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Abstract 

Animal cells are used in the manufacturing of complex biotherapeutic products since the 1980s. From its initial uses 
in biological research to its current importance in the biopharmaceutical industry, many types of culture media were 
developed: from serum-based media to serum-free to protein-free chemically defined media. The cultivation of 
animal cells economically has become the ultimate goal in the field of biomanufacturing. Serum serves as a source 
of amino acids, lipids, proteins and most importantly growth factors and hormones, which are essential for many cell 
types. However, the use of serum is unfavorable due to its high price tag, increased lot-to-lot variations and potential 
risk of microbial contamination. Efforts are progressively being made to replace serum with recombinant proteins 
such as growth factors, cytokines and hormones, as well as supplementation with lipids, vitamins, trace elements and 
hydrolysates. While hydrolysates are more complex, they provide a diverse source of nutrients to animal cells, with 
potential beneficial effects beyond the nutritional value. In this review, we discuss the use of hydrolysates in animal 
cell culture and briefly cover the composition of hydrolysates, mode of action and potential contaminants with some 
perspectives on its potential role in animal cell culture media formulations in the future.
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Introduction
Biopharmaceutical products are playing an increas-
ingly important role in the management and treatment 
of diseases ranging from infections to enzymatic defi-
ciencies and cancers. According to a recent market 
report published by Mordor Intelligence, the biophar-
maceutical market has reached approximately $325.17 
billion in 2020 with a compound annual growth rate 
(CAGR) of 7.32% from 2021 to 2026, that is a revenue 
of $496.71 billion in 2026 (Mordor Intelligence 2021). 
A prominent example of a biopharmaceutical product 
is monoclonal antibodies (mAbs), which are becom-
ing the standard of care for indications in oncology 
and inflammation. Despite the Covid-19 pandemic, 
mAb therapeutic sales are expected to grow to $114.43 

billion in 2021 and reach $179.56 billion in 2025, a 
CAGR of 11.9% (The Business Research Company 
2021). Currently, the majority of the biopharmaceutical 
products are made using animal cell systems because of 
their ability to produce correctly folded and fully gly-
cosylated proteins that other simpler organisms cannot 
replicate (Li et  al. 2010). The ultimate goal of process 
development in animal cell culture is to increase prod-
uct quality and yield while reducing cost. However, 
despite constant bioprocessing improvement in both 
upstream and downstream operations, high produc-
tion cost remains the bottleneck that limits demand 
(Xu et al. 2020). The cell culture medium is an impor-
tant component of raw materials that contributes sig-
nificantly to the cost of production. Based on the type 
of supplements added, animal cell culture media can be 
broadly described as chemically defined medium, pro-
tein-free medium, animal component-free medium and 
serum-containing medium (Yao and Asayama 2017). 
Almost all cell lines were originally developed in media 
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that contain animal serum and later adapted to serum-
free media. Serum-supplemented medium is effective 
for a variety of cell types as it contains an abundance 
of known and unknown factors such as growth factors, 
hormones and lipid components that are necessary 
for the survival and proliferation of cells (O’Flaherty 
and Bergin 2020). However, the use of animal serum 
in media not only increases the risk of contamination 
with infectious agents, but also contributes significantly 
to the cost of production (O’Flaherty and Bergin 2020). 
Researchers are increasingly moving away from the 
use of animal serum and into animal-component-free 
media. The removal of serum not only improves pro-
duction consistency, resulting in less batch-to-batch 
variability, but also reduces downstream processing 
time and cost. Many scientists have embarked on the 
journey in exploring alternatives to serum, to discover 
simple, low-cost and highly reproducible media for 
culturing animal cells. Current alternatives to serum 
include the use of a combination of recombinant pro-
teins (e.g., insulin and other growth factors), hormones 
(e.g., hydrocortisone), lipids, and hydrolysates.

Hydrolysates are the products of plant (soy, pea, rice, 
rapeseed, etc.) or animal (chicken, pork, fish, etc.) pro-
teins after hydrolysis by acid, alkali, enzymes and fer-
mentation processes. When a predominantly protein 
starting material is used to produce the hydrolysate, the 
product may be described as a protein hydrolysate, for 
example, rice protein hydrolysate and rapeseed protein 
hydrolysate. Hydrolysates often contain a mixture of 
peptides, amino acids, minerals, carbohydrates, lipids 
and proteins that are similar to the raw input material. 
Since the late 1970s, chicken and fish-derived hydro-
lysates, have been used as serum replacements for 
animal cell culture (Mizrahi 1977). However, as animal-
derived hydrolysate would encounter the same issues as 
using animal serum, the use of plant-based hydrolysates 
such as those derived from soy, rice and cottonseed 
proteins have gained popularity. The relatively low cost 
of plant-based hydrolysates makes them attractive as 
serum replacement components for large-scale protein 
production. However, given hydrolysate products are 
not fully characterized, further understanding of their 
components and how these can influence cell growth 
and maintenance is key to their success as potential 
serum replacement components. In this review, we 
will describe the history of animal cell culture, includ-
ing examples of animal cell cultures used for the pro-
duction of biotherapeutics in the presence or absence 
of serum, the history of the use of hydrolysates in ani-
mal cell cultures for biotherapeutics and new modali-
ties such as cultured meat production. The review will 
also describe the compositions of hydrolysate products, 

their modes of action and potential contaminants with 
some views on their future use in animal cell cultures.

The advent of animal cell culture and its use 
in biotherapeutics production
The ability to culture and study cells outside of the ani-
mal/host’s body in the last 150 years has led to the devel-
opment of modern science and medicine that we know 
today. The first attempt of cell culture dates back to the 
late nineteenth century when Wilhelm Roux demon-
strated that it is possible to maintain living cells of the 
neural plate of the chick embryo in saline for a few days 
(Rodríguez-Hernandez et  al. 2014). More successful 
attempts at tissue culture were achieved when a small 
amount of serum or lymph was added to the culture. In 
1907, Ross Granville Harrison developed a reproducible 
technique of tissue culture by placing the neural tube 
frog embryo into a drop of fresh lymph and inverted 
the coverslip, generating the first hanging drop culture 
technique (Harrison et al. 1907). The first tissue culture 
of animal cells was described a few years later by Mon-
trose Burrows and Alexis Carrel using culture media 
that contains animal plasma (Carrel and Burrows 1911a, 
b). They also demonstrated that these cell lines can be 
maintained in culture for several months and that the 
cells could grow extensively in media containing plasma 
of other mammals including rabbits, dogs, or humans 
(Carrel and Burrows 1911a, b). However, it was not until 
1948 that the first cell line, L929, a mouse connective tis-
sue fibroblast was established (Earle et al. 1943). In 1951, 
an aggressive adenocarcinoma of the cervix gave rise to 
HeLa cell (Gey 1952), one of the most commonly used 
human cell lines for medical research. The establishment 
of cell lines has not only contributed to our understand-
ing of many diseases, but it has also become an invalu-
able tool for the production of biotherapeutics, ranging 
from recombinant protein biologics to virus production 
for gene therapy (Table 1).

In 1975, the first large-scale production of antibod-
ies was described by Georges Köhler and Cesar Mil-
stein (1975). They combined an antibody-producing B 
cell with a myeloma cell line; the resulting hybridoma 
acquired the ability to divide rapidly and at the same time 
produce the antibody. Since then, antibodies and other 
recombinant proteins have become the predominant 
products in the biopharmaceutical industry. Animal cells 
are the preferred choice for biotherapeutic manufactur-
ing as these cell lines are capable of producing complex 
proteins with post-translational modifications similar to 
those produced in humans (Durocher and Butler 2009; 
Ghaderi et al. 2012; Sha et al. 2016). In addition, animal 
cells can secrete proteins efficiently and at high titers, 
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facilitating protein production and purification (Dumont 
et al. 2016).

In 1986, the first therapeutic protein, the human plas-
minogen activator, produced in the Chinese Hamster 
Ovary (CHO) cell line was approved by the US Food 
and Drug Administration (FDA) (Wurm 2004). Since 
then, the CHO cell system has continued to be the lead-
ing cell line of choice for human therapeutic production, 
accounting for ~ 70% of recombinant protein production 
in the 2000s (Jayapal et al. 2007). The popularity of CHO 
cells and CHO variants can be attributed to the following 
reasons. Firstly, CHO cells can grow in serum-free chem-
ically defined media in suspension culture. The removal 
of serum reduces lot-to-lot variability and produces an 
improved safety profile for the therapeutic protein, in 
comparison to therapeutic protein produced in media 
containing animal-derived proteins. Secondly, since the 
first approved therapeutic protein was produced in CHO 
cells and with more than three decades of safety data, it 
may be easier to obtain regulatory and consumer accept-
ance. Thirdly, being a hamster-derived cell line, CHO 
cells are less susceptible to certain human viral infec-
tions, likely because some of the human viral entry genes 
are not expressed in these cells (Xu et al. 2011). Finally, a 
powerful system of gene amplification, such as dihydro-
folate reductase (DHFR) or glutamine synthetase (GS) 

has previously been described in CHO cells. These gene 
amplification systems can improve recombinant protein 
yield and specific productivity, which was previously an 
issue in other animal cell lines (Kim et al. 2012; Dumont 
et al. 2016).

Despite the popularity of the CHO cell line in protein 
therapeutic production, it is unable to produce the full 
range of glycosylation found in humans (Patnaik and 
Stanley 2006), while it also produces rodent-specific gly-
can structures that may lead to increased immunogenic-
ity in humans (Bosques et al. 2010; Ghaderi et al. 2012). 
This has led to the use of human-derived cell lines such 
as HEK293 (Human Embryonic Kidney cells) for thera-
peutic protein production. HEK293 can be easily grown 
in suspension serum-free culture; the cells also grow rap-
idly, possess superior transfection efficiency and express 
high levels of protein (Vink et  al. 2014). Other variants 
of this cell line, such as HEK293-T, express an allele of 
the simian virus 40 large T antigen and are capable of 
expressing high titers of viral gene vectors (Yamaguchi 
et  al. 2003). HEK293-T cells are often used for the pro-
duction of retroviral vectors for cell and gene therapy 
(Ferreira et al. 2019).

While both CHO and HEK293 are capable of grow-
ing in serum-free media, we noted that both cell lines 
are immortalized and may have accumulated undefined 

Table 1 Establishment of important cell lines for research and biopharmaceutical manufacturing in order of year of origin

Name Species and tissue Morphology Culture in serum-free 
media

Year of origin

L929 Mouse connective tissue Fibroblast No 1948; Earle et al. (1943)

HeLa Human cervix Epithelial Yes 1951; Gey (1952)

CHO Chinese hamster ovary Epithelial-like Yes 1957; Tjio and Puck (1958)

Baby hamster kid-
ney (BHK) cells

Hamster kidney cells Fibroblast Yes 1961; Hernandez and Brown (2010)

Vero African green monkey kidney Fibroblast Yes 1962; Yasumura and Kawakita (1963)

3T3 Mouse embryo Fibroblast No 1962; Todaro and Green (1963)

U-2 OS Human osteosarcoma Epithelial No 1964; Ponten and Saksela (1967)

MCF 7 Human adenocarcinoma Epithelial No 1970; Soule et al. (1973)

HT1080 Human fibrosarcoma Epithelial No 1974; Rasheed et al. (1974)

Sp2/0 Fused BALB/c mouse spleen cell and 
mouse myeloma P3X63Ag8

Lymphoblast Yes 1975; KÖHler and Milstein (1975)

Caco-2 Human colorectal adenocarcinoma Epithelial No 1977; Fogh et al. (1977)

Jurkat Human T cell leukemia Lymphoblast No 1977; Schneider, et al. (1977)

HEK293 Human embryonic kidney Epithelial Yes 1977; Graham et al. (1977)

THP-1 Human monocytic leukemia Monocytic Yes 1980; Tsuchiya et al. (1980)

NS0 Murine myeloma Lymphoblast Yes 1981; Galfrè and Milstein (1981)

PER.C6 Human embryonic retinal cells Epithelial Yes 1999; Havenga et al. (2008)

HKB-11 human hybrid kidney/B cell Epithelial Yes 2001; Cho et al. (2003)

AGE1.CR Duck embryo Fibroblast Yes 2007; Jordan et al. (2009)

CEVEC’s amniocyte 
production (CAP)

Primary human amniocytes Epithelial Yes 2011; Wölfel et al. (2011)
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mutations to survive without serum. Although HEK293 
became an immortalized cell line after being transformed 
with sheared adenovirus-5 DNA (Kovesdi and Hed-
ley 2010), CHO cells were immortalized spontaneously 
(Wurm and Wurm 2017). Some other cell lines have not 
been reported to be capable of serum-free culture; for 
example, the commonly used human Colorectal Adeno-
carcinoma cell line, Caco-2, requires the use of serum for 
survival and maintenance (Table  1). Yao and Asayama 
(2017)  have published a detailed review on the history, 
characteristics and current issues the community is fac-
ing over animal cell culture media . The development of 
serum-free media has many considerations such as defin-
ing the composition and concentration of various com-
ponents in the media; it has been a subject of research for 
many decades with limited success.

The use of hydrolysate in animal cell culture
Although animal serum is capable of supporting the 
growth of almost all cell lines (Zheng et  al. 2006), the 
risks associated with its use outweigh the benefits. Fur-
thermore, the US FDA and European Medicine Agency 
have tightened their rules on the use of animal-derived 
components in commercial protein production out of 
concerns for patient safety (Merten 2002; Siemensma 
et  al. 2010). It is therefore important to investigate the 
essential components contain in serum that supports the 
growth of animal cells. Despite the availability of some 

animal-component-free media for selected cell lines, 
such media is not available for all cells, and their devel-
opment often requires an enormous amount of time and 
money (Ballez et al. 2004). Protein digests from different 
types of raw materials, termed hydrolysates, have been 
proposed as alternatives to components in serum.

Hydrolysates are produced from enzymatic digestion 
and/or acid hydrolysis of micro-organism (e.g., yeast), 
animal proteins (off-cut, remnants) and plant proteins 
(e.g., soy, whey, cottonseed), or animal-derived prod-
ucts (e.g., milk) (Fig.  1). These raw ingredients will be 
pretreated with heat before digestion or hydrolysis by 
enzymes or chemicals (Petrova et al. 2018). Through the 
enzymatic/acid hydrolysis processes, a complex mixture 
of oligopeptides, free amino acids and carbohydrates 
are released from the raw material (Si and Shang 2020). 
Therefore, it is necessary to determine which starting 
materials and the optimal hydrolysis process to obtain 
the desired proteins and peptides. Upon hydrolysis, the 
product is filtered by centrifugation and ultrafiltration 
to remove unwanted materials (Zhang et  al. 2019a, b). 
Finally, the resulting hydrolysate product often under-
goes pasteurization to sterilize the product before spray 
drying and packaging (Fig. 1). Due to lot-to-lot variability 
in hydrolysate production, quality control (QC) analyses 
are performed to determine the peptide profile within 
the hydrolysates. The QC analysis comprises qualita-
tive and quantitative analysis. Under qualitative analysis, 

Fig. 1 Schematic of hydrolysate production. Raw materials such as soy, yeast, whey or animal proteins were pretreated with heat to break down 
the protein. After pH adjustment, the mixture is hydrolyzed in a chamber using enzymes, heat or subjected to extreme pH conditions. This process 
breaks down the protein into smaller components and releases peptides and amino acids into the solution. The degree of hydrolysis is positively 
correlated with the length of time in this step. Once the desired degree of hydrolysis is achieved, the mixture is again heated to denature the 
enzymes, followed by centrifugation and ultrafiltration to remove large insoluble particles and endotoxins. The final product is then pasteurized, 
spray dried and packaged. Photographs are taken from https:// Unspl ash. com

https://Unsplash.com
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monitoring of peptides at different stages of hydrolysis 
and protease specificity identification is performed by 
reverse-phase high-performance liquid chromatogra-
phy (RP-HPLC). On the other hand, under quantitative 
analysis, cuprimetric assay complemented with total and 
α-amino nitrogen determination was used to analyze 
amino acids and peptides since it can predict di- and tri-
peptide contents, hence making it more effective in dif-
ferentiating homogenous hydrolysates and amino acids 
and poorly hydrolyzed proteins mixture (Silvestre 1997). 
Additionally, the degree of hydrolysis (DH) is defined as 
the proportion of the number of peptide bonds being 
broken in a protein hydrolysate (Rutherfurd 2019). The 
higher the DH, the greater the number of peptide bonds 
being cleaved. It can be used as a measure for digestibil-
ity, permeability and bioavailability. However, the higher 
the DH does not equate to higher bioavailability. A study 
was done on high (48%), medium (27%) and low (23%) 
DH of whey protein and showed no correlation to the 
rate of amino acid plasma appearance in humans (Farup 
et al. 2016).

Composition of hydrolysates
The compositions of hydrolysates are highly dependent 
on the starting material used, the bioprocessing meth-
ods employed and the degree of hydrolysis (Zhang et al. 
2019a ). Hydrolysates comprised a complex mixture of 
free amino acids, peptides, free acids, carbohydrates that 
resulted from the partial or complete hydrolysis of pro-
teins (Table  2) (Rungruangsaphakun and Keawsompong 
2018). The composition varies depending on the pro-
teases used, hydrolysis conditions such as the duration 
of hydrolysis, temperature and the source of raw mate-
rials (Zhang et  al. 2019a, b). During the hydrolysis pro-
cess, proteins are broken down into peptides by enzymes 
and/or chemicals by cleaving the peptide bonds between 
two amino acid residues (Cheong et  al. 2018). Peptides 
are compounds consisting of two to 20 amino acids. 
They are the major components in hydrolysates and have 
been widely investigated and reported to possess various 
biological activities. They are often processed from by-
products with low market value and ultimately contrib-
ute towards the reduction of waste (Petrova et al. 2018). 
The molecular size range of the peptides found in hydro-
lysates is crucial as it dictates their purposes in various 
applications (Pasupuleti and Braun 2010). For instance, 
in flaxseed and rice hydrolysates, low molecular weight 
peptides (1–3  kDa) are generally known to possess bet-
ter antioxidant effect in comparison to peptides larger 
than 3  kDa (Zhou et  al. 2013; Hwang et  al. 2016). The 
hydrolysate profile should contain mostly peptides with 
a molecular weight of less than 10,000 Da to be consid-
ered a non-protein (protein-free) alternative (Pasupuleti 

and Braun 2010). In addition to peptides, hydrolysates 
may contain other molecules such as vitamins, lipids and 
inorganic acids that could support the growth of animal 
cells (Table 3).

Hydrolysates can enhance biotherapeutic protein quality 
and yield
The use of hydrolysate in animal cell culture can be dated 
back to as early as the 1970s. It serves two main purposes 
in animal cell culture; first being a serum substitute for 
enhancing cell growth, and second as a stimulant for pro-
tein production to improve product titer and quality.

As shown in Table  3, hydrolysates have been used 
extensively not only to improve cell proliferation or as 
supplements for cells to transition into a serum-free 
culture, but also to improve the glycosylation profile of 
recombinant protein produced by CHO. In CHO cells, 
Spearman et al. (2014) showed that soy hydrolysate pro-
motes cell growth but did not increase protein produc-
tivity; while yeast hydrolysate reduces cell growth, but 
achieved a comparable level of protein productivity and 
glycosylation profile as an animal-based hydrolysate. This 
suggests that yeast hydrolysate would be a good alterna-
tive to animal-based hydrolysate if the quality of the pro-
tein produced is the most important attribute. In a more 
recent study, cottonseed-derived hydrolysate enhances 
the galactosylation of CHO-S-RTX and CHO-EG2 cells, 
which in turn improves the product quality (Obaidi et al. 
2021). Furthermore, the glycosylation profile of the pro-
tein produced by CHO cells is equivalent between yeast 
and animal-based hydrolysate (Spearman et  al. 2014). 
This study demonstrated that biopharmaceutical manu-
facturers should consider the use of yeast hydrolysates 
to improve protein productivity and glycosylation of 
the product. Apart from being a serum substitute and 
stimulant for titer improvement, hydrolysate products 
such as rice protein hydrolysate have been reported to 
protect CHO-320 and human HepG2 cells against oxi-
dative stress (Zhang et  al. 2016), although the mecha-
nisms through which these bioactive peptides enable this 
protection remain unknown. Different peptide fractions 
isolated from rapeseed hydrolysates have been used as 
a source of short-chain peptides with biological proper-
ties, such as immunomodulatory and protease inhibitory 
effects, to stimulate CHO cell growth and increased pro-
tein production (Farges et al. 2006).

Besides CHO cell culture, the use of hydrolysates like 
chickpea and rapeseed in replacing serum has had some 
successes in supporting the growth of other human cell 
lines, although this effect could be cell line dependent 
(Girón-Calle et  al. 2008). For instance, a medium con-
taining pea hydrolysate was a good serum substitute for 
the growth of the THP-1 cell line, but not the epithelial 
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Table 2 Composition of hydrolysates

“–” indicates no available data

References for 
amino acids

Plant-based hydrolysate Animal-based hydrolysate Microorganism-
based hydrolysate

Rice bran 
protein %(w/w)

Rapeseed 
%(w/w)

Soy protein 
%(w/w)

Cotton seed 
%(w/w)

Atlantic salmon 
%(w/w)

Chicken 
hydrolysate 
%(w/w)

Yeast %(w/w)

Amagliani et al. 
(2017)

He et al. (2013) Gorissen et al. 
(2018)

Cheng et al. 
(2020)

Harnedy et al. 
(2018), Nesse 
et al. (2014)

Wu et al. (2020) Wasserman 
(1961), Podpora 
et al. (2016)

Ala 2.25 3.26 2.8 4.1 3.9 5.49 2.67

Arg 2.55 5.23 4.8 13.2 2.85 5.78 1.74

Asn – 6.4 – – 4.5 – –

Asp 2.91 – – 9.8 8.38 3.69

Cys 0.46 1.13 0.2 – 0.38 0.61 0.47

Gln – 12.63 – – 6.83 – –

Glu 4.39 – 12.4 22.1 13.89 5.77

Gly 1.83 3.82 2.7 4.3 4.2 4.03 1.88

His 0.86 2.58 1.5 3.5 1.2 3.24 0.87

Ile 1.04 2.51 1.9 – 2.33 3.92 1.79

Leu 1.98 5.11 5 3.6 4.13 7.39 2.61

Lys 1.61 4.23 3.4 6.8 3.98 8.12 2.64

Met 0.59 NA 0.3 3.5 1.43 1.87 0.57

Phe 1.25 3.06 3.2 1.2 2.18 3.01 1.75

Pro 1.29 4.34 3.3 7.4 2.55 2.71 2.42

Ser 1.38 3.54 3.4 3.6 2.18 3.35 1.82

Thr 1.31 NA 2.3 5.3 2.33 3.9 1.65

Trp 0.44 0.94 – – 0.6 0.79 0.49

Tyr 1.06 2.7 2.2 3.2 1.88 2.88 1.38

Val 1.64 3.51 2.2 3 3.08 4.15 2.19

Fat/lipids (refer-
ence)

2.73 7 – 17.8 (Bertrand 
et al. 2005)

0.5 8.38 0.2

References for 
vitamins

Champagne et al. 
(2004)

University of 
Rochester Medi-
cal Center (2021)

Nesse et al. (2014) Pinto e Silva et al. 
(2008)

Wasserman (1961)

A (retinoid) 0 to 0.00257 – – – – – –

B1 (thiamine) 0.00857 to 0.0171 – 4.22 ×  10–8 – 1.8 ×  10–5 0.00007 0.0104 to 0.025

B2 (riboflavin) 0.00128 to 
0.00307

– 2.53 ×  10–8 – 1.575 ×  10–5 – 0.0025 to 0.008

B3 (niacin) 0.191 to 0.356 – 3.46 ×  10–8 – 3.15 ×  10–4 – 0.03 to 0.0627

B6 (pyridoxine) 0.00643 to 0.02 – 2.53 ×  10–8 – 5.025 ×  10–5 – 0.0023 to 0.004

B9 (folic acid) 0.000286 to 0.001 – – – 1.425 ×  10–5 – 0.0019 to 0.003

B12 (cobalamin) 0 to 0.00257 – – – 1.2 ×  10–5 0.00008 –

Biotin 0.000143 to 
0.000357

– – – – – 0.00011

C (ascorbic acid) 0.0186 to 0.0929 – – – 4.275 ×  10–3 0.0475 –

Choline 0.657 to 1 – – – – – –

E (alpha–tocoph-
erol)

0 to 2.86 ×  10–6 – – – – – –

Inositol 2.86 to 5.71 – – – – – –

p–Aminobenzoic 
acid

0.000464 – – – – – 0.0015 to 0.004

Pantothenic acid 0.0143 to 0.0436 – 1.69 ×  10–8 – – – 0.0072 to 0.0086
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Caco-2 cell line (Girón-Calle et  al. 2008) (Table  3). In 
HeLa cells, serum-free culture has only been recently 
achieved in cell media containing silk sericin hydrolysate 
(Zhang et al. 2019b). Once again, the underlying mecha-
nisms governing these effects remain unknown.

Hydrolysates, as a source of free amino acids, are being 
used as supplements for basal medium, to sustain cell 
growth and to allow cell adaptation to serum-free culture 
media. Hydrolysates can enrich the nutritional profile of 
the media by increasing the stability of glutamine, and 
processes other beneficial bioactivities (Table 3), leading 
to enhanced cell viable density (Lobo-Alfonso et al. 2010; 
Ng et  al. 2020). One critical drawback of using hydro-
lysates as media supplements is that they are undefined, 
leading to batch-to-batch quality issues. Indeed, it has 
been reported that different batches of soy hydrolysates 
from the same manufacturer had opposite effects on 
CHO cell-mediated mAb production (Richardson et  al. 
2015). Batches of soy hydrolysates that contain a high 
level of adenosine and arginine were negatively corre-
lated with antibody titer in CHO cell culture (Richard-
son et al. 2015). In contrast, batches that contain a high 
amount of ornithine and citrulline were positively cor-
related with antibody titer. Citrulline and ornithine are 
precursors of polyamines that are very important for cell 
proliferation (Thomas and Thomas 2001; Richardson 
et al. 2015). Therefore, the effect of varying levels of pro 
and anti-growth factors in the different batches of hydro-
lysates should be thoroughly investigated.

The biopharmaceutical industry aims to formulate 
chemically defined culture media that contains the least 
number and amount of components required for cell 
growth and protein production. Although hydrolysates 
are undefined, the benefit of hydrolysate could still be 
realized by pre-determining the effect of hydrolysates on 
the cell line of interest. Furthermore, with advancements 
in high-resolution analytical techniques, such as chroma-
tographic and mass spectrometric based technologies, 
the composition of hydrolysates can be better defined 
and sources of variability identified.

Hydrolysates as supplements for cultured meats
Cultured meat (CM) is an alternative meat source that 
is obtained from animal cells grown in vitro rather than 
from animal slaughter. The purpose of having CM is 
mainly driven by animal welfare, environmental and sus-
tainability concerns (Tuomisto and Teixeira de Mattos 
2011). It has been discovered that animal farming con-
tributes 18% of greenhouse gases (Steinfeld et  al. 2006) 
and wastewater discharge from slaughterhouses con-
tained a large amount of organic substances like fats, 
blood and proteins that leads to environmental pollution 
(Njoya et al. 2019).

Akin to biotherapeutics production, cultured meat 
production aims to achieve high-yielding culture pro-
ducing the best quality meat. To achieve such optimal 
processes, exploration of different types of food-grade 
ingredients that can be used as growth-promoting 
agents for a tailor-made serum-free medium is required. 
O’Neill et al. (2021) have covered in a review on the con-
siderations for the development of culture media that is 
cost-effective and free of animal ingredients for the pro-
duction of cultured meat by replacing serum with hydro-
lysate. Currently, a few studies have described the use of 
hydrolysates as a media supplement for CM production. 
Tuomisto and Teixeira de Mattos (2011) reported on the 
use of Cyanobacteria hydrolysate to support muscle cell 
growth. However, the potential cytotoxicity and safety of 
microbe-based hydrolysate used has not been thoroughly 
tested and remains a safety concern. In another study, 
pork plasma digested with Alcalase was shown to restore 
bovine skeletal muscle cell function and enhanced cell 
growth (Andreassen et  al. 2020). However, the use of 
animal-derived hydrolysate for CM production is coun-
terintuitive to the purpose of being slaughter-free meat 
itself. It is more preferable to use plant- and yeast-based 
hydrolysates that have been widely used in CHO cell 
cultivation (Table  3). Hence, the usability of plant- and 
yeast-based hydrolysates should be thoroughly investi-
gated in cultured meat cultivation as it provides a more 
economical and potentially safer option.

Bioactivities of hydrolysates
Hydrolysates consist of several components that aid 
in cellular survival and growth. Peptides are the major 
ingredient in hydrolysates mixture that possess beneficial 
bioactivity properties such as anti-apoptosis, antioxidant, 
immunomodulatory effect and antibacterial proper-
ties. Furthermore, it is valuable and of great interest in 
understanding the underlying biological functions of the 
peptides in hydrolysates as it helps to identify specific 
pathways taken by the cells to regulate these unique bio-
activities. In addition, the information could also provide 
important factors for better media design.

Anti-apoptotic effects
Apoptosis is an orderly process consisting of several dif-
ferent biochemical reactions that leads to cellular char-
acteristic changes and cell death. This process could be 
mitigated through the utilization of hydrolysates. It has 
been discovered that an animal-based protein hydro-
lysate, Primatone RL, contains factors that have anti-
apoptosis properties (Schlaeger 1996). In addition, 
several other plant-based hydrolysates have the poten-
tial to support cellular growth and survival (Franěk et al. 
2000). However, the specific peptide sequences that are 
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responsible for these anti-apoptotic properties are still 
unknown.

Anti-oxidation properties
Antioxidants are molecules that can prevent or mini-
mize damage to cells caused by free radicals and reac-
tive oxygen species. It has been found that hydrolysates 
derived from soymilk have a higher level of antioxidants 
as compared to raw soybean-derived hydrolysates due 
to the presence of anti-oxidative bioactive amino acids 
(tyrosine, methionine, histidine, lysine and tryptophan) 
through food processing (Singh et al. 2014). Other than 
these amino acids, hydrophobic and cysteine amino acids 
have antioxidant properties, with the sulfhydryl group 
of cysteine amino acids acting as a radical scavenger to 
protect cell tissue from oxidative stress (Kim et al. 2020). 
However, whether the anti-oxidative properties of hydro-
lysates can be solely attributed to these amino acids, or 
are in part due to the presence of even more potent anti-
oxidants remains largely unknown.

Immunomodulatory effects
Despite the prominent rise of cell therapy, where the 
engineered immune cell is the product, only a handful of 
studies researched into the immunomodulatory effects of 
hydrolysates on the cell. Immunomodulatory peptides in 
hydrolysates have the potential to bind to the innate and 
adaptive immune receptors on the cell’s surface, affect-
ing proliferation, cytokines and/or antibody production 
(Möller et  al. 2008; Kiewiet et  al. 2018 ). Some hydro-
lysates and their derivatives were tested for their direct or 
indirect effects on immune cells activation or prolifera-
tion. For instance, in an ex vivo assay using primary mon-
onuclear cells, lactoferrin was shown to reduce cytokine 
release (Möller et  al. 2008), while stimulating the cell 
proliferation (Möller et al. 2008). In other cases, caseins 
(and digests), a milk protein, were shown to increase T 
lymphocytes proliferation (Möller et  al. 2008). Despite 
the limited information available, it has been shown that 
specific amino acids such as glycine, valine, leucine, pro-
line, glutamine and tyrosine possess immune-modulatory 
functions (Chalamaiah et al. 2018; Kiewiet et al. 2018 ).

Antibacterial properties
Several peptides found in hydrolysates possess antibacte-
rial properties and have been reported as potential alter-
natives to overcome bacterial resistance to conventional 
antibiotics (Farhana et  al. 2019). For instance, peptides 
containing basic amino acids in cottonseed hydrolysates 
have been reported to possess such properties (Song 
et  al. 2020). In another study, the antimicrobial proper-
ties of chia seed hydrolysate were identified to be derived 
from peptides containing cationic and hydrophobic 

amino acids with a consensus sequence of GDVIAIR, or 
having the amino acid K as either the N- or C-terminal 
or both (Aguilar-Toalá et  al. 2020). Interestingly, it has 
also been found that the degree of antimicrobial activ-
ity from hydrolysates greatly depends on the enzyme 
used during the hydrolysis process (Tovar-Jimenez et al. 
2017). Tovar-Jimenez et  al. (2017) showed that hydro-
lyzing bovine whey protein with the aspartyl protease 
Eap1 enzyme, as opposed to trypsin and chymotrypsin, 
resulted in a hydrolysate product with markedly higher 
antimicrobial activity. Other antimicrobial peptides have 
been described in egg and camel whey hydrolysates (Al-
Mohammadi et al. 2020; Wang et al. 2020). Thus, hydro-
lysates could be potentially be employed as antimicrobial 
agents in food and therapeutic applications.

Contaminants and by‑products of hydrolysate
Since hydrolysate is a processed product, contaminants 
could be present in the raw material used or generated 
during the hydrolysis process. For example, specific yeast 
peptides from yeast hydrolysate and beta-glucan par-
ticularly (1,3)-β-glucan in the cell wall from yeast and 
plant-based hydrolysates are potentially immunogenic 
(Jiang et al. 2011). In addition, hydrolysates derived from 
microbes may contain high levels of lipopolysaccharide 
(LPS), an endotoxin that is difficult to completely remove 
from the final product (Lobo-Alfonso et al. 2010). Hydro-
lysates that are derived from Gram-negative bacteria like 
Escherichia coli would likely contain a high level of LPS 
contamination, which may require a more stringent post-
processing procedure for LPS removal (Xu et al. 2019).

Apart from contaminants, by-products from hydro-
lysates could also affect cell growth. A recent study has 
shown significant growth inhibition of the mAb-produc-
ing CHO-K1 GS-knockout and CHO-DG44 cells due to 
the accumulation of tryptophan in the culture (Alden 
et  al. 2020). In the same study, the tryptophan-derived 
metabolite, 5-HIAAId (5-hydroxyindolacetaldehyde), has 
been shown to have a detrimental effect on cell growth 
(Alden et al. 2020). This observation is further supported 
by a separate study investigating the effects of increased 
levels of tryptophan by-products and riboflavin degra-
dant (lumichrome), both of which are detrimental to cell 
growth (Zang et al. 2011). The author explained that high 
levels of the tryptophan-derived metabolite were a conse-
quence of tryptophan degradation due to light exposure 
during the culture media preparation process (Zang et al. 
2011). The presence of contaminants and by-products in 
hydrolysates is indeed a substantial drawback for most 
commercially available low-cost hydrolysates. Under-
standing how these contaminants are generated and how 
they can be removed from the final hydrolysate product 
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would be essential to promote their use as animal serum 
alternatives for biomanufacturing.

Working towards a chemically defined media 
with hydrolysates
With the increased interest in using hydrolysates in cell 
culture as either a feed supplement or a component of 
a complete culture media formulation, the undefined 
nature of hydrolysates is a push back to developing a 
chemically defined substitute. Despite that, the nutri-
tional profiles and bioactivities in hydrolysates are worth 
pursuing as serum alternatives. Two key challenges need 
to be addressed for hydrolysates to be more widely used 
in culture media formulation. Firstly, efficient methods 
to fractionate hydrolysate into individual components or 
classes of components must be developed. Liquid chro-
matography (LC) could be used to separate the complex 
mixture into multiple fractions. These fractions can then 
be studied to support cell growth and protein production. 
At this stage, the identity of the active components and in 
which LC fractions are unknown, but fractionating these 
components could eliminate toxins and other unwanted 
effects from the culture.

Secondly, the identification of active components in 
those fractions using high-resolution analytical plat-
forms such as mass spectrometry (MS) can be per-
formed. These platforms are specialized in the detection 
of low molecular weight compounds (< 3  kDa), which 
potentially include metabolites, oligonucleotides, or 
larger molecular weight compounds such as protein and 
peptides. In the past 5  years, there has been significant 
interest in the use of metabolomics platforms in food sci-
ences to better understand how nutrition contributes to 
human health. The workflow of identifying the peptides 
in hydrolysates are: (1) peptides are separated on a col-
umn by LC; (2) their masses are analyzed on a high-res-
olution mass spectrometer (MS); and (3) fragmentation 
of each peptide is carried out to acquire the amino acid 
sequence (MSMS). Typically, the acquired mass spectra 
can then be matched against a database to deduce the 
identity of the peptide. However, the majority of pep-
tides in hydrolysate comprises less than seven amino acid 
residues. This presents a major challenge in data analy-
sis as database searches may not provide a unique pro-
tein sequence, but numerous matching results (hits). This 
challenge can be overcome by using high collision energy 
to dissociate peptides (also known as high collision disso-
ciation, HCD) during fragmentation, and using high-res-
olution mass spectrometers such as the Orbitrap™ (Hu 
et al. 2005) and time-of-flight (TOF). More importantly, 
HCD can generate immonium ions that provide a wealth 
of information for peptide composition. In addition to 
immonium ions, the neutral losses from the side chains 

of peptides can provide a more detailed analysis of pep-
tide composition (Zhang et al. 2019c).

Furthermore, positively charged peptides are the most 
frequently studied peptides in sequencing in comparison 
to its counterpart, the negatively charged peptides. For 
many years, researchers have been investigating deproto-
nated peptides and described the fundamental backbone 
cleavages and the uniqueness in side-chain fragmenta-
tion depending on their specific side-chain structure of 
amino acid (Bowie et  al. 2002). A study performed by 
Liang and colleagues investigated the side-chain neu-
tral losses of deprotonated di- and longer chain peptides 
(3–6 residues) and explained how the relative abundance 
of certain neutral losses can estimate the specific amino 
acid residues (Liang et al. 2018). This information greatly 
assists in peptide annotation and confirmation of spe-
cific amino acid residues in peptides via either de novo 
sequencing or matching to a spectral library in the NIST 
Tandem (MS/MS) library. An example of how a dipeptide 
is annotated is shown in Fig. 2.

Once the peptide sequence is confirmed, the sequence 
can then be used to search against a database for its spe-
cific functionality, if any. There are approximately 70 
peptide databases in the literature where researchers 
can search a particular peptide with its specific bioactiv-
ity (Minkiewicz et al. 2019). The publicly available BIO-
PEP-UWM database, which is fully curated, is a popular 
tool for bioactive peptides, especially those derived from 
foods (Minkiewicz et al. 2019). As of April 2021, the BIO-
PEP-UWM database contained 740 proteins, 4301 bio-
active peptides, 135 allergenic proteins and 492 sensory 
peptides and amino acids. Another manually curated and 
publicly available peptide database is called PlantPepDB, 
specifically focussed on plant proteins, which currently 
consists of 3848 plant-derived peptides (2821 are experi-
mentally validated) categorized according to their func-
tion (Das et al. 2020).

The identification of the active components in hydro-
lysates could be the first step in the development of such 
proteins/peptides synthetically or purified from the raw 
materials. This will be the first of many steps in replacing 
animal serum with hydrolysates in cell culture. In addi-
tion to identifying the active components in hydrolysates, 
developing processes that can reduce lot variability 
through better quality control is also important. Efforts 
to reduce lot-to-lot variation falls between the researcher 
and the manufacturer; the former could provide novel 
processes in the detection of components that contrib-
ute to product variation, and the latter can help to reduce 
variation at the point of manufacturing (Thompson and 
Chesher 2018). In most cases, the lot-to-lot variation is 
evaluated based on appropriate acceptance criteria such 
as biological variation outcomes and requirements. 
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Therefore, challenges faced by both researchers and 
manufacturers are vast not only in defining components 
in hydrolysates that are bioactive, but also in defining the 
components that contribute to lot-to-lot variation. A syn-
ergetic collaboration between the researcher and manu-
facturer is valuable and mutually beneficial.

Conclusion
Although animal serum contains an abundance of 
essential nutrients and growth factors that support the 
growth of many cell types, the industry is moving away 
from the use of animal products. Plant-based hydro-
lysates could be an alternative to animal serum. Stud-
ies have shown that some hydrolysates not only contain 

amino acids, vitamins and lipids that contribute to the 
basic ingredients of cell culture media, they also con-
tain beneficial peptides and growth factors that either 
enhance cell proliferation or improve proteins quality, 
or both. Furthermore, other properties of hydrolysates 
such as anti-apoptotic, anti-oxidation, antibacterial, 
antidiabetic properties as well as immunomodulatory 
effects cannot be ignored. However, due to the com-
plexity of hydrolysates, it is crucial to understand the 
advantages as well as challenges of using them as media 
supplements, such as the risk of contamination or harm-
ful by-products that are present. Full characterization of 
hydrolysates, together with an in-depth analysis of the 
spent culture media can be used to identify its critical 
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components. We propose the use of liquid chromatog-
raphy together with advanced proteomics and metabo-
lomics techniques to identify individual components or 
groups of components and investigate their functions in 
a model cell line (e.g., CHO or HEK293). This iterative 
process would improve our understanding of the rela-
tionship between the critical components and specific 
functionality, an essential step towards the formulation 
of serum-free chemically defined media. Hydrolysates 
have the potential to play a much bigger role in the ever-
increasing demand for cell culture media for the pro-
duction of biotherapeutics products, cultured meat, as 
well as in the production of new modality biotherapeu-
tics such as cell and gene therapy products.
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