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Abstract 

β-1,3-glucanase can specifically hydrolyze glucans to oligosaccharides and has potential applications in biotechnol-
ogy. We used the metatranscriptomic technology to discover a thermophilic β-1,3-glucanase from compost. The 
phylogenetic study shows that it belongs to the family 16 glycoside hydrolase (GH16) and is most homologous with 
an enzyme from Streptomyces sioyaensis, an actinobacterium. It has the activity of 146.9 U/mg in the optimal reac-
tion condition (75 °C and pH 5.5). Its catalytic domain was crystallized and diffracted to 1.14 Å resolution. The crystal 
structure shows a sandwich-like β-jelly-roll fold with two disulfide bonds. After analyzing the occurring frequencies 
of these cysteine residues, we designed two mutants (C160G and C180I) to study the role of these disulfide bonds. 
Both mutants have decreased their optimal temperature from 75 to 70 °C, which indicate that the disulfide bonds 
are important to maintain thermostability. Interestingly, the activity of C160G has increased ~ 17% to reach 171.4 U/
mg. We speculate that the increased activity of C160G mutant is due to increased dynamics near the active site. Our 
studies give a good example of balancing the rigidity and flexibility for enzyme activity, which is helpful for protein 
engineering.
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Introduction
β-1,3-glucan is a non-starch polysaccharide consisting 
of glucose subunits connected through the β-1,3 gly-
cosidic bonds. It is one of the major components of the 
cell wall of plant, fungi, and marine macroalgae (Zhu 
et  al. 2015; Fibriansah et  al. 2007). β-1,3-glucanase can 
specifically hydrolyze the glycosidic bonds to produce 
oligo- and monosaccharides, and has wide applications. 
For example, it can effectively inhibit the production of 
slime during the brewing process (Stahmann et al. 1993). 
It has potential usage to decompose algal biomass, which 
contains a large amount of β-1,3-glucan (Labourel et al. 
2014). Discovering a highly active β-1,3-glucanase is 
essential.

Thermophilic enzymes have the optimal reaction tem-
peratures above 60 °C (Singh et al. 2021; Niu et al. 2017). 

Compared with mesophilic enzymes, thermophilic 
enzymes are more stable and can be used for a longer 
time, which reduces the enzyme cost in biotechnology 
(Zhu et al. 2020). In addition, the high temperature envi-
ronment can minimize contamination of polluted micro-
organisms in biotechnological processing (Laman and 
Youk 2020; Wang et al. 2020; Singh et al. 2021). However, 
many thermophilic enzymes have low catalytic activities, 
which makes them difficult to be applied in industries 
(Masuda et al. 2006; Kobayashi et al. 2016). Thus, discov-
ering thermophilic enzymes with high activity is essential 
for biotechnology industries.

Composting is a biochemical process, during which 
environmental wastes, such as straw and animal manure, 
are mixed with thermophilic microorganisms to ferment 
and break down these organic wastes (Gurtler et al. 2018; 
Reyes-Torres et al. 2018). Composting has three phases: 
the mesophilic phase, the thermophilic phase, and the 
mature phase. In the thermophilic phase, there are lots of 
thermally stable enzymes secreted by either introduced 
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or natural microorganisms (Wang et  al. 2021). Though 
many natural microorganisms in compost cannot be iso-
lated and cultured, their extracellular enzymes can be 
studied by analyzing their mRNA transcriptional infor-
mation by using the metatranscriptomic method. If an 
mRNA transcriptional level of an enzyme in the thermo-
philic phase is significantly higher than the other phases, 
a plausible thermophilic enzyme could be discovered 
(Zhong et al. 2016). In this way, we discovered a glycoside 
hydrolase family 16(GH16) β-1,3-glucanase with highly 
catalytic activity at 75 °C. Its crystal structure shows two 
disulfide bonds, which plays an important role to stabi-
lize the protein.

Materials and methods
Materials
The E.coli strain DH5α, Rosetta (DE3), and the high-
fidelity ligase kit were purchased from TsingKe (Beijing, 
China). The plasmid extraction kit was purchased from 
MD Bio (Qingdao, China). The GelRed nucleic acid dye, 
the DNA Marker, the DNA Loading Buffer, and the pro-
tein Marker were purchased from Mingzhiyuan Health 
Management Co., Ltd. (Beijing, China). PEG3350 and 
the gem orange staining reagent were purchased from 
Sigma-Aldrich Trading Co., Ltd. (Shanghai, China). The 
curdlan substrate was purchased from Macleans Bio-
chemical Technology Co., Ltd. (Shanghai, China). All 
other chemicals are of analytical grade.

Bioinformatic analysis
The transcriptional levels of all mRNA sequences in 
the three phases of compost were analyzed using the 
metatranscriptomic method: The total RNA of com-
post was extracted using the RNA Isolation Kit (Qia-
gen) and sequenced for paired-end reads with Illumina 
HiSeq 3000/4000 workflow (Majorbio, Wuhan, China). 
The original sequence data were subject to quality con-
trol and assembled by the Trinity software (http://​trini​
tyrna​seq.​github.​io/, Version 2.13.1) (Grabherr et  al. 
2011). The Open Reading Frame (ORF) of each transcript 
was predicted by the TransGeneScan software (http://​
sourc​eforge.​net/​proje​cts/​trans​genes​can/, Version 1.2.1) 
(Ismail et  al. 2014). The gene clustering was performed 
by the CD-HIT software (http://​www.​bioin​forma​tics.​
org/​cd-​hit/) with 95% identity and 90% coverage. The 
longest gene of each cluster was selected as the standard 
sequence. The transcription level of each unigene was 
estimated by transforming the read density to fragments 
per kilo base of exon per million mapped reads (FPKM), 
and the function was annotated by BLAST against the 
NCBI non-redundant protein (NR) database.

When the transcriptional level of a particular enzyme 
in the thermophilic phase is significantly higher than the 
other two phases, we speculate it could be thermally sta-
ble and catalytically active. We analyzed their sequences 
using the PSI-Blast webserver (Oda et  al. 2017). PSI-
BLAST can analyze protein sequences using the Position 
Specific Scoring Matrix (PSSM) in an iteration manner, 
which could give better performance than the standard 
sequence alignment methods to find functional proteins 
(Jin et al. 2020). Among the enzymes, we found a puta-
tive β-1,3-glucanase. The phylogenetic tree of the enzyme 
was built using Mega7.0 and the diagram was depicted 
using the webserver ESPript3.0 (Kumar et al. 2016; Gouet 
et al. 1999). The theoretical molecular weight (MW) and 
isoelectric point (pI) were calculated using the webserver 
ProtPram (Artimo et al. 2012).

Cloning, protein expression, and purification
The β-1,3-glucanase gene was codon optimized, syn-
thesized, and cloned into the expression vector pCold 
II (Tsingke). The construct was transformed into the 
E.coli Rosetta (DE3) competent cells (Novagen) which 
are proper bacterial strains for the intact formation of 
disulfide bonds in cytoplasm (Zarkar et  al. 2019). The 
protein was induced at 15  °C with 0.5  mM IPTG after 
24 h cultivation in the minimal media, which could slow 
down protein folding and prevent formation of inclusion 
body during protein expression (Törnkvist et  al. 1996). 
The harvested cells were lysed using a high-pressure cell 
press (Union Co., China) and clarified with high-speed 
centrifugation. The protein was purified using the nickel-
affinity chromatography. The protein concentration was 
determined by measuring the absorbance at 280  nm 
(ε280 = 583,330 M−1 cm−1).

Biochemical characterization
The enzyme activity was determined by the 3,5-dini-
trosalicylicacid (DNS) method (Miller et  al.1959) with 
minor revision: 2 mg/mL curdlan solution was heated for 
5 min to obtain a pre-warmed suspension. 100 μl enzyme 
solution at the concentration of 0.004 mg/ml was added 
to the suspension and incubated for 10 min for reaction. 
The DNS solution was added and boiled for 10  min to 
terminate the reaction. The released reducing sugar after 
hydrolysis was measured by absorption at 540 nm.

We used different buffer solutions to measure the 
enzyme activity under different pH conditions (Addi-
tional file 1: Table S1). We incubated the enzyme solution 
at different temperatures for different time. After cooling 
for 4 min, the enzyme activity was analyzed to determine 
the thermal stability. The standard curve of D-glucose at 
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the concentration of 0 ~ 0.8 μmol/mL was used to calcu-
late the concentration of the reducing sugar. The Vmax 
and Km values were determined by fitting the Hill func-
tion of the reducing sugar using Origin 9.0 (Origin Lab, 
USA). The thermal stability of the β-1,3-glucanase was 
determined by measuring the residual enzyme activity 
at 70 and 75  °C for different time period at pH5.5. One 
activity unit (U) is defined when the enzyme releases 
1 μmol reducing sugars per minute (Cheng et al. 2013).

Crystallization, data collection, and structural refinement
β-1,3-glucanase was concentrated to about 20  mg/mL 
and was crystallized by the hanging drop method: 1 μL 
protein solution was added with 1 μL reservoir solution 
(21% PEG3350, 0.2  M magnesium chloride, 0.1  M Bis–
tris, pH 5.5) and equilibrated with 0.5 mL reservoir solu-
tion at 18 °C. Crystals grew up in about 10 days and were 
dipped into the reservoir solution containing extra 25% 
glycerol as the cryo-protectant. After flash frozen, X-ray 
diffraction data were collected on the beamline BL18U1 
of the Shanghai Synchrotron Radiation Facility (SSRF). 
Data reduction was performed using the HKL3000 pro-
gram (Minor et  al. 2006). The protein coordinates from 
3DGT (Hong et  al. 2008) with the sequence identity 
of 61% was used as the searching model for molecular 
replacement using the program MOLREP (Vagin and 
Teplyakov 1997). Refinements was carried out using REF-
MAC (Murshudov et al. 1997) implemented in the CCP4 
program suite (Winn et  al. 2011) with 5% of reflection 
reserved as the Free-R test set. Model building was man-
ually carried out using Coot (Emsley et al. 2010). MolPro-
bity was used to assess the structure quality (Chen et al. 
2010). The reflection data and the crystal structure model 
were deposited in the Protein Data Bank (PDB ID: 7EO3).

Molecular docking
The laminaritriose extracted from the crystal structure 
(PDB ID: 4BOW) (Labourel et  al. 2014) is used as the 
ligand for molecular docking. A PDBQT file was pre-
pared for the corresponding protein and ligand using 
AutodockTools 1.5.6. To prepare the PDBQT files for 
docking, essential hydrogen atoms and Kollman united 
atom charges are added using AutoDock Tools. The dock-
ing calculations are then performed with the AutoDock 
Vina program package (version 1.1.2) (Trott and Olson 
2010). A grid box with the size of 35 × 35 × 35 Å points 
and the grid spacing of 0.375 Å has been generated using 
AutoGrid. The grid is centered at x, y, and z coordinates 
of 5.413, 12.734, and 32.776, respectively, which was 
reported as binding site of this enzyme (Labourel et  al. 
2014). The docking results were illustrated using PyMOL 

(DeLano Scientific) (Seeliger and de Groot 2010). The 
intermolecular interactions between protein and ligand 
were displayed using the LigPlot+ software (Laskowski 
and Swindells 2011).

Differential scanning fluorometry
120 μL protein solution at the concentration of 
0.5  mg  mL−1 at pH5.5 was mixed with 0.8 μL SYPRO 
Orange Protein Gel Stain and was loaded to a 96-well 
PCR plate. Real-time PCR (Applied Biosystems 
7300/7500, Thermo Fisher Scientific, USA) was per-
formed to measure the temperature profile of protein 
unfolding (1 °C/min in the range of 25–98 °C). The fluo-
rescence intensity was measured every 10  s. The Pro-
tein Thermal Shift™ software (version 1.4) was used to 
fit the original data and calculate the melting tempera-
ture (Tm).

Molecular dynamics (MD) simulations
MD simulations were carried out with GROMACS 
5.1.4. The crystal structure of the catalytic domain 
(Actglu-CD) was used as the starting model with all 
the waters, ligands, and ions removed. The structures 
of C160G and C180I were obtained by point muta-
tion using the crystal structure of Actglu-CD using 
the Modeller30 program (Webb and Sali 2016). The 
protein was dissolved in a cubic water tank filled with 
the TIP3P water molecules. Thirty-six sodium ions and 
twenty-five chloride ions were added to neutralize the 
system and simulate the physiological ionic strength 
of 0.15  M. PME was used to estimate static electricity 
under periodic boundary conditions. The AMBER99SB 
force field was used to simulate all elements in the cell, 
including proteins, salt ions, and water molecules. 
Before the MD simulation, the steepest descent method 
was used to minimize the energy, and then the basic 
Newton–Raphson method was used to eliminate the 
spatial collision and strain in the X-ray crystallographic 
structure. The LINCS algorithm was used to limit the 
bonds related to the hydrogen atoms, and the time step 
of the bond was 0.002  ps. A 100-ps NVT balance was 
performed, and the 100 ps NPT balance was performed 
at 370 K afterwards. Three independent runs of 300 ns 
starting with different velocity were performed.

Results
Bioinformatic analysis
We analyzed the mRNA transcriptional level of all the 
proteins in compost using the metatranscriptomic 
method: We found that the transcriptional level of a 
putative β-1,3-glucanase in the thermophilic phase 
is significantly higher than that in the mesophilic and 
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mature phases. The result indicates that this enzyme 
could be catalytically active at high temperatures. We 
named it as Actglu. Phylogenetic analysis indicates that 
this enzyme has the highest structural homology (61%) 
with a GH16 β-1,3-glucanase from Streptomyces sioy-
aensis, an actinobacterium (Fig. 1). Actglu’s amino acid 
sequence are deposited in GenBank with the accession 
number MZ366334.

The full length of enzyme (name as Actglu) has 476 
amino acids. According to the sequence analysis of PSI-
BLAST, it has a N-terminal signal peptide (residues 
1 ~ 41), a β-1,3-glucanase catalytic domain (residues 
48 ~ 318), and a type IV carbohydrate binding module 
(CBM, residues 339 ~ 473) (Fig.  2A). For further valida-
tion, we performed multiple-sequence alignment using 
this sequence with other GH16 family enzymes from dif-
ferent microorganisms, including Streptomyces sioyaensis 
(PDB ID: 3DGT), Nocardiopsis sp. F96 (PDB ID: 2HYK), 
Cellulosimicrobium cellulans (PDB ID: 3ATG), Rhodo-
thermus marinus (GenBank accession number: P45798). 
The alignment shows that the active site of this puta-
tive enzyme has the conserved motif EXDXXE, which is 
characteristic of GH16 family β-1,3-glucanases (Fig. 2B) 
(Ashida et  al. 2002). We truncated the signal peptide 

and named the remaining region as Actglu-FL, which 
includes the catalytic domain and the CBM domain. The 
theoretical MW is 46.5 kDa and the pI is 4.7. We further 
truncated the CBM module to have the catalytic domain 
as Actglu-CD. Its theoretical MW is 30.7 kDa and its pI is 
4.9, respectively.

Expression, purification, and enzymatic characterization
The genes of Actglu-FL (including the catalytic domain 
and the CBM domain) and Actglu-CD (the catalytic 
domain) were cloned into the pCold II expression vec-
tor and transformed into the E.coli Rosetta(DE3) com-
petent cells. Both proteins were induced by 0.5  mM 
IPTG at 15  °C for 24  h. After cell lysis and clarifica-
tion, > 95% purity proteins were obtained by the Ni-
affinity chromatography (Additional file 1: Figure S1).

The bell-shaped temperature profiles show that both 
Actglu-FL and Actglu-CD have the optimal reaction 
conditions at 75 °C and pH 5.5 (Fig. 3A, B). The enzyme 
activity of Actglu-CD is 146.9 U/mg in the optimal con-
dition. Its half-life (t1/2) is about 35  min at 70  °C and 
about 19  min at 75  °C, respectively (Fig.  3C). In the 
optimal condition, its Vmax is 677.2  μmol/min/mg and 
its Km is 1.8 mg/mL, respectively (Table 1). In contrast, 

Fig. 1  The phylogenetic tree of Actglu. The β-1,3-glucanase is most homologous with a GH16 family glucanase (PDB 3DGT) from Streptomyces 
sioyaensis, which belongs to Streptomyces, Streptomycetaceae, Streptomycineae, Actinobacterales 
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the activity of Actglu-FL is only one third of Actglu-CD 
(Fig. 3A). Thus, we only studied Actglu-CD in the fol-
lowing research, which we named as wild type (WT) 
β-1,3-glucanase henceforth in the text.

The crystal structure of the catalytic domain
We crystallized the catalytic domain of β-1,3-glucanase 
by the hanging drop method. The space group is 
P212121. Crystal data were collected to 1.14  Å resolu-
tion. There is one molecule per asymmetric unit. We 
used the structure of an endo-1,3-β-glucanase from 
Streptomyces sioyaensis (PDB ID 3DGT) (Hong et  al. 
2008) with all waters, ligands, and ions removed as the 
initial template for molecular replacement using the 
program Phaser (McCoy et  al. 2007) incorporated in 
the program suite Phenix (DiMaio et al. 2013). Actglu-
CD and 3DGT have the sequence identity of 61%. After 
structure refinement using Phenix and manual model 
building using Coot (Emsley et al. 2010), the model has 
Rwork of 0.132 and Rfree of 0.158, respectively (Table 2). 
The overall structure shows a sandwich-like β-jelly-
roll fold, which is typical for GH16 enzymes (Fig.  4A) 

(Dong et al. 2015). The overall structure includes seven-
teen β-strands, one α-helix, and four short 310-helices. 
β-1,3-glucanase uses the two-step retaining mechanism 
for hydrolysis (Vuong and Wilson 2010). The catalytic 
site contains Glu141 that acts as the nucleophile and 
Glu146 that plays the role as the acid/base (Ashida 
et al. 2002). Near the N-terminus of the protein, a puta-
tive magnesium ion binds to the oxygen atoms of the 
carbonyl main chain and the carboxylate side chain of 
Asp15, Gly65, and Asp271 to form an octahedral geom-
etry (Fig.  4A). There are two disulfide bonds formed 
by Cys160 and Cys168, and by Cys180 and Cys185 
(Fig.  4B), which possibly stabilize the protein fold at 
high temperatures (Dehnavi et al. 2017).

The docking study shows that the binding free energy 
of laminaritriose with Actglu-CD is -420 kcal/mol, which 
indicates that the ligand binds tightly in the active site 
cleft (Fig.  4C). The ligand has hydrophobic interactions 
with residues in the cleft, such as Trp134, His159, Tyr171 
and Phe248. There is a hydrogen bond between laminari-
triose and Trp136. The above interactions could contrib-
ute to its tight binging affinity (Fig. 4C) (Fibriansah et al. 
2007; Ashida et al. 2002).

Fig. 2  Schematic diagram of Actglu A and multiple sequence alignment of the active site (B). The yellow region is the signal peptide. The green 
region is the β-1,3-glucanase catalytic domain.The blue region is the type IV carbohydrate-binding domain (CBM). Multiple sequence alignment 
shows that Actglu has the conserved motif EXDXXE in the active site. The sequence marked with black five-pointed star is the conserved motif in 
the active site
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Functional analysis of the two disulfide bonds
To validate the consolidating effect afforded by the 
disulfide bonds, we performed mutagenesis to break 
them. We used the HotSpot Wizard webserver to ana-
lyze the occurred frequencies at the residue positions 160 
and 180. The results show that glycine is the second most 
prevalent residue at position 160, and isoleucine is the 
second most prevalent residue at position 180 (Fig.  5). 
Thus, we designed two single mutants, C160G and C180I, 
respectively. C160G has the bell-shaped temperature 
profile with the maximum activity at 70 °C, which is 5 °C 
lower than that of wild type (WT). In the temperature 
range of 50 ~ 70 °C, its activity is significantly higher than 
that of WT (Fig. 3D). Specifically, the activity of C160G 
at its optimal temperature is 171.4 U/mg, which is 17% 
higher than that of WT. The catalytic efficiency (kcat/Km) 
in its optimal condition is also higher than that of WT 
(Table  1). C180I also has the bell-shaped temperature 
profile with the peak activity at 70 °C. However, the activ-
ity of C180I is lower than that of the WT (Fig. 3D). We 
compared the half-lives (t1/2) of WT and the two mutants 
at both 70 and 75 °C. The results show that WT is most 

stable, C180I is the second, and C160G has the least ther-
mal stability (Table 3).

We used the differential scanning fluorometry to study 
the melting temperature (Tm) of WT and its mutants. 
The Tm value is 69.5  °C for WT, 67.2  °C for C180I, and 
59.1 °C for C160G, individually (Fig. 6). The results con-
firm that WT is the most stable, C180I is the second, and 
C160G is the least.

Molecular dynamics simulations.
Our MD simulations show that after 300  ns, WT and 
the mutants have been equilibrated without significant 
conformational changes (Fig. 7A). However, RMSF com-
parison shows that the loop region (residues 156–174) 
in C160G is most dynamic, whereas this region in WT 
is most rigid (Fig.  7B). This loop region is close to the 
substrate binding cleft (Fig.  4C). Thus, abolishing the 
disulfide bonds increases flexibility near the active site, 
which could influence substrate binding and product 
release for catalysis.

Fig. 3  The activity and thermal stability of β-1,3-glucanase. A the temperature profile; B the pH profile; C the thermal stability of Actglu-CD at 70 
and 75 °C, respectively. D activity comparison among Actglu-CD and its mutants (C160G and C180I)
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Discussion and conclusion
Microorganisms in the thermophilic phase of compost 
can produce a large amount of thermostable enzymes for 
rapid degradation of organic waste (Wang et  al. 2021). 
Here, we discovered a thermophilic β-1,3-glucanase from 
compost using the metatranscriptomic method. The full 
length enzyme includes a signal peptide region, a cata-
lytic domain (CD), and a carbohydrate-binding module 
(CBM) (Fig. 2A). Phylogenetic analysis indicates that the 
exolytic enzyme is homologous with a β-1,3-glucanase 
from the genus Streptomyces sioyaensis (sequence 

identity 61%). Multiple sequence alignment shows that it 
has the conserved catalytic motif EXDXXE of the GH16 
family β-1,3-glucanase. Previous studies showed that 
these glutamates are very conservative and their corre-
sponding mutants have almost lost all enzyme activity 
(Hahn et  al. 1995; Labourel et  al. 2014). The activity of 
the Actglu-FL (the catalytic domain appended with the 
carbohydrate-binding module) is only one third of the 
catalytic domain (Actglu-CD). This could be that curdlan 
used in our experiments as the substrate is not crystal-
line. CBM can bind to the surface of substrates and break 
up their crystalline structure to promote hydrolysis (Sho-
seyov et al. 2006). Thus, CBM in the full length enzyme 
does not play a role in our experiments and we only 
studied the structure and activity of the catalytic domain 
(named as Actglu-CD).

Table 2  Diffraction data collection and refinement statistics

a Rsym = ∑ (|Ii – < I >|)/∑(I), where Ii is the measured intensity and < I > is the mean 
intensity of all measured observations equivalent to reflection Ii
b Values in parentheses are statistics from the highest-resolution shell
c Rwork = ∑||Fobs| – |Fcalc||/∑|Fobs|, where |Fobs| is the observed diffraction 
amplitude and |Fcalc| is the corresponding calculated structure factor amplitude
d Rfree is defined as Rwork, which involves 5% of the measured reflections not used 
in refinement and set aside for cross-validation

Variable X-ray 100 K

Data collection

 Space group P 212121

 Unit cell dimensions

  a, b, c (Å) 60.4, 61.0, 70.7

  α, β, γ (°) α = β = γ = 90°

 Resolution (Å) 50.00–1.14 (1.16–1.14)

 Unique reflections 95,197 (4703)

 Multiplicity 11.5 (8.3)

 Completeness (%) 100.00 (100.00)

 Wavelength (Å) 0.98

 Rsym
a 0.150 (0.942)b

  < I > /σ < I >  16.6 (2.0)

Refinement

 Resolution (Å) 16.93–1.14 (1.16–1.14)

 Rwork
c/Rfree

d 0.132/0.158

 No. of atoms

  Protein 2221

  Tris 8

  Mg2+ 1

  Water molecules 297

 B factors

  Protein 12.29

  Solvent 26.84

Deviation from ideality

 Bond length (Å) 0.0136

 Bond angle (°) 1.842

Ramachandran plot statistics (%)

 Preferred regions 97.86

 Allowed regions 2.14

 Outliers 0

PDB ID code 7EO3

Fig. 4  Structural analysis of the catalytic domain (Actglu-CD) of 
β-1,3-glucanase. A the overall structure. β-sheets, yellow; α-helix, 
red; Mg2+, bright pink; all loops, green. B two disulfide bonds in the 
structure (between C160 and C168, and between C180 and C185). 
The model in Panel B is rotated 90° around the Y-axis. C molecular 
docking shows the ligand binding cleft in Actglu-CD. The disulfide 
bonds are located in a region (light-pink, residues 156 –174) near the 
active site, which is illustrated by a red dashed oval
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The crystal structure of Actglu-CD shows that the pro-
tein has a sandwich-like β-jelly-roll fold, which is typi-
cal of the GH16 family β-1,3-glucanases. There are two 
disulfide bonds in the structure (between C160 and C168 
and between C180 and C185), which stabilize the pro-
tein fold. The catalytic activity of this enzyme is 146.9 
U/mg under the optimal condition (75  °C, pH 5.5) with 
curdlan as the substrate. It has the sequence identity of 
61% with a well characterized β-1,3-glucanase (PDB ID: 
3DGT), which has the activity of 19.0 U/mg. (Hong et al. 
2002). Compared with the crystal structure of Actglu-
CD, 3DGT has one more β-strand and one more α-helix 
(Hong et  al. 2008). Previous studies have shown that 

improvement of thermal stability can be achieved by sta-
bilizing secondary structures such as α-helix and β-sheet 
(Jaenicke et al. 1996). As a result, 3DGT has longer half-
life at 75 °C (Hong et al. 2008).

Many studies showed that disulfide bonds are essen-
tial to maintain the structural stability of proteins 
(Dehnavi et al. 2017; Yennamalli et al. 2011). To validate 
their role in Actglu-CD, we performed mutagenesis 
to abolish them. We evaluated the occurring frequen-
cies at the residue positions 160 and 180 using Hot-
Spot Wizard 3.0 and chose the second most occurred 
residues (Fig. 5). Accordingly, we designed C160G and 
C180I. As expected, abolishing the disulfide bonds 
decreases the structural stability. Compared with wild 
type (WT), the Tm values of C160G and C180I have 
decreased by 10.4  °C and 2.3  °C, respectively. Their 
optimal reaction temperatures have decreased by 5 °C. 
Their t1/2 is also significantly decreased at 70  °C and 
75  °C. Interestingly, C160G has higher activity in the 
temperature range of 50 ~ 70  °C (Fig.  3D). Our molec-
ular dynamics simulations show that the loop region 
(residues 156 ~ 174) in C160G is significantly more 
flexible than WT, which is near the active site (Figs. 4C 
and 7B). The increased dynamics may have two effects. 
First, it may lead to lower substrate binding affinity to 

Fig. 5  Occurrence of different amino acids at the residue positions of 160 and 180, respectively. Glycine is the second most occurred residue at the 
position 160 (A), and isoleucine is the second most occurred residue at the position 180 (B)

Table 3  Half-life (t1/2) of WT and its two mutants

Enzyme Temperature (℃) t1/2 (min)

WT 70 35

75 18

C160G 70 16

75 7

C180I 70 28

75 12

Fig. 6  Tm values of WT, C160G, and C180I. The Tm values are 69.5 °C for WT (A), 67.2 °C for C180I (B), and 59.1 °C for C160G (C), individually
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have higher Km values. Second, the increased confor-
mational flexibility may decrease the product binding 
affinity to accelerate its release, which is usually the 
rate-limiting step in enzyme catalysis (Saavedra et  al. 
2018). Thus, kcat of C160G is significantly increased and 
the overall catalytic efficiency (kcat/Km) is increased at 
70 °C (Table 1). H.G. Saavedra et al. shows that mutat-
ing a ‘heavy’ surface residue to a ‘lighter’ residue (Gly-
cine) has increased dynamics in the local region, which 
could propagate to the active site to lower the activa-
tion barrier and promote catalysis (Saavedra et al. 2018; 
Jeng et  al. 2011). Our results are consistent with their 
findings. In contrast, there are hydrophobic amino 
acids near C180, such as proline and alanine. When 
C180 is mutated to I, it may have hydrophobic interac-
tions with its surrounding residues. These interactions 
would lead to only slightly increased dynamics com-
pared with WT (Fig.  7B), and gives rise to similar kcat 
compared with WT. However, C180I has higher Km. 
Consequently, its overall catalytic efficiency (kcat/Km) is 
lower than that of WT (Table 1 and Fig. 3D).

Mutating residues in the active site to increase 
enzyme activity is difficult to be successful, because 
such mutations could jeopardize the conserved con-
formation of the catalytic residues (Fields and Somero 
1998). Mutating residues distal to the active site, par-
ticularly in the loop region on the surface, would have 
the least conformational changes. Exolytic enzymes 
from different microorganisms use this strategy to 
adapt to different temperature environments (Fields 
et al. 2015). Here, we have designed mutations in β-1,3-
glucanase based on natural evolution, which led to 
decrease of its thermal stability, but increase of its cata-
lytic activity. This strategy could be useful to adjust the 

enzyme activity according to different applications in 
industry.
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