB for the adsorption of hexavalent chromium 
(Garg et al. 2009), copper, cobalt and nickel (Xavier et al. 
2018). The study achieved excellent removal of the afore-
mentioned heavy metals from wastewater using modified 
SCB. Da Silva et al. (2011) utilised an elaborate prepara-
tion technique that includes NaOH, mono-chloroacetic 
acid, ethanol and FeCl3.6H2O, to modify SCB for the 
biosorption process of brilliant red from aqueous solu-
tion. Besides the excellent adsorption capacity obtained 
as shown in Table 10, their studies revealed the best fits 
for the Avrami fractional kinetic model and Sips equi-
librium model. Inyang et  al. (2011) were able to show 
that activated carbon can be obtained from anaerobi-
cally digested SCB which can have 2 times more sorption 
capacity for lead than commercial activated carbon. The 
developed adsorbent had 20 times more sorption capac-
ity than the raw SCB. Qureshi et al. (2008) utilised SCB 
as a precursor for the development of activated carbon 
aimed at sugar decolourisation. Their study revealed that 
it showed better decolourising property than commer-
cial carbon. The SCB has also been reported for use in 
a mixture with compost and granular activated carbon 
(GAC) for the removal of benzene, toluene, ethylbenzene 
and o-xylene (BTEX) from the air stream in a packed 
bio-filter (Mathur et  al. 2007). The adsorbent showed a 
maximum removal efficiency of 99% for all compounds 
studied. Sene et  al. (2002) also examined SCB packag-
ing as a bio-filter for benzene in gaseous streams. Their 
results were not so positive as the elimination capacity 
was lower than for other standard bio-filters. In a similar 
air pollution study, Pantoja Filho et al. (2010) were inter-
ested in hydrogen sulphide gas-phase sorption unto SCB 
bio-filters. It was revealed that SCB bio-filters is an excel-
lent long-term bio-filter for hydrogen sulphide after dis-
playing a 100% removal efficiency (after 2 days).

An interesting application of SCB is also its novel use 
in the synthesis of zeolite nano-adsorbent which can be 
used as an ion-exchanger, as a catalyst and as an adsor-
bent (Moisés et  al. 2013). These among other studies 
elucidated in Table  10, go a long way to prove that the 
SCB is an excellent material for the development of low-
cost adsorbents suitable in removing heavy metals, dyes, 
organic solvents, hydrocarbons and many other environ-
mental pollutants from aqueous solutions.

Other applications of SCB
This section highlights other important uses of SCB as 
a potential feedstock for economic sustainability. The 
SCB is a potential source of flavonoids (Colombo et  al. 
2006), for soil amendment (Deng et al. 2016), to produce 
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Table 10  Summary of SCB application as adsorbents

Nature of bagasse Modification/activation reagent Adsorbate Monolayer 
adsorption 
capacity (mg/g)

Source

Biosorbent Sulphuric acid Methylene red – Abdullah et al. (2005)

Formaldehyde Methylene red –

Untreated Methylene red –

Biosorbent Untreated Ni2+ 2.234, 2a Alomá et al. (2012)

Activated carbon (AC) Steam Ni2+ 140.85 Krishnan et al. (2011)

Biosorbent (pith) Untreated Ni2+ 73.56

Biosorbent Untreated Gasoline 8.36 mL/g Brandão et al. (2010)

Biosorbent Untreated n-Heptane 2.78 mL/g

Biosorbent NaOH Phosphate 67.5 Carvalho et al. (2011)

Biosorbent NaOH, FeCl2 Phosphate 152

AC ZnCl2 Cr6+ – Cronje et al. (2011)

Biosorbent (lignin) NaOH, mono-chloroacetic acid, etha-
nol, FeCl3.6H2O

Brilliant red 2BE 60.3 Da Silva et al. (2011)

Biosorbent Trimellitic acid, pyridine, dimethyl-
acetamide

Auramine-O 2.492 mmol/g Fideles et al. (2018)

Biosorbent Trimellitic acid, pyridine, dimethyl-
acetamide

Safranin-T 1.23 mmol/g

Biosorbent Succinic acid Cr6+ – Garg et al. (2009)

Biosorbent Succinic anhydride Cu2+ 185.2 Gurgel et al. (2008)

Cd2+ 212.8

Pb2+ 416.7

Biosorbent (mercerised) NaOH, succinic anhydride Cu2+ 185.2 Gurgel et al. (2008)

Cd2+ 256.4

Pb2+ 500.0

Biosorbent (mercerised) NaOH, acetone, 1,3-diisopropyl-
carbordiimide, dimethyl-formamide, 
triethylene-tetramine

Cu2+ 69.4 Gurgel and Gil (2009)

Cd2+ 106.4

Pb2+ 222.2

Biosorbent Succinic acid, pyridine Methylene blue 478.47 Gusmão et al. (2012)

Gentian violet 1273.16

Biosorbent Ethylenediamine tetra-acetic acid 
(EDTA) dianhydride

Methylene blue 202.43 Gusmão et al. (2013)

Gentian violet 327.87

AC Epichlorohydrin, dimethyl-formamide, 
trimethylamine

Nitrate 5.82 Hafshejani et al. (2016)

Biosorbent Untreated Basic violet 10 50.4 Ho et al. (2005)

Biosorbent Untreated Basic violet 1 20.6

Biosorbent Untreated Basic green 4 13.9

Biosorbent H2SO4, NaOH Cd2+ 1.95 mol/kg Homagai et al. (2010)

Pb2+ 1.58 mol/kg

Ni2+ 2.52 mol/kg

Zn2+ 2.40 mol/kg

Cu2+ 2.91 mol/kg

AC (from anaerobically digested SCB) – Pb2+ 653.9 mmol/kg Inyang et al. (2011)

AC Steam Chlorine – Jaguaribe et al. (2005)

Biosorbent (mercerised) Ethylenediamine tetra-acetic acid 
(EDTA) dianhydride, pyridine, acetic 
anhydride

Cu2+ 92.6 Júnior et al. (2009)

Cd2+ 149.0

Pb2+ 333.0

AC ZnCl2 Phenol 12.33 Kalderis et al. (2008)

Biosorbent Untreated Hg2+ 35.71 Khoramzadeh et al. (2013)
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super-capacitor electrodes (Rufford et  al. 2010) and for 
the synthesis of zeolite nano-adsorbent (Moisés et  al. 
2013). Also, SCB can be used for the generation of elec-
tricity via combustion in thermal power plants. Life cycle 
assessment has shown that the process is sustainable in 
terms of resources though at the cost of a negative envi-
ronmental impact (Silva et  al. 2014). The SCB has also 
being used as a substrate for the cultivation of edible 
mushrooms (Moda et al. 2005). It has been considered as 
feedstock for the preparation and purification of lignin–
carbohydrate complexes (also known as commercial 
lignin) (Singh et al. 2005; Hoareau et al. 2004). The SCB 
is highly rich in carbohydrates as it can be consumed as 
food for human beings, feeds for the animal in numerous 

forms and serves as fertiliser for crop production (Pra-
manik et al. 2021).

Briquettes, cements and composites
The SCB can also be used in numerous environmental 
civil engineering applications. It can be used for making 
bricks, concretes, ceramics, cement, and as re-enforce-
ment for plastic composites (Loh et  al. 2013). SCB ash 
is a residue obtained from the burning of SCB for heat 
generation in boilers and electricity generation purposes. 
This ash is used as cementitious material due to its poz-
zolanic properties (Ofuyatan et al. 2021). In this section, 

Table 10  (continued)

Nature of bagasse Modification/activation reagent Adsorbate Monolayer 
adsorption 
capacity (mg/g)

Source

AC (Pith) HCl, steam Pb2+ 200.0 Krishnan and Anirudhan 
(Krishnan and Anirudhan 2002)

Hg2+ 188.68

Cd2+ 153.85

Co2+ 128.70

AC (pith) Steam Cd2+ 24.70 Krishnan and Anirudhan (2003)

Biosorbent Untreated Cu2+ 9.48 Liu et al. (2012)

Biosorbent Untreated Pb2+ 6.366 Martín-Lara et al. (2010)

Biosorbent Sulphuric acid Pb2+ 7.297

Biosorbent (cellulose) Zirconium oxychloride Sulphate 0.4 mol/g Mulinari and Silva (2008)

Biosorbent Ethylenediamine tetra-acetic acid 
(EDTA) dianhydride, pyridine, acetic 
anhydride

Zn2+ 102.25 Pereira et al. (2010)

Biosorbent (lignin) Formic acid, NaOH, chloroacetic acid Cd2+ – Peternele et al. (1999)

Pb2+ –

Biosorbent Untreated Methyl red 5.66 Saad et al. (2010)

Biosorbent Phosphoric acid Methyl red 10.96

Biosorbent (with sludge) KOH, HCl, HNO3 Pb2+ 135.54 Tao et al. (2015)

Biosorbent (rind) Immobilised in Ca-alginate Cr3+ 296.21 Ullah et al. (2013)

Cr6+ 495.56

Biosorbent (pith) Immobilised in Ca-alginate Cr3+ 381.05

Cr6+ 767.25

Biosorbent (rind beads) Immobilised in Ca-alginate Cr3+ 303.11

Cr6+ 491.24

Biosorbent (pith beads) Immobilised in Ca-alginate Cr3+ 449.23

Cr6+ 832.13

Biosorbent Pyromellitic dianhydride, FeCl3, FeSO4, 
EDTA

Pb2+ 1.2 mmol/g Yu et al. (2013)

Cd2+ 1.1 mmol/g

Biosorbent Untreated Congo red 38.2 Zhang et al. (2011)

Biosorbent Untreated Rhodamine B 65.5 Zhang et al. (2013)

Basic blue 9 30.7
a Experimental adsorption capacity
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progress made so far in research on the use of SCB for 
environmental engineering are further elaborated.

Briquettes and ceramics
Due to the high silicon oxide component of sugarcane 
bagasse ash (SCBA), it has been considered as an addi-
tive for ceramics and high-temperature quartz bricks. 
Table  11 presents some properties of these bricks and 
ceramics used in high-temperature applications. Souza 
et al. (2011) evaluated the feasibility of its use in ceram-
ics and was observed that the addition of SCBA is advan-
tageous due to behaviours like a non-plastic material in 
the bricks; thereby reducing its linear shrinkage during 
drying and firing. The SCBA has been considered as a 
potential replacement for quartz in red ceramics. It has 
been shown that the properties of the ceramics can be 
improved with up to 10 wt% addition of SCBA to form 
the ceramic bricks (Teixeira et  al. 2008). Faria et  al. 
(2012) also studied the use of SCB for a high-temperature 
application, albeit with clay as the major component of 
the bricks. Though advantageous, it was succinctly elu-
cidated that the SCBA has limitations in high-temper-
ature bricks. Major concerns were the increased water 
absorbance and the reduction of the mechanical prop-
erties especially above 10 wt.% SCBA. Lima et al. (2012) 
analysed the mechanical properties of compressed earth 
bricks doped with SCBA for masonry applications.

In one of the more significant conclusions from the 
study, it was surmised that with 12wt% cement and 8wt% 
SCBA, the bricks are excellent and can be used in the 
manufacture of non-structural masonry components 
which proves the technical feasibility of this material.

Cement and concrete
Payá et  al. (2002) considered SCBA as a cement replac-
ing material in the concrete industry. The major con-
clusion from the study was quite negative but was valid 
nonetheless. It was observed that the SCBA is too fine 
and possesses a relatively high inorganic carbon content 

(about 15%) to be used in concrete production. They sug-
gested further studies if SCBA will be successfully used 
in cement. Sales and Lima (2010) went further to do 
a study on this area. It was realised that the ash cannot 
be referred to as a substitute for the mortars as it cannot 
match the binding properties of cement. It can be con-
sidered as a sand substitute as its properties are similar 
to those of very fine sand. It was observed that partial 
substitution of 20–30% with SCBA was optimum for the 
compressive strength of the concrete. Pereira et al. (2018) 
decided to examine the use of SCBA in cement mortars. 
Replacement in the range of 15–20% yielded the best 
behaviour in terms of compressive strength alone. It was 
also once again observed that the effect of SCBA doping 
on other mechanical properties is sometimes negative.

Ganesan et al. (2007) observed an optimum of 20% par-
tial substitution. Numerous other studies have been con-
ducted in this respect with similar conclusion (Andreão 
et  al. 2019; Bahurudeen et  al. 2014). Other studies have 
come in the domain of performance evaluation (Bahuru-
deen et al. 2015), the pozzolanic effect (Frías et al. 2011) 
and the filler effect (Cordeiro et  al. 2009). In a recent 
study, SCBA application in self-compacting concrete 
was examined to replace cement by up to 30%. It was 
observed that the proportion of SCBA used did not sig-
nificantly improve the mechanical properties of the con-
crete, except for a slight improvement in the compressive 
strength (Moretti et al. 2018).

Polymer composites
Composites are structural materials consisting of two or 
more constituents (sometimes not soluble in each other) 
combined at a macroscopic level (Adeyanju et al. 2021). It 
consists of the reinforcing or discontinuous phase (metal, 
ceramic and fibre) embedded in the continuous phase or 
matrix or resin (Thermosets and Thermoplastics) (Igh-
alo et  al. 2021). Bilba et  al. (2003) studied the influence 
of the chemical composition of SCB on the properties of 
bagasse-cement composites. The major observation of 

Table 11  Summary of properties of SCB bricks for high-temperature applications

a Compressive strength, btensile strength

SCB or SCBA 
(Wt%)

Temp (oC) Linear 
shrinkage (%)

Water 
absorbance (%)

Bulk density 
(g/cm3)

Flexural 
strength (MPa)

Apparent 
porosity (%)

Reference

10 1000 2.25 – – 10 – Teixeira et al. (2008)

20 1000 3 22 1.7 6 14 Souza et al. (2011)

10 1000 6 22 1.65 12.5a 29 Phonphuak and 
Chindaprasirt 
(2018)

10 1000 2.25 22.8 1.67 1.5b – Faria et al. (2012)
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the study was that the presence of the SCB in the com-
posite delays the setting time and decreases the maxi-
mum hydration temperature of the setting. The tests by 
Cerqueira et  al. (2011) showed that SCB fibres will sig-
nificantly improve the mechanical properties of Poly-
propylene (PP)-SCB composites. The 15wt% SCB gave 
maximum impact and flexural strength while 10wt% SCB 
gave maximum tensile strength. Luz et  al. (2007) also 
studied the mechanical behaviours of PP-SCB compos-
ites and compared compression moulding and injection 
moulding. They also conducted a thorough microstruc-
tural analysis of the composites. From the study, it was 
put forward that injection moulding under vacuum is 
the better preparation technique (when considering the 
properties of the end products). Luz et al. (2008) utilised 
cellulose and lignocellulose from SCB in the develop-
ment of PP composites.

The study was focused on the effect of acetylation of 
the fibres on the mechanical and thermal properties of 
the end product. It was discovered that acetylation of the 
fibres is not an effective fibre pre-treatment process as it 
led to products with lesser mechanical properties. Luz 
et  al. (2010) went on to show that PP-SCB composites 
were more environmentally friendly than Talc-PP com-
posites. The former is lighter but with equivalent perfor-
mance in automotive applications.

Hoareau et  al. (2006) developed phenol–formalde-
hyde and SCB composites in the form of fibreboards. 
From their measurements of impact strength and water 
absorption, it was put forth that pressure application 
during the curing process is important and dilution of the 
lingo-phenolic pre-polymer to ensure good interaction 
between the fibres and the resin is important too. Paiva 
and Frollini (2002) established the technical feasibility 
of developing phenol–formaldehyde and SCB compos-
ites and buttressed that the pre-modification do not have 
a significant effect/improvement on the final product. 

Mulinari et  al. (2009) prepared high-density polyethene 
(HDPE)-SCB composites. They observed that the modi-
fication of SCB cellulose reduced the composites elon-
gation at the break by 15% in comparison to unmodified 
SCB cellulose but increased the tensile modulus by 38%. 
The modification was by 10% sulphuric acid, 1% sodium 
hydroxide then sodium chloride bleaching followed 
by the use of zirconium oxychloride. A similar conclu-
sion on the general effect of such modification was also 
reinforced by another similar study for HDPE-SCB com-
posites (Mulinari et  al. 2010). Rodrigues et  al. (2011) 
developed polyester (PE)-SCB resins by an esterifica-
tion pre-modification of fibres. Their study revealed that 
chemical modification improved tensile strength by as 
much as 71.5% compared to PE resin alone but only by 
13% for unmodified fibres. It was attributed to the fact 
that the pre-treatment improved the interfacial bonding 
ability of the fibres with the resins.

Stael et al. (2001) have also been able to show the fea-
sibility of deriving ethylene-co-vinyl acetate (EVA)-SCB 
composites. Table 12 presents a summary of the mechan-
ical properties of SCB in polymer composites.

Techno‑economic analysis
Several studies have been performed over the years to 
determine the techno-economic viability and financial 
profitability of the SCB for various applications. This sec-
tion appraised their finding to justify that the SCB is an 
economically sustainable feedstock. Cavalett et al. (2012) 
conducted a techno-economic analysis of the first-gen-
eration refining of SCB and reported that the return on 
investment is higher in autonomous plants than annexed 
plants. Also, the return on investment was higher in fixed 
plants than in flexible plants. In both fixed and versatile 
processes, it was found that annexed plants have a higher 
return investment rate (RIR) than the autonomous ones. 
Flexibility has been argued as a crucial index in sustaining 

Table 12  Mechanical properties of SCB reinforced polymer composites

PP polypropylene, HDPE high-density polyethene, P phenolic thermoset, PE polyester
a Obtained by compression moulding, bunmodified fibres

Composite SCB in 
composite 
(wt%)

Impact 
strength (kJ/
m2)

Tensile 
strength (MPa)

Flexural 
strength (MPa)

Tensile 
modulus (MPa)

Elongation at 
break (%)

Source

PP-SCB 5 0.0327 22.9 34.8 1105.5 – Cerqueira et al. (2011)

PP-SCB 10 0.0425 23.0 35.5 1027.1 –

PP-SCB 15 0.0525 22.3 37.2 1442.5 –

PP-SCBa 5 – 18.7 19.2 1001.9 3 Luz et al. (2007)

HDPE-SCB 10 – 1.54 – 897 1.74 Mulinari et al. (2009)

HDPE-SCB 10 – 15.6 – 1324.2 1.2 Mulinari et al. (2009)

PE-SCBb 5 – 11 – 1358.1 – Rodrigues et al. (2011)
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productivity in this business sector. As global sugar 
demand is unlikely to exceed the demand for ethanol, this 
should be taken into account in the design of the plants. 
Dias et  al. (2010) carried out an economic assessment 
of sugarcane ethanol production from an autonomous 
distillery. It has been noted that the use of the produced 
waste (SCB) as fuel in the power cogeneration system 
would significantly boost the process’s profitability. And 
the selling of generated excess power is another option 
too. Dantas et al. (2013) assessed the cost and viability of 
the different technical routes for SCB electricity genera-
tion. The study’s key finding is that electricity generation 
by combustion of biomass is still the only economically 
feasible option at the moment. The current position still 
holds even though predictions were made up to the year 
2030 for an improvement in the electrical generation 
from SCB. The other technologies are still considered to 
be in their infancy and early-stage growth (except for the 
Rankine cycle process).

Gubicza et  al. (2016) carried out a techno-economic 
study of SCB bio-ethanol production. The mechanism 
involved was a liquefaction mechanism with Escherichia 
coli concurrently saccharifying and co-fermenting. The 
key cost contributors have been described as the feed-
stock price (contributing 25% annual cost of production) 
and the annual cost of capital (contributing 45% total cost 
of production). It is well understood that ethanol yield 
can affect the cost of production, and it has been shown 
in this study that it is financially appropriate to increase 
the concentration of enzymes (increasing enzyme cost) 
to boost ethanol yield. In an interesting study, Leibbrandt 
(2010) compared the techno-economic viability of bio-
chemical processing to the thermochemical processing of 
SCB. It was observed that biological treatment with liq-
uid hot water and acid hydrolysis pre-treatment were not 
energy self-sufficient, but the steam explosion pre-treat-
ment was energy self-sufficient. Both fast and vacuum 
pyrolysis and Fischer–Tropsch processing were energy 
self-sufficient. It was observed that Fischer–Tropsch pro-
cessing has the highest total investment cost followed by 
steam explosion pre-treatment, then fast pyrolysis and 
finally vacuum pyrolysis, for bio-ethanol production. The 
order still holds for liquid fuel production cost while the 
reverse order holds for the internal rate of return.

Macrelli et  al. (2012) studied the economics of 2nd 
generation bio-ethanol production from SCB and leaves, 
integrated with sugar-based ethanol production pro-
cesses. It was observed that the average ethanol selling 
price (for first- and second-generation processes) at 0.53 
US$/L is economically feasible for all types of processes. 
Mesa et  al. (2016) evaluated bio-ethanol production 
based on two SCB pre-treatment strategies; organo-
solv and enzymatic hydrolysis. Based on their economic 

consideration, the proposed best alternative is 15  min 
using an acid pulping solution without ethanol in a solid-
to-liquid ratio of 1 g/5 mL; and the second step of 60 min 
using 45% (v/v) of ethanol and 3% of NaOH on dry fibre. 
The study presented a technology that can be applied at 
an industrial scale due to the elevated ethanol yield and 
low operational costs involved.

Seabra et  al. (2010) considered the economics of bio-
chemical and thermochemical processing of sugarcane 
residues as a side process to the main sugar refining 
process. They revealed that the biochemical conversion 
of the residues may lead to an additional 0.033 m3 etha-
nol per tonne of cane and the thermochemical conver-
sion will lead to about 0.025  m3 per tonne. It was also 
revealed that electricity will be an important co-product 
for the biorefinery, especially for the biochemical conver-
sion process. Merwe (2013) compared the energy effi-
ciencies and economics of different process designs for 
bio-butanol production from sugarcane molasses. The 
fermentation process with C. beijerinckii in a fed-batch 
system with in situ gas stripping, followed by liquid–liq-
uid extraction (LLE) and steam stripping distillation was 
the only profitable process based on prevailing economic 
reality. Though the process was energy efficient, it was 
put forward that using molasses will result in large fluc-
tuations in the product selling price which can ultimately 
undermine the viability of such production process.

It has also been shown that producing bio-butanol 
from SCB through first-generation refining is still as prof-
itable as the bio-ethanol process (Mariano et  al. 2013). 
Mariano et  al. (2013) were also able to show that bio-
butanol production is a more profitable process in gen-
eral than biogas production. In their cursory look at the 
bio-ethanol production from SCB, Ensinas et  al. (2013) 
opined that the major problem of the second-genera-
tion bio-ethanol production processes is the high cost of 
enzymes. Jorapur and Rajvanshi (1997) revealed that the 
generation of energy via the gasification of SCB is a prof-
itable venture. It was also put forward that the economics 
become more favourable with larger gasification systems 
due to the economics of scale. Based on this techno-eco-
nomic appraisal of SCB, it can be concluded that it a via-
ble feedstock for economic sustainability. This is because 
it can be used to produce several products at optimum 
profit margin with adequate return on investment.

Conclusion
The various applications of SCB have been extensively 
examined in light of the need for energy and environ-
mental sustainability. The SCB can be regarded as a 
sustainable feedstock for biofuels production as it was 
successfully used to produce bio-ethanol, bio-methane, 
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bio-hydrogen, and bio-butanol. Bio-products such as 
xylitol, organic acids, xylooligosaccharides and enzymes 
that were produced from the SCB justify its economic 
importance. The diversity of SCB applications was even 
more amazing as the material has also found applications 
as adsorbent, ion exchange resin, briquettes, ceramics, 
concrete, cement, and polymer composites. It can be sur-
mised that SCB is biomass with great potential to sup-
plement global energy demand and foster environmental 
and economic sustainability.
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